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Abstract. We present a theoretical analysis, analytical and numerical, of the oscillation regimes for the
semi-linear photorefractive oscillator beyond the instability threshold. This analysis includes the limiting
cases of dominating transmission and reflection gratings as well as the cases of spontaneous violation of
the frequency degeneracy between the oscillation and pump waves.

PACS. 42.65.Hw Phase conjugation; photorefractive and Kerr effects – 05.45.-a Nonlinear dynamics and
chaos – 42.65.Pc Optical bistability, multistability, and switching, including local field effects – 42.65.Sf
Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical
spatio-temporal dynamics

1 Introduction

Strong photorefractive (PR) nonlinearity inherent in
electro-optic materials (in particular, ferroelectrics and
semiconductors) has led to the emergence of numerous op-
tical schemes employing the advantages of the phase con-
jugation and optical oscillation [1–5]. The so-called semi-
linear oscillator was one the first nonlinear devices of this
type [6]. Its cavity is formed by an ordinary feedback mir-
ror and a photorefractive crystal that serves as an am-
plifying phase-conjugate mirror pumped by two counter-
propagating coherent light waves of the same frequency,
see Figure 1. Owing to its apparent simplicity, this scheme
serves often as a sample for investigation of dynamic prop-
erties of PR oscillators, including the threshold behavior,
bifurcations with increasing supercriticality, and transi-
tion to chaos [7–10].

The operation of the semi-linear oscillator is based on
buildup of refractive index gratings (by different pairs of
pump and oscillation waves) and diffraction from these
gratings. By playing with the coherence length and/or
material properties, one can realize the distinct cases of
transmission and reflection gratings, see Figures 1a and
1b. The basic dynamic equations for these cases are well-
known [2,3]. For the most common diffusion photorefrac-
tive response and frequency degenerate oscillation, these
nonlinear equations admit exact steady-state solutions in-
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Fig. 1. Schematic diagram of the semi-linear photorefractive
oscillator for the cases of dominating transmission (a) and re-
flection (b) grating; M is the ordinary feedback mirror and l is
the crystal thickness.

corporating the effect of pump depletion [3,11]. In the
transmission (T) case, these exact solutions correspond to
the soft and hard excitation scenarios for different areas of
the pump ratio r and the feedback mirror reflectivity R.
In the reflection (R) case, the exact solutions correspond
to the soft threshold behavior.

Experiment shows [12,13] that changing pump ratio
can result in a frequency bifurcation of the oscillation
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mode for the diffusion photorefractive response: the single-
frequency oscillation transforms into a two-frequency os-
cillation. An explanation of this phenomenon was given
first on the basis of a heuristic analysis of the influence of
the frequency splitting on the oscillation threshold [12–14]
whose key point is the assumption of an automatic fulfill-
ment of phase matching for the oscillation wave during a
round trip in the cavity. Recently we presented a full-scale
analysis of the threshold and above-threshold behavior of
the semi-linear oscillator within the undepleted pump ap-
proximation for the transmission case and diffusion non-
linear response [16]. It is based on the conventional basic
dynamic equations for the wave and grating amplitudes
and incorporates both the intensity and phase matching
for the oscillation waves. The results of this analysis are
fully applicable also to the case of dominating reflection
grating. They contrast with the predictions of the heuris-
tic model.

In this paper, we present the results of our analyti-
cal and numerical studies of the oscillation regimes be-
yond the undepleted pump approximation. They include
the indication of the regions of the control parameters
where the oscillation is frequency degenerate and non-
degenerate, a quantitative characterization of the both
oscillation regimes, and comparison between the cases of
dominating transmission and reflection gratings.

2 Basic equations and oscillation instability

The initial set of equations for the semi-linear oscilla-
tor in the T and R cases, which corresponds to Fig-
ures 1a and 1b, can be presented in the following uniform
form [2,3]:

∂A1

∂z
= ν∗A4 (1)

∂A2

∂z
= νA3 (2)

∂A3

∂z
= sν∗A2 (3)

∂A4

∂z
= sνA1 (4)

tr
∂ν

∂t
+ ν =

γ

I0
(A∗

1A4 + A2A
∗
3) . (5)

Here A1,2,3,4 are the amplitudes of light waves 1, 2, 3, 4,
ν is the grating amplitude, γ is a real coupling constant,
I0 = I1 + I2 + I3 + I4 is the total intensity, Ii = |A2

i | is the
intensity of the ith wave, tr ∝ 1/I0 is the photorefractive
response time, and the asterisk stands for complex conju-
gation. Parameter s equals −1 for the transmission case
and +1 for the reflection case.

