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1. Introduction

Finding conditions that ensure the largest nonlinear beam coupling is not a trivial problem
in low symmetry crystals (triclinic or monoclinic) because of several reasons. First, the num-
ber of nonvanishing components of the Pockels tensor ri j is at least doubled comparing to
classical tetragonal photorefractive BaTiO3. Second, in crystals with limited trap density the
anisotropy of low-frequency dielectric permittivity εkl becomes important for estimating space
charge screening effects. Third, in crystals of m symmetry class which are of special interest
because of practical importance of photorefractive tin hypothiodiphosphate Sn2P2S6 (SPS) [1],
the frames for various anisotropic physical properties (for example, for low-frequency dielec-
tric permittivity, index of refraction (optical indicatrix), linear and nonlinear absorption, fluo-
rescence, etc.) do not coincide with the crystallographic frame (see, for example recent review
article [2]).

Previous attempts to optimize the orientation of the space charge grating and the recording
waves polarization in Sn2P2S6 in order to get the largest possible nonlinear coupling are de-
scribed in Refs. [3, 4]. It has been shown that for interaction of counterpropagating waves the
two beam coupling gain can be enhanced 1.5 times if the space charge grating is tilted roughly
to 70◦ in the xy crystallographic plane with respect to standard orientation of the grating vector
K along the x-axis.

In this paper it is shown that for the interaction of He-Ne laser light waves (633 nm) at room
temperature the grating vector directions K for which the gain factor Γ takes its largest possible
value do not appear in any of three standard crystallographic planes of Sn2P2S6. This largest
gain factor can be achieved for crystal eigenwave that corresponds to the inner shell of the
normal surface in the wavevector space. The mirror plane (010), which is the only symmetry
element of Sn2P2S6 at ambient conditions imposes, in this case, the existence of two equivalent
K directions that optimize beam coupling. For the eigenwave which corresponds to the outer
shell there exists, however, only one optimum direction that maximizes beam coupling, because
it is located in the mirror plane itself. In the latter case the largest gain factor peaks at about 0.7
of the possible absolute maximum value.

We present below the results of calculations (Sect. 2) that are further confirmed experimen-
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tally by measurements with special cut Sn2P2S6 samples (Sect. 3). An essential part of this
paper describes our efforts to summarize data on Sn2P2S6 characterization from different lit-
erature sources and present them within the same coordinate system to perform correct cal-
culations. The Appendix describes how one can find experimentally the positive directions of
coordinate axes for the accepted convention. The methods are discussed on how to establish
the orientation of the optical indicatrix and spontaneous polarization PS direction from their
photorefractive manifestations.

The above analysis might be of importance for studies of other anisotropic properties of
Sn2P2S6 crystals. With any modifications it can be used for characterization of photorefractive
Bi4Ti3O12 that belongs to the same symmetry group as Sn2P2S6 [5, 6]. The proposed approach
will be useful also for studies of index gratings in other low symmetry materials (see, e.g.,
Ref. [7]).

2. Calculations of gain factor for different orientations of two counterpropagating waves

The general expression for two-beam coupling gain in a crystal with diffusion driven charge
transport (see, e.g., Ref. [8]) is as follows:

Γ = (es · ep)
2π nsn2

p re f f ED

λ cosα

1
1+ `2

s K2 . (1)

Here ED = K(kBT/e) is the diffusion field, K is the spatial frequency of the space-charge grat-
ing, T is the absolute temperature, kB is the Boltzmann constant, e is the electron charge, re f f
is the effective Pockels coefficient, ns and np are the refractive indices of the two interacting
waves, λ is the light wavelength in vacuum, and α is the angle between the input face normal
and wavevector of the signal wave. The Debye screening length, `s = [εe f f ε0kBT/(Ne f f e2)]1/2,
depends on the effective trap density Ne f f = NDNT/(ND +NT ), where ND and NT represent
the densities of filled donors and empty traps, respectively; εe f f ε0 is the effective dielectric
permittivity.

