The Frenkel-Kontorova (FK) model: Introduction


The Frenkel-Kontorova model goto top

Yakov Il'ich Frenkel & Tatyana Kontorova (1938)

fk.gif

Simplicity of the model:

System of units:    m = 1,  a = 2π εs= 2

Parameters: (i g (elastic constant)  and (ii)  aA  (lattice constant)

Limiting cases:   g >> 1   or   g ~ 1   or   g << 1

Also important:  aA= 2π   or  aA≠ 2π

Boundary conditions are also important. Variants:

                         free end(s) or

                         fixed density (in computer simulation periodic b.c.)

 

Richness of the model

Mathematics

Physics – richness and complexity of the phenomena involved

Applications - everywhere where one may separate a subsystem, and treat the remainder as an external substrate potential, damping, and thermal bath; in particular:

Some applications goto top

Mechanical model

Dislocation

fk_fig1.gif fk_latt.gif
 

Adsorption on “furrowed” (metal) surfaces

[fcc(110), bcc(112), hcp(1010)]

DNA

furrowed.gif fk_dna2.gif

 

The ground state (GS) problem goto top

 

I. The fixed density case (periodic boundary conditions) goto top

Aubry transition: C (commensurate GS) → IC (incommensurate GS)

Potential energy: E(g,θ ) = [Vsub(xl) + Vint(xl+1xl)]  →  min   g(xl+1+ xl–1– 2xl ) = sin xl   → 

2D nonlinear area-preserving twist map (the Taylor-Chirikov standard map):

 

ì
í
î

xl+1 = xl + pl+1

pl+1 = pl + g –1 sin xl

 

ü
ý
   
þ

or     

Yl+1 = TYl   where

Yl Î (0,2p ) × (0,2p )  tour

f05-02a.gif
     enlarged view      enlarged view      enlarged view

 

orbits:
    regular (points) or quasi-periodic (curves)      g = ∞
                                                                                gc(w) ≈ 1 (for the golden mean w)
    chaotic (stochastic)                                        g = 0

( the most "survived" orbit corresponds to the golden mean w = (5-1)/2 )


The GS of the FK model always corresponds to a regular orbit in the map
The GS is described by the hull function:  xl = h(la + β),  where  β  is an arbitrary phase

For an irrational concentration, the Aubry transition by breaking of analyticity takes place:

                                  for  g > gc(w)  we have the sliding state  [ h(x)  is continuous], while

                                  for  g < gc(w)  we have the pinned state  [ h(x)  is discontinuous]

f05-08.gif

Note: metastable states correspond to glass-like configurations

 

II. The free-end chain: Devil’s staircase goto top

f05-01.gif

Frank – van der Merwe (FvdM) transition

 

Dynamics goto top

Motion equation:  d2xl /dt2 + sin xl g (xl+1 + xl1 2xl ) = 0
In the continuum-limit approximation we come to the sin-Gordon (SG) equation  utt uxx+ sin u = 0
The SG equation is exactly integrable: any solution is a superposition of

  • phonons

  • breathers (dynamical solitons)  u(x, t) = 4 tan1{ [√(1 Ω2)/Ω] sin(Ωt) / cosh [x(1Ω2)] }

  • kinks (topological solitons)      u(x, t) = 4 tan1 exp[ (x vt)/√(1v2) ]

Discreteness effects:

  • phonon spectrum: ωph(k) = [1 + 2g (1 cos k)]1/2,  where  |k| ≤ π

  • Peierls-Nabarro (PN) potential

  • metastable states

  • radiation of moving/oscillating solitons

  • localized (intrinsic, shape) kink modes

Kinks goto top

                antikink                 θ = 1  (trivial GS)               kink                       

is topologically stable minimally possible local

   extention (vacancy)                  or                expansion (extra atom)

of the commensurate GS structure

anharmak.gif

min-en. cnf

 

 

 

saddle cnf

 

 

 

anharmk.gif

Discreteness effects PN potential   εPN = EsaddleEmin-en

 

θ = 3/5  (complex GS)

kink

 

GS

 

antikink

 

Hierarchy of kink lattices goto top

The original atomic FK lattice  (example for  θ = 4/3)

super1.gif

may be considered as a lattice of kinks constructed on the reference structure  θ0= 1. Indeed, let us consider kinks as quasiparticles of mass  m(kink) subjected to the periodic PN potential of the height  εPN  and interacting with the potential  vint(R)  (R0=3as). In such a way we come to

the renormalized FK model with the structure  θ(kink)= 1/3

super2.gif

is characterised by the elastic constant  g(kink)= a2vint′′(R0)/2π2εPN ,  and its excitations are superkinks / superantikinks

The case of  θ = 1±δ δ << 1:

GS = GS(θ=1) + residual (geometrical) kinks + thermally excited kink-antikink pairs

low temperature  T  (0 < kBT < εsuperkink):  residual kinks form a superlattice;  excitations are superkinks

higher  T  (εsuperkink< kBT < εtrivial kink):  kink superlattice is “melted”; excitations correspond to the “trivial” (θ=1) kinks

 

Generalizations goto top

Next: Generalizations of the FK model goto top

goto main Back to main page

 


Last updated on October 5, 2008 by Oleg Braun