The boundary conditions for pump waves 1 and 2 are
A1(0, t) = A0

1 = const, A2(l, t) = Al
2 = const. The bound-

ary conditions for the oscillation waves 3 and 4 are slightly
different for the T and R cases, see Figure 1,

A3(l, t) = 0, A4(0, t) =
√

R A3(0, t) T case

A3(0, t) = 0, A4(l, t) =
√

R A3(l, t) R case, (6)

where l is the crystal thickness and R is the reflection
coefficient of the feedback mirror M.

Within the undepleted pump approximation (the lin-
ear approximation in A3,4) we can discard equations (1)
and (2) for the pump waves and set A1 = A0

1, A2 = Al
2 in

equations (3–5). Then the difference between the T and R
cases comes from the sign s = ±1 and from the boundary
conditions (6). Making a spatial inversion with respect to
the crystal center (z = l/2) in the R case one can elimi-
nate even this difference. Thus, the results obtained within
the undepleted pump approximation are the same for the
transmission and reflection cases.

The ansatz relevant to the instability analysis within
the undepleted pump approximation has the form

A3,4(z, t) = [A+
3,4(z) eiΩt + A−

3,4(z) e−iΩt] ept

ν(z, t) = [ν+(z) eiΩt + ν−(z) e−iΩt] ept , (7)

where Ω is the frequency detuning, p is the rate of tempo-
ral growth (the increment), whereas A±

3,4(z) and ν±(z) are
certain spatial amplitudes meeting the relevant coupled-
wave equations and boundary conditions. The final com-
plex dispersion equation, which is applicable both to the
T and R cases, reads:

g

1 + p tr − iΩtr
= L± , (8)

where g = γl is the coupling strength and L± =
ln

[
(
√

rR±r)/(
√

rR∓1)
]

is a known function of the beam
ratio r = I l

2/I0
1 and reflection coefficient R. It is under-

stood according to the definition of the logarithmic func-
tion of a complex variable Z, ln Z = ln |Z|+ i arg(Z). The
signs + and − in this equation correspond to two inde-
pendent solutions for p(r, R) and Ω(r, R).

The main outcomes of the dispersion equation can
be formulated as follows: for sufficiently low coupling
strength, |g| � 1.76, we have p < 0 and Ω = 0. In other
words, small perturbations of A3,4 and ν decrease expo-
nentially and monotonically in time and oscillation is not
possible for any r and R. For the coupling strength within
the range 1.76 � g < 2π, the increment p is positive
within a certain region of r, R while Ω = 0. This cor-
responds to non-degenerate oscillations. For g > 2π two
new solutions of equation (8) with p > 0 become pos-
sible within two new regions of r, R; each of these new
solutions for p corresponds to Ω = ±|Ω| �= 0, i.e., to a fre-
quency degenerate oscillation. To consider the case g < 0,
it is sufficient to mention that L±(r, R) = −L∓(r−1, R) in
equation (8); therefore we have p(g, r, R) = p(−g, r−1, R),
|Ω|(g, r, R) = |Ω|(−g, r−1, R).

Figure 2 shows the functions p(r) and |Ω|(r) for g = 7
and R = 0.01. One sees that the value [p(r)]max is the
same for the frequency degenerate branches 1 and 2 and
it is comparable with [p(r)]max for the non-degenerate
branch 0. The middle branch 1 is overlapping with the
left and right branches so that there are intervals of r
where one and two types of instabilities can take place
simultaneously. For curve 0 we have Ω ≡ 0, whereas for
curves 1 and 2 the frequency detuning acquires nonzero
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Fig. 2. Dependence of the increment p and the absolute value
of frequency detuning |Ω| on the pump ratio r for g = 7 and
R = 0.01; curve 0 corresponds to the frequency degenerate os-
cillation while curves 1 and 2 are plotted for solution of equa-
tion (8) with Ω �= 0.

values in the whole interval of r where p > 0. Note that
|Ω|(r) turns to zero very abruptly near the end of branch
2 and also that branches 0 and 2 are well separated; this
is the general feature coming from equation (8).

