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Abstract: It is shown that the saw-tooth variation of the cavity lengthin a
photorefractive semilinear coherent oscillator can suppress the instability in
the frequency domain and prevent a bifurcation in the oscillation spectrum.
To achieve such a suppression the frequency of the cavity length modulation
should be chosen appropriately. It depends on the photorefractive crystal
parameters (electrooptic properties, photoconductivity, dimensions) and
on the experimental conditions (pump intensity ratio, orientation of the
pump and oscillation waves with respect to the crystallographic axes,
polarization of the pump waves, etc. ). It depends also strongly on a possible
misalignment of the two pump waves. On the other hand, withina certain
range of the experimental parameters the mirror vibration may lead to a
further frequency splitting in the already existing two-mode oscillation
spectrum.
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1. Introduction

A frequency shifted feedback in cavities of conventional lasers is known from 1965 when Foster
et al. [1] demonstrated mode locking of He-Ne laser by adjusting the feedback frequency shift
to one longitudinal mode spacing. Since that time more than hundred publications appeared on
this topic, theoretical as well as experimental. The readercan find a list of the most important
references in the recent publications [2,3]. Quite often the main objective of frequency shifted
feedback in conventional lasers is to spread a coherent light spectrum over a broad range of
frequencies [2]. In what follows it will be proved that a frequency shifted feedback can fulfill an
opposite task in coherent oscillators operating with four-wave mixing gain (see, e.g., [4]) : the
two-frequency output can be converted into a single-frequency output. This becomes possible
in coherent oscillators with a four-wave mixing phase conjugate mirror which serves as an
adaptive element. Besides that, with the appropriate choice of the parameters of the system,
the frequency shifted feedback may result also in the appearance of a more rich oscillation
spectrum as compared to the oscillator with the immobile conventional mirror.

As distinct from the conventional lasers where the frequency shift of the feedback is com-
parable to the longitudinal cavity mode spacing, in photorefractive oscillators the frequency
shift should be comparable to the index grating decay rate, i.e., it should be many orders of
magnitude smaller than the longitudinal mode spacing.

The structure of this article is as follows: First, the particular features of a semilinear coher-
ent oscillator with two counterpropagating pump waves are reminded and the motivation of the
proposed modification that involves the frequency shifted feedback is given. Then the experi-
mental results are presented and the conclusions of the linear stability analysis are discussed.
Finally, the multifrequency oscillation is qualitativelyexplained.

2. Semilinear coherent oscillator with vibrating mirror

A semilinear coherent oscillator with two counter propagating pump waves (Fig. 1) consists
of a conventional mirror M and a phase conjugate mirror PCM based on four-wave mixing in
a photorefractive crystal. Two counterpropagating coherent pump waves (1,2) with specially
selected polarization and intensity ratio impinge upon thephotorefractive crystal to ensure,
for any seed wave 3, the appearance of the phase conjugate wave 4 with a higher intensity.
Due to the adaptive properties of the phase conjugate mirrorthe oscillation in such a device is
insensitive to the cavity length and most often its frequency is exactly equal to the frequency of
the pump waves.

Several years ago it was discovered however that the frequency degenerate coherent oscil-
lation in an oscillator like that shown in Fig. 1 may become unstable for a sufficiently high
coupling strength [5,6]. Within a certain domain of pump intensity ratios a single frequency
in the oscillation spectrum splits into two modes shifted symmetrically with respect to the fre-
quency of the pump waves. The splitting is observed with the decrease of the pump intensity
ratio from large values (strong disbalance) to unity (equalintensities of the two pumps); it oc-
curs via a supercritical bifurcation [6]. The appearance oftwo modes in the spectrum results
in high contrast temporal variations of the oscillation output intensity what is not always desir-
able. We show in this paper that by introducing a feedback frequency shift via an appropriate
linear modulation of the reflected wave phase (with the help,e.g., of an electro optic modulator
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Fig. 1. Schematic representation of a semilinear coherent oscillator. Twocounterpropagat-
ing pump waves (1,2) with the frequencyωpump impinge upon the sample. The oscillation
occurs between the photorefractive crystal that serves as an amplifying phase conjugate
mirror (PCM) and the conventional mirror M mounted on a piezoceramic holder. An aper-
ture D is placed inside the cavity for the transverse mode control.

or a piezomounted conventional mirror) it is possible to transform a two-frequency oscillation
into a single mode oscillation with its frequency shifted with respect to that of the pump wave.