One problem of SPS, which is still not solved technologically, consists of an insufficient
effective trap density that results in strong charge screening at high spatial frequencies, `2

s K2�
1 [1]. For interaction of counterpropagating waves this leads to considerable reduction of the
gain factor because of large denominator of the second factor in Eq. (1), but at the same time
allows for simplifying substantially the equation itself [4]

Γ =
Ne f f e
2ε0

(
n2 re f f

εe f f

)
. (2)

It is assumed in Eq. (2) that the coupling waves are exactly counterpropagating eigenwaves
which have identical polarization such that ks‖kp‖K , ns = np = n and es · ep = 1.

As follows from Eq. (2) the gain factor Γ is proportional to effective Pockels coefficient
re f f = r̂lmndldmqn and is inversely proportional to effective dielectric constant εe f f = ε̂i jqiq j.
The dependences of the eigenwaves’ unit electric displacement vector d and phase velocity
2πn/λ on unit wavevector q = K/K should be also taken into account. When data on Pockels
tensor r̂, low-frequency dielectric tensor ε̂ , and optical indicatrix of the crystal are declared, the
gain factor for each eigenwave depends only on its direction according to Eq. (2).

The publications on SPS characterization that provide the necessary information are not nu-
merous: references [9–11] for low-frequency dielectric tensor; references [12, 13] for optical
indicatrix; references [14–17] for Pockels tensor and two theses, [18] and [19]. The reported
values are most often correct and reliable, however there is a difficulty in their use which is
related either to imprecise description or description lacking at all of the Cartesian setting for
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which the measurements have been done. Below we describe the choice of crystallophysic axes
that we use in what follows and precise specifications of different anisotropic parameters of the
crystal.

For polar phase of Sn2P2S6 the elementary cell has the dimensions a = 9.375 Å, b = 7.488
Å, c = 6.513 Å and the angle between the axes a and c is β= 91.15◦, while the two other angles
are equal to 90◦ [20]. In the introduced crystallophysic orthogonal coordinate system (Fig. 1),
the y-axis is set to be normal to the crystal mirror plane m, the z-axis coincides with the c-axis
and the x-axis is aligned close to the a-axis. The question of crucial importance is the choice
of positive directions of Cartesian axes; here we try to conform with the IEEE standard [21].
Following publication [22], the vector of the spontaneous polarization PS is located between
[100] and [101] crystallographic directions and therefore belongs to the quadrant I of the xz-
plane. Referring to the study of piezoelectric properties of Sn2P2S6 [23] it is accepted that
both, the effective piezoelectric constant de f f and effective dielectric permittivity εe f f get their
maximum values in the same quadrant of the xz-plane (so that d11 and d33 are both positive, in
accordance with the standard requirement). The positive direction of the y-axis is then imposed
by the right-hand rule convention for the x, y and z axes.

IVIII

I

X
a

Z, c

PS

n1

n3
II

Fig. 1. The orientation of the crystallographic axes a and c, the spontaneous polarization
vector Ps, the major (n3) and middle (n1) axes of the optical indicatrix (dashed lines) of
Sn2P2S6 crystal in the crystallophysic coordinates. The angular dependence of the effective
dielectric permittivity εe f f is shown as a solid line. The quadrants are enumerated as I, II,
III, and IV as it is shown in the corners of the gray area.

In the crystallophysic coordinate the Pockels tensor in contracted notation and the low-
frequency dielectric tensor of Sn2P2S6 read, respectively:

r̂
r11

=


1 0 −0.19

0.53 0 −0.08
0.87 0 −0.11

0 −5 ·10−3 0
−0.12 0 0.2

0 −0.03 0

 , (3)
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ε̂

ε11
=

 1 0 0.2
0 0.1 0

0.2 0 0.25

 . (4)

Taking the relative values in Eqs. (3) and (4) normalized to the largest component of each
tensor doesn’t affect the direction of the gain maximum that we are searching for, as it follows
from Eq. (2).