The behavior of p and |Ω| with changing g is quite evi-
dent from equation (8); with decreasing coupling strength
the regions where p > 0 shrink for branches 1 and 2, so
that branch 0 becomes dominating and the overlaps be-
tween different instability regions disappear. The effect
of changing R is not so evident. It can be commented
as follows: When R is increasing, the value of [p(r)]max

increases quicker for branch 0 then for branches 1 and 2,
this degenerate branch becomes thus dominating. Further-
more, branches 1 and 2 become more and more horizon-
tally separated. Because of that, curve 1 lays below curve 0
for p > 0. With decreasing reflection coefficient, the value
[p(r)]max becomes negative for branch 0; the degenerate
instability disappears, at R � 3.6 × 10−3. For R → 0,
the branches 1 and 2 confluence which corresponds to the
mirrorless oscillation [3,15].

Thus, for the parameters of Figure 2 we have the most
general and interesting situation with five qualitatively
different regions of instability. Different oscillation modes
are expected to compete in these regions. Consideration
of developed oscillations is indeed beyond the undepleted
pump approximation and analytical treatments.

The linearized theory, when applicable, gives also use-
ful predictions with regard to the arguments (phases)
of the complex amplitudes of the oscillation waves for
different modes of instability. In particular, we have:
ReA3 ∝ exp(p0t), ImA3 = 0 for mode 0; ReA3(t) = 0,
ImA3 ∝ exp(p1t) cos(Ω1t + ϕ1) for mode 1; and ReA3 ∝
exp(p2t) cos(Ω2t + ϕ2), ImA3 = 0 for mode 2, where ϕ1,2

are some constants that are of no interest for what follows.

Strictly speaking, this particular presentation is valid for
real input pump amplitudes A0

1 and Al
2. In the general

case, a trivial re-normalization A3 → A3 exp(iφ) with a
time-independent phase φ is sufficient to use the above
results.

3 Numerical procedure

To simulate the temporal development of the optical os-
cillations for different values of the pump ratio r, we have
used a finite difference scheme to solve the system (1–5) of
nonlinear partial differential equations, written in a nor-
malized (dimensionless) form. The amplitudes A1,4 and
A2,3 are normalized to the boundary values of the pump
amplitudes A0

1 and Al
2, respectively, in accordance with

the structure of the initial set and Figure 1. The propaga-
tion coordinate z is normalized to the crystal thickness l.
The dimensionless grating amplitude is νl. The time t is
normalized to the response time t0r = tr I0/(I0

1 +I l
2) calcu-

lated for the total input pump intensity. The initial values
(at t = 0) of the oscillation amplitudes A3,4 are set to be
zero while the initial value of νl, is chosen in the form of a
complex random function whose absolute value does not
exceed 10−4. This seed initiates the instability but, as we
have checked, does not influence either its linear stage or
the steady state.

It should be emphasized that our numerical procedure
does not impose particular values of the frequency detun-
ing. The time behavior of the amplitudes is fully deter-
mined by the structure of the basic nonlinear equations.

4 Frequency degenerate and non-degenerate
oscillations

Despite the fact that the behavior of the semi-linear os-
cillator in the T and R cases is the same within the unde-
pleted pump approximation, the steady state oscillations
in these cases are different. This reflects indeed the dif-
ference in the complete set of starting equations (1–5) for
the cases s = +1 and −1.

In what follows, we provide the reader not only with
time dependences of the oscillation intensity I3 = |A3|2
but also with time dependences of the real and imaginary
parts of the oscillation amplitude A3. This allows to see
the development and stabilization of the oscillation insta-
bility in detail. The time intervals to be shown are suffi-
cient to demonstrate the most remarkable features of the
oscillation dynamics; generally, we performed numerical
calculations over much longer intervals.

4.1 Transmission case

To understand the relationship between the degenerate
and non-degenerate oscillations, we will analyze the case
g = 7, R = 0.01 considered in the previous section. It
is characterized by competition between different regimes
and also by the presence of several distinct regions of the
pump ratio.
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Fig. 3. Oscillation dynamics ver-
sus the pump ratio r for the cou-
pling strength g = 7 and the
reflectivity R = 0.01 in the trans-
mission case. The sub-figures (a)
to (e) correspond the values of
the pump ratio r = 800, 150,
70, 20, and 8. The first, second,
and third rows refer to the nor-
malized values of ReA3(z = 0, t),
ImA3(z = 0, t), and I3(z = 0, t),
respectively.

We set first r = 800, which corresponds to the insta-
bility with Ω = 0 (branch 0) and to a pretty large value
of the increment, p t0r � 0.15, see Figure 2a. The output
oscillation intensity I3(0, t) = [Re A3(0, t)]2 first grows ex-
ponentially according to the linearized theory and arrives
then (not quite monotonically) at the steady-state value
that corresponds to the known exact solution for the de-
generate oscillation (Ω = 0), see Figure 3a. The imaginary
part of the oscillation amplitude, ImA3(0, t), remains zero
not only during the initial stage of instability, which fol-
lows from the linearized theory, but also in the steady
state. The steady-state value of I3(0) is pretty high; satu-
ration of the instability is caused by the pump depletion.

Similar behavior is typical for the whole range 5×102 �
r � 104 where the sole instability with Ω = 0 takes place,
see Figure 2. Moreover, even in the region 2.5×102 � r �
5 × 102, where the degenerate mode 0 already co-exists
with the non-degenerate mode 1, the oscillation remains
almost frequency degenerate owing to the mode competi-
tion. Since frequency degenerate perturbations grow rela-
tively fast, they suppress the non-degenerate mode on an
early stage of the instability.

For r � 200, when the increment p1(r) becomes com-
parable with p0(r), the oscillation behavior changes. This
is illustrated by Figure 3b for r = 150. An exponential

growth of ImA3(0), which is accompanied by oscillations
and corresponds to the non-degenerated instability, be-
comes noticeable. Owing to nonlinear coupling, it affects
the temporal development of Re A3(0); the latter is char-
acterized by oscillations at the double frequency. The out-
put intensity I3(0) also experiences oscillations at the dou-
ble frequency [as compared to that of ImA3(0, t)]; its
oscillating part is noticeable not only in the steady state
but also during the initial stage.

At r = 150, the steady-state oscillation period of
ImA3(0, t), T � 8.3t0r, differs slightly from the value
2π/Ω � 7.9t0r prescribed by the dispersion equation (8);
this implies that stabilization of the non-degenerate in-
stability is caused by the nonlinear frequency shift. With
a good accuracy, the output oscillation wave 3 can
be characterized by the amplitude A3(0, t) � −0.6 +
0.4i cos(2πt/T ) in the steady state. Smallness of the
higher Fourier harmonics means that the nonlinear cou-
pling between different modes is rather weak. When ap-
proaching the boundary of the degenerate instability re-
gion (r � 115), the oscillating part of A3(0, t) (and that
of I3(0, t)) is monotonically increasing.

What happens in the range 45 � r � 115 where
the only possible instability corresponds to a frequency
non-degenerate oscillation (mode 1)? On the basis of
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the linearized theory one might expect that the constant
parts of A3,4 are zero and the oscillation intensities os-
cillate between zero and certain maximum values. This
is not, however, the actual case, see Figure 3c. In real-
ity, the system follows the linearized theory predictions
only during an initial stage of development, namely for
t/t0r � 90. After that an abrupt transition to a new os-
cillation regime with relatively shallow intensity oscilla-
tions takes place. The described behavior is typical for
the whole range of r indicated above. For r = 70, which
corresponds to Figure 3c, the oscillation amplitude is
A3(0, t) � 0.53 − 0.62i cos(2πt/T ) in the steady state;
the period T � 8.1t0r differs remarkably from the value
�6.58t0r prescribed by equation (8). The non-oscillating
real part of A3(0, t) develops with a rather big delay and
its sign is now positive. This points at a strong coupling
between the oscillating and non-oscillating components of
the beams.