The major axis of the optical indicatrix lies in quadrant I of the xz-plane and is tilted to
ϕ0 = 43.3◦ with respect to the x-axis [12]. The inverse optical-frequency dielectric tensor is
represented in the form

B̂ =

 n−2
1 sin2

ϕ0 +n−2
3 cos2 ϕ0 0 1

2 (n
−2
3 −n−2

1 )sin2ϕ0
0 n−2

2 0
1
2 (n
−2
3 −n−2

1 )sin2ϕ0 0 n−2
1 cos2 ϕ0 +n−2

3 sin2
ϕ0

 , (5)

where n1 = 3.0253, n2 = 2.9309, n3 = 3.0974 are the principal refractive indexes of the
SPS crystal at the wavelength λ = 633 nm [12]. The dependence of wave polarization d
and refractive index n of each eigenwave on its direction q is obtained from wave equation
q× (q× B̂d)+dn−2 = 0. This equation is an example of an eigenvalue equation with matrix
Mim = êi jkêklmq jql , where êi jk is Levi-Civita symbol. This is solved numerically using dgeev
method of LAPACK library.

It is convenient to present the calculated dependences of the gain factor on spatial orientation
of the grating vector q in spherical coordinates (see Fig. 2). The azimuth angle ϕ is measured
from the x-axis in the counterclockwise direction, to be in agreement with the notation of quad-
rants in Fig. 1. The zenith angle θ is measured therefore from the negative direction of the
y-axis.

X

Z

- Y

j

q

X

Z

- Y

I

I II I I

I V

Fig. 2. Left drawing introduces spherical coordinates for orientation dependences of the
gain factor. Right drawing shows the numeration of quadrants I,II,III and IV in the crystal
mirror plane xz.

The results of calculation are shown in Fig. 3 for the fast eigenmode (which refers to the
smaller refractive index, i.e., to inner shell of the normal surface) and slow eigenmode (which
refers to the larger refractive index, i.e., to outer shell of the normal surface). The yellowish and
bluish colors mark the positive and negative gain, respectively, while colorless regions indicate
the areas of parameters with very small gain, approaching zero. The change to 180◦ of either
ϕ or θ , which corresponds to rotation of the sample to 180◦ leads to inversion of the beam
coupling direction (a change of the sign of Γ is represented in Fig. 3 by the change of color).
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Fig. 3. Pseudocolor 2D maps that represent normalized two-beam coupling gain factor ver-
sus orientation of a pair of interacting counterpropagating crystal eigenwaves that belong
to the inner and outer shells of the normal surface (upper and lower panels, respectively.)
This calculation is done for light waves with 633 nm wavelength and Sn2P2S6 crystal at
ambient temperature. Red lines mark the crystal mirror plane xz while bright spots indicate
signal wave orientation for which the largest gain factor can be achieved.
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The xz coordinate plane corresponds to horizontal lines θ = ± 90◦. As the xz plane is a
mirror plane of Sn2P2S6 the values of gain factor calculated for any arbitrary ϕ remain the
same if the zenith angle θ is changed to (180◦−θ ). The two other crystallophysic planes, xy
and yz correspond to vertical lines ϕ = 0◦, ± 180◦ and ± 90◦, respectively. The largest gain
factor that can be reached for the light waves that propagate in the yz-plane, as it follows from
Fig. 3, is smaller than that for the waves propagating in the xy-plane. This is in agreement with
the fact that the Pockels coefficients in the first column of Eq. (3) are larger than that of the
third column.

The horizontal lines at θ = 0◦ and ± 180◦ define the negative and positive directions of
the y-axis. Because of absence of the nonvanishing y-components responsible for coupling of
identically polarized light waves in the Sn2P2S6 Pockels tensor (r12 = r22 = r32 ≡ 0), the gain
factor for the waves that propagate along the y-axis is identically zero.

Finally, the main result of the calculation presented in Fig. 3 is in locating the wave directions
with largest possible beam coupling. As one can see, for an eigenwave that corresponds to the
inner shell of the normal surface the absolute maximum of Γ occurs at ϕ ≈ -57◦ and θ ≈
31◦ (or θ ≈ 149◦). At the same time, the optimum coupling direction for the eigenwave that
corresponds to the outer shell is unique and appears in the mirror plane at ϕ ≈ -76◦, θ = 90◦.
The bright blue spots show the positions of the positive gain maxima in Fig. 3.

These calculations allow for concluding that with the presently available Sn2P2S6 crystals
the optimum orientation of interacting waves is mainly determined by compromise between
reducing of the charge screening and decreasing of effective Pockels coefficient, which occur
when space charge field direction moves out of the x-axis towards the y- or z-axes.

As the first column components (r11, r21, r31) are the largest among all Pockels tensor com-
ponents of Sn2P2S6, the maximum of the effective Pockels coefficient occurs at ϕ ≈ 0. For the
slow eigenmode, because of large r31, the greatest effective Pockels coefficient is reached at
θ ≈ 90◦. Therefore, the direction of largest gain factor for the slow eigenwave appears in the
mirror plane and is located near the z-axis.

For small deviations from the mirror plane ( θ 6= 90◦), the fast eigenwaves are polarized
nearly along the meridians. The direction that ensures the largest effective Pockels coefficient
for this mode is out of the mirror plane (θ = 90◦), because the contribution of the largest r11
component increases with (90◦- θ ); therefore, the direction of gain maximum for fast eigenwave
is tilted in the y-direction too.

It should be noted that whatever the eigenwave is, the condition of the maximum gain is only
weakly influenced by the components of the second and third columns of the Pockels tensor
(Eq. (3)). The hierarchy of the Pockels tensor components defines, however, the ratio of the
gain factor values at these maxima.

3. Experiment and discussion

The experimental measurements have been started with nominally undoped samples of Sn2P2S6
cut along the crystallophysic axes [4]. With counterpropagating beams that enter the sample
from the x-faces, we discovered that the normal incidence (grating vector K parallel to the
x-axis) does not provide the largest two-beam coupling gain. This motivated calculations and
further experimental efforts to find the optimum interaction geometry that could ensure the
largest possible gain.

The use of the standard-cut samples of nominally undoped Sn2P2S6 was, however, quite
ineffective for the purpose of gain optimization because of two reasons. A quite high refraction
of Sn2P2S6 (all indices of refraction close to 3.0) strongly reduces the angular window in which
a light wave can propagate inside the sample as Total Internal Reflection angle is less than 18◦.
Thus, the optimum directions of beam propagation shown by bright blue spots in 2D maps
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of Fig. 3 are inaccessible from any sample face. A large index of refraction leads also to a
considerable Fresnel reflection, which depends strongly on angle of incidence. This results in
a considerable intensity variation of a light beam inside the sample when angle of incidence
is changed. As the gain factor in Sn2P2S6 is intensity dependent [1] the measured angular
dependences of Γ become distorted.

To overcome these difficulties we (i) use the samples with special crystal cut that ensure
the propagation along the optimum direction for a beam with a normal incidence to the input
face, and (ii) select 1%Te-doped Sn2P2S6 crystals [24] for measurements, as they have less
pronounced intensity dependence of gain as compared to crystals with other known dopants
and nominally undoped crystals.

Fig. 4. The Sn2P2S6 samples used in the experiment , #1 and #2, left and right, respectively.
The arrows show the crystallophysic axes and the dashed line frames indicate the input
faces.