The most complicated oscillation regimes occur within
the interval 10 � r � 45, where the two frequency non-
degenerate modes compete with each other, see Figure 2a.
It turns out that none of them generally dominates. This
means that two-periodic steady-state oscillations take
place. Figure 3d gives a representative example of such
an optical oscillation; it corresponds approximately to the
point of intersection of branches 1 and 2 where p1 ≈ p2.
Both real and imaginary parts of A3(0) are present here
in full scale.

The last distinct interval of the pump ratio is 5 � r �
10. Only a single non-degenerate oscillation mode 2 is ad-
mitted here within the linear theory, see Figure 2. The
typical oscillation regime within this interval is presented
in Figure 3e, it corresponds to r = 8. One sees that in-
tensity I3(0, t) oscillates in steady state between zero and
a modest maximum value. The amplitude A3(0, t) is real
here; it equals approximately 0.74 cos(2πt/T ) with a pe-
riod T � 5.1t0r which is not far from the value �4.3t0r
prescribed by the linearized theory.

A surprising general feature of the above considered
oscillation regimes is the smallness of the higher temporal
Fourier harmonics of the oscillation amplitudes (with pe-
riods T/2, T/3, . . .) as compared to the first harmonic(s).
This means that the effects of nonlinear coupling are weak
in a certain sense. At the same time, the oscillation am-
plitudes can be comparable with the amplitude of the
strongest pump wave. These observations can facilitate
analytical modelling of the oscillation regimes.

In the steady state, the main effect of decreasing r,
when passing the above considered regions, is increasing
fraction of the oscillation part of I3(t) (from 0 to 1).

4.2 Reflection case

Despite the fact that the linearized theory predicts the
same for the R- and T-cases, the corresponding steady-
state (and even transient) characteristics are different in
many respects. Let us start again with the case r = 800,
which corresponds to the region of frequency degenerate

oscillations in Figure 2. In this range, the difference be-
tween the R- and T-cases is rather small. As one can see
from Figure 4a, the oscillation intensity I3(l) grows in
the R-case monotonically from noise to a constant steady-
state value which is slightly lower than that in the T-case
(compare with Fig. 3a). In contrast to the T-case, the sign
of ReA3 is positive.

In the region 115 � r � 7 × 102, where the incre-
ment of the instability p is positive for both branches 0
and 1, we have a qualitatively new behavior. It is rep-
resented by Figure 4b for r = 220. The real part of
the amplitude A3(l) and the intensity I3(l) grow first
monotonically with the increments p0 and 2p0, respec-
tively, to arrive at intermediate quasi-steady-state val-
ues corresponding to the frequency degenerate oscillation.
The imaginary part of A3(l) remains relatively small at
this stage. However, this intermediate steady state is not
stable because of oscillatorily increasing ImA3(l, t). Fi-
nally, after a relatively long transient stage, the system
arrives at a true steady state which is characterized by
strong oscillations of I3(l) around an average value of
�0.4. The steady-state amplitude of wave 3 is given by
A3(l) � 0.39 + 0.076 cos(4π/T ) + 0.72i cos(2π/T ), where
the period T � 13.95 t0r is noticeably different from the
value �8.55 prescribed by the linearized theory. Weak
forced oscillations of ReA3 at the double frequency are
fully due to the nonlinear coupling effects.

With decreasing pump ratio, the intermediate stage
becomes shorter (because of increasing increment p1(r))
while the subsequent drop of ReA3(l) becomes more and
more pronounced. Near the lower border of the degenerate
instability region, r = 130–160, the non-degenerate mode
of oscillation becomes dominating. This is illustrated by
Figure 4c for r = 150. A modest influence of the degen-
erate instability can be seen only during a short initial
stage. The steady state is characterized here by an al-
most 100% modulation contrast and by the amplitude
A3(l) � 0.93i cos(2πt/T ) with the period T � 13t0r. This
period is noticeably larger again compared to that, �7.9t0r,
calculated from the linearized theory.