Our first choice was to optimize the K direction in the xy-plane, for which the difference in
dielectric tensor components is the largest possible (ε11 ≈ 10ε22, see Eq. (4)). This allowed for
a reasonable expectation of a substantial inhibition of screening at an appropriately selected K
direction. Based on the result of calculation presented in [4], the first sample (sample #1) was
prepared with the input-output faces perpendicular to the z-axes and tilted to 20◦ with respect
to the xz-plane (for the beam at normal incidence in the 2D maps of Fig. 3, the azimuth and
zenith angles were ϕ = 0 and θ = 20◦, respectively). The second sample (sample #2) had a
more sophisticated cut, the normal to its input/output faces being aligned at ϕ = -60◦ and θ =
30◦, which is close to the optimum direction that should maximize the gain factor for the fast
eigenwave (see upper panel of Fig. 3). The outer appearance of these two samples is shown in
Fig. 4, with arrows indicating the crystallophysic directions and yellow-dashed frames around
the input faces. The thickness ` of the samples #1 (left) and #2 (right) in directions normal to
the input/output faces is 8 mm and 4.4 mm, respectively.

Two unexpanded beams from a He-Ne laser (TEM00, Gaussian beam waist ≈ 1.5 mm, λ =
633 nm, total power ≈ 30 mW) with the intensity ratio 1:200 were exactly counterpropagating
to each other. The linear polarization of both beams was adjusted with half wave phase re-
tarders to excite one of the crystal eigenwaves. The gain factor Γ was estimated with a standard
expression

Γ = (1/`) ln(Is/Is0), (6)

where Is and Is0 are the signal (weaker) beam intensity with and without the pump wave in the
sample and ` is the interaction length inside the sample which is equal to the sample thickness
in this case.
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Fig. 5. Gain factor Γ versus tilt angle θ of grating vector K with respect to the y-axis in the
xy-plane for azimuth angle ϕ = 0 (sample #1). Solid lines show the best fit with calculated
dependences (see text). Red and blue colors mark the interaction of waves that belong to
the inner and outer shells of the normal surface, respectively.

Figure 5 represents the angular dependence of the gain factor for two eigenwaves of sample
#1. The sample was rotated so that the laser beams remained always in the xy-plane. The solid
lines show the best fit of calculated dependences to the measured data, red (and blue) squares
for inner (and outer) shells of the normal surface. Both curves feature quite distinct maxima
slightly below θ = 20◦. Note, that the largest gain is reached for the eigenwave which is only
modestly enhanced for grating vector aligned along the the x-axis (θ = 90◦, ϕ = 0).

At the same time, it is clearly seen from Fig. 6 that such an experimental geometry doesn’t
provide access to the predicted grating direction with maximal gain. Therefore we measure
then, with the same sample #1, the angular dependence of the gain factor in the plane which
is perpendicular to the xy-plane and perpendicular to the input/output faces. When tilting the
incident beam in this plane we change both the azimuth angle ϕ and the zenith angle θ of the
recorded grating vector K inside the sample so that grating vector moves in Fig. 6 along the
trajectories shown by arcs.

The angular dependence of the gain factor for both eigenwaves measured with sample #1 in
this geometry is shown on Fig. 7 as a function of azimuth ϕ . It is clearly seen that gain factor
increases with the decreasing ϕ for both eigenwaves (red and blue open circles), in qualitative
agreement with calculated data, shown by solid lines. Because of light refraction on the faces
of sample #1 only part of predicted for this geometry grating orientations (shown by the solid
lines on Fig. 6) is accessible and the largest value of gain factor cannot be reached with this
sample.

To enter the convenient angular window we use the sample #2. The values of Γ measured
with normal incidence to the input faces of these sample (ϕ = -60◦ , θ = 30◦) are shown in Fig.
7 with red and blue squares. Taking into account that these data are measured with two different
samples that may have different residual domain structure (different deviation from the ideal
single domain state) the agreement of expected and measured gain enhancement for sample
#2 is rather astonishing. Agreement of presented in Figs. 5 and 7 experimental and theoretical
angular dependencies together with published before data [4] indirectly confirms the results of
calculation shown in Fig. 3 and used set of material constants in Eqs. (3), (4) and (5).
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Fig. 6. A fragment of the 2D plot of gain factor angular dependence (Fig. 3) that represents
actual positive gain aria. The red lines show how the grating vector direction changes in
sample #1 when it is rotated above the z-axis (vertical lines), and above the axis tilted
to 20◦ with respect to the x-axis in the xy-plane (arcs). The solid lines mark the angular
windows inside the crystal that are accessible with sample #1, while the asterisk indicates
the normal incidence to the input/output faces of the sample #2.
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Fig. 7. Angular dependence of gain factor Γ measured with sample #1 (circles) and with
sample #2 at normal incidence to the input face (squares). Solid lines show the best fit with
calculated dependences (see text). Red and blue colors mark the interaction of waves that
belong to the inner and outer shells of the normal surface, respectively.
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4. Conclusions

The optimum geometry that maximizes the two-beam coupling gain for counterpropagating
light beams in monoclinic photorefractive crystal is considered, with Sn2P2S6 taken as an exam-
ple. The optimum orientations of the two interacting waves are shown to be influenced mainly
by the anisotropy of the dielectric and electrooptic properties. The best coupling of slow eigen-
waves can be achieved within the crystal mirror plane. For fast eigenwaves the directions that
ensure the largest gain are tilted symmetrically to the mirror plane; this is a consequence of
the increasing effective electrooptic coefficient which incorporates, out of the mirror plane, the
largest Pockels component r11 of Sn2P2S6. The calculations performed with available data on
optical and dielectric properties of Sn2P2S6 show that in an optimized geometry the two-beam
coupling gain for the fast eigenwaves can be 2.6 times increased as compared to previously con-
sidered classical orientation of waves along the crystal x-axis. This is confirmed experimentally
with Te-doped Sn2P2S6 crystal.

Appendix

In this Section the experimental techniques are described that are used for establishing the
Cartesian set of axes with defined positive directions for our samples. Also, the test experiments
are described that have been performed to confirm the orientation of major axes of the optical
indicatrix and dielectric permittivity in the crystal mirror plane. These key directions are of
crucial importance for correct calculation of spatial dependence of gain factor (see Sect. 2).

The first step in sample preparation for this study was in cutting a sufficiently large rectan-
gular sample with faces normal to the crystallographic directions, which could be used further
for preparing special cuts described above. This was done with the use of the X-ray diffraction
analysis to control the axes orientation. The second step consisted in finding the positive axes
directions for this crystal, which is lacking the symmetry center.

The positive direction of the x- and z-axes can be identified through the direction of the beam
fanning from the beams that enter the sample via z-face or x-face, respectively. If photoexcited
carriers are positively charged, which is the case for all presently known doped and nominally
undoped Sn2P2S6 crystals, the scattered light fan points in the positive (or negative) axis di-
rection if positive (or negative) Pockels tensor component dominates in the effective Pockels
coefficient. Thus the unidirectional light induced scattering (fanning) from the light beam that
enters the sample through the z-face points to positive direction of the x-axis (whatever is its
eigenpolarization, along the x-axis or the y-axis.) This is a consequence of positive signs of first
column Pockels coefficients r11 and r21 (see Eq. (3)). Similarly, the beam that enters the sample
through the x-face produces (less pronounced but still detectable) fanning in negative direction
of the z-axis.