Within the range 45 � r � 115, where the increment
of instability is positive only for branch 1, development
of the oscillation is fairly simple. The real part of A3 re-
mains negligible while the imaginary part, ImA3(l), grows
oscillatorily until the steady state with a 100% intensity
modulation contrast. It is interesting that the period of
oscillations grows gradually from the value prescribed by
the linearized theory to a considerably larger steady-state
value. This effect is not influenced here by the degener-
ate mode of instability which points at stabilization of the
instability by the nonlinear frequency shift.

The range 10 � r � 45, where both increments p1,2

are positive, is characterized by a strong competition of
the corresponding modes of instability. The result of this
competition is determined, roughly speaking, by the ratio
p1(r)/p2(r). When this ratio is larger than one (r > 20,
see Fig. 2), the modes of instability 1 and 2, which are
presented by ImA3(l, t) and ReA3(l, t), respectively, co-
exist only during an initial stage of instability. Afterwards,
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Fig. 4. Oscillation dynamics
versus the pump ratio r for the
coupling strength g = 7 and the
reflectivity R = 0.01 in the re-
flection case. The sub-figures (a)
to (e) correspond the values of
the pump ratio r = 800, 220,
150, 30, and 20. The first, sec-
ond, and third rows refer to the
normalized values of ReA3(z =
l, t), ImA3(z = l, t), and I3(z =
l, t), respectively. Note that the
time interval in the case (b) is
2.5 times longer than for the
other cases.

development of mode 1 suppresses mode 2 and the steady-
state amplitude A3(l, t) is pure imaginary. For r � 20, the
roles of modes 1 and 2 are opposite and the steady state
amplitude A3(l, t) is purely real. This is illustrated by Fig-
ures 4d and 4e. Steady-state intensity characteristics (the
averaged value, the contrast, and the period) do not ex-
perience dramatic changes in the vicinity of r = 20.

When the pump ratio r decreases from �10 to �5, the
transient stage of oscillation, which is controlled by mode
2, becomes longer and longer while the steady-state oscil-
lation amplitude and intensity tend to zero according the
usual soft-excitation scenario. For 5 � r, the oscillation is
absent in agreement with the linearized theory.

5 Summary

Investigating analytically and numerically the conven-
tional set of nonlinear equations for the semi-linear pho-
torefractive oscillator, we have found a wealth of dif-
ferent oscillation regimes for sufficiently large values of
the coupling strength, g > 2π. These nonlinear regimes
are characterized by the frequency degenerate and/or
non-degenerate oscillations, and also by the co-existence

and/or competition of different oscillation modes. The
found nonlinear behavior is essentially different for the
principal schemes employing the transmission and reflec-
tion gratings. Our findings fill the gap in the knowledge of
the oscillation regimes of the semi-linear oscillators, which
has so far been restricted to the frequency degenerate case.
They also contribute to the basics of nonlinear dynamics
because the basic nonlinear equations are fairly general
and simple.

Several particular outcomes of our theory are worth
mentioning:

– within the intervals of the pump ratio where the lin-
earized theory predicts the frequency degenerate in-
stability, the steady-state oscillations always remain
degenerate;

– frequency degenerate and non-degenerate oscillation
modes, predicted by the linear analysis [16], co-exist in
the steady state within certain intervals of the control
parameters, which results in periodic, contrast-variable
modulation of the output intensities;

– within certain ranges of the control parameters, the
mode competition results in survival (in the steady
state) only one oscillation mode;
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– the relative values of the increments of the instability
for the oscillation modes, which are predicted by the
linearized theory [16], are crucially important in the
case of mode competition; the mode with the strongest
increment typically wins the competition;

– nonlinear frequency shifts for the non-degenerate os-
cillation waves play an important role in stabilization
of the instability;

– temporal oscillations of the wave amplitudes are typ-
ically almost harmonic in steady state, i.e., the high-
order nonlinear coupling effects are small;

– the phases of the oscillation waves do not experience
strong nonlinear changes, i.e., the relationships be-
tween the real and imaginary components of the os-
cillation amplitudes roughly concise with those pre-
scribed by the linear theory.

B.S. and S.O. acknowledge the hospitality as invited professors
at Université de Bourgogne.
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