With the known positive directions of the x- and z-axes we can then check the orientation
of the major axis of the optical indicatrix and identify the orientation of largest dielectric per-
mittivity in the xz-plane. There are several possibilities to do this by profiting from various
types of nonlinear wave mixing. The easiest way to find the eigenwave with a smaller index of
refraction in the y-cut sample is via observation of conical parametric scattering as described
in Ref. [25]. Typical ring-like scattering pattern (see Fig. 8) with the polarization orthogonal
to the incident beam polarization can appear if and only if the incident beam belongs to the
inner shell of the normal surface, i.e. with the incident beam that possesses the smaller index of
refraction, n1. Such a test confirmed our initial supposition that the longest axis of optical indi-
catrix (n3) is located in the quadrant I of the xz-plane, as it is shown in Fig. 1. The other possible
way to identify the orientation of optical indicatrix is in establishing conditions of observation
of the anisotropic selfdiffraction, described for Sn2P2S6 in Ref. [15]. This latter method may
become preferable when working with thin or low-gain samples that do not feature detectable
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Fig. 8. Conical scattering pattern from a y-cut Sn2P2S6 sample. The incident beam corre-
sponds to the eigenwave of inner shell of the normal surface, while the light scattered into
the bright arc on the left corresponds to the eigenwave of outer shell of the normal surface.
The Polaroid sheet was placed behind the sample to filter out the transmitted light of the
incident wave and reduce beam fanning.

parametric conical scattering.
Finally, we come to the identification of the orientation of the largest effective dielectric

permittivity. In photorefractive materials the dielectric permittivity affects the dynamics of the
recording/erasing process (via Maxwell relaxation time, τM = εe f f ε0/σ , with σ being pho-
toconductivity). If high enough, it also reduces the gain factor because of the space charge
field screening, see Eq. (1). Thus, the necessary information on anisotropy of ε̂ might be ex-
tracted from a measurement of the angular dependences of τM or Γ. We used the second option,
measuring the gain factor for two co-propagating waves as a function of the sample rotation
angle in the xz-plane (Fig. 9). When rotating the sample about the y-axis, the polarizations of
the two recording waves were adjusted to belong to the same crystal eigenwave with the indices
of refraction either n1 or n3 for upper and lower panels of Fig. 9, respectively.

The angle in air between two beams was adjusted to be 5◦ and 24◦ for the blue and red data
in Fig. 9, respectively. The dependences of the gain factor in this geometry, for slow and fast
eigenwaves, respectively, on rotation angle β have the form:

Γ∼ (r11 + r31±2r51)cosβ +(r13 + r33±2r53)sinβ

1+(2π`sX/Λ)2(ε11 cos2 β + ε33 sin2
β + ε13 sin2β )/ε11

, (7)

where `sX stands for Debye constant along the x-axis. In the first case (5◦) charge screening
is strongly reduced (2π`sX/Λ)� 1 and the anisotropy of Pockels tensor plays a main role.
In the second case (24◦) charge screening is essential. Consequently, it was expected that the
dielectric anisotropy should affect only the set of data shown in red, while data shown in blue
should be insensitive to ε at all.

As one can see, the data measured with the small angle between the beams show an angular
dependence with a detectable but rather small asymmetry with respect to the sign of the rotation
angle. A much more pronounced asymmetry is clearly seen, on the contrary, for measurements
with an increased angle between the beams. The maximum gain appears in the quadrant IV,
which justifies the initial supposition that the largest value of ε falls into the quadrant I (see
Fig. 1).

A satisfactory agreement of measured and calculated data justifies the choice of positive ε13
in the model. For comparison, we show with dashed lines the dependences calculated with the
same absolute value of ε13, but with the sign changed to be negative (maximum value of ε in
the quadrant IV). The discrepancy with the measured data is obvious for such a choice of the
ε anisotropy, thus supporting our conclusion that the largest ε appears in the quadrant I of the
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Fig. 9. Gain factor for coupling of two co-propagating waves versus orientation angle of
the grating vector in the xz-plane. Circles and squares show the results of measurements
for two different grating spacings, 7 µm and 1.5 µm, respectively. Both recording waves
are polarized identically and belong to the outer shell (upper panel) and inner shell (lower
panel) of the normal surface (index of refraction n1 and n3, respectively). The solid lines
show fitting with Eq. (7) provided 2π`sX =1.5 µm and ε13 is positive. The dashed line rep-
resents the calculation for hypothetic case, when the largest dielectric permittivity appears
in the quadrant IV (i.e., when ε13 is negative.) The quadrants are numbered on top of the
upper panel.

xz-plane as it is shown in Fig. 1.
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