To explain this behavior it is useful to consider the self-reproducibility of the lasing wave
frequency after a complete round trip in the cavity with the diagrams drawn in Fig. 2. The laser
cavity is shown, with the phase conjugate mirror PCM (yellow) together with the conventional
mirror that can be immobile (mirror M in gray) or can move (vibrating mirror VM in blue).
While the abscissa of any frame of this figure gives a real coordinate along the cavity optical
axis, the ordinate shows the temporal frequency of a particular wave component. The red arrows
indicate the direction of propagation of the oscillation wave components.

It is important to emphasize that the two mirrors of the cavity transform the temporal fre-
quency of an incident wave in a quite different manner: The phase conjugate mirror changes
the sign of the frequency detuning with respect to the pump wave to the opposite, the ordinary
mirror with the saw-tooth variation of the reflecting surface position shifts the frequency up or
down by a constant value that does not depend on the frequencyof the incident wave. The lines
inside the boxes that define the mirrors in Fig. 2 have no physical meaning, they only show how
the frequencies are transformed during the reflections.

To start with, we consider the frequency degenerate oscillation in a cavity with the immobile
conventional mirror (Fig. 2(a)). Here the oscillation wavekeeps its frequency (which is equal
to the frequency of the pump waves) when being reflected from the conventional mirror and
also from the phase conjugate mirror. It should be noted thateven in the degenerate case two
round trips are necessary to reproduce the oscillation wavefield, as in any cavity with a phase
conjugate mirror [7].

In the same set-up with an immobile conventional mirror the degeneracy is broken for high
coupling strengths at small pump ratios [5,6], this is illustrated in Fig. 2(b). The phase conju-
gate mirror transforms the wave 4 into the phase conjugate wave 3 and changes the frequency
ω4 = ωpump+ Ω to the frequencyω3 = ωpump− Ω. Similarly, the wave 4′ with frequency
ω ′

4 = ωpump−Ω is transformed into wave 3′ with frequencyω ′
3 = ωpump+ Ω. The immobile

conventional mirror does not affect the frequency of the reflected waves,ω4 = ω ′
3 andω ′

4 = ω3.
It is evident that the oscillation wave field is reproduced after two consecutive round-trips in
the cavity, with the sequence of wave transformation 4→ 3 → 4′ → 3′ → 4. Two oscillation
components with different frequencies propagate in both directions, from the conventional mir-
ror to the phase conjugate one and vice versa. The interference of these components results in
a deep modulation of the output oscillation intensity [5].
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Fig. 2. Diagrams of oscillation frequency self-reproduction in the cavity formed by a phase
conjugate mirror (PCM) and a conventional mirror that can be immobile (M) or can move
(vibrating mirror VM). The central horizontal line in each frame marks the temporal fre-
quency of the pump waveωpump. The displacement up and down from this line marks
positive and negative detuning with respect to the pump frequency, respectively. The num-
bers inside the cavity (3, 3′, 4, 4′) label the particular components of the oscillation mode,
the arrows show the direction of propagation. The frames (a,b) depictthe cavity with the
immobile conventional mirror while frames (c,d,e) depict those with the saw-tooth modu-
lation of the mirror position .
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To avoid this intensity modulation, the intuitive solutionis to introduce a feedback frequency
shift ΩM (subscribe M indicates that the frequency shift is introduced by the vibrating mirror
VM) that is equal exactly to 2Ω, as shown in Fig. 2(c). By this means, the wave 4 with fre-
quencyω4 = ωpump−Ω is transformed by the vibrating mirror into wave 3 with frequency
ω3 = ωpump+ Ω. Once more, two round trips of the cavity are needed to self-reproduce the
oscillation wave, with the similar sequence of the wave transformations, 4→ 3 → 4′ → 3′ →
4. At the same time the wave with only one temporal frequency propagates in any direction
inside the cavity and the output intensity is not modulated.This is substantially different from
the case depicted in Fig. 2(b).

This idea was confirmed by the experiments. Moreover the analysis of the set of equations
that describes the dynamics of the considered oscillator yields reasonably low thresholds for
such an oscillation. Figure 2 contains two more diagrams that show other possible conditions
of frequency self-reproduction for the oscillator with a frequency shifted feedback. We will
return to the discussion of these cases after the description of the experimental results.

3. Experiment

The oscillator consists of a BaTiO3:Co crystal pumped by a TEM00 Ar+-laser emitting at 514
nm (no etalon inside the cavity) and a concave mirror with focal length F = 25 cm. By a special
selection of the path difference of the pump and oscillationwaves the creation of the reflection
photorefractive grating is favoured [8]. The cavity lengthis 25 cm and a 0.7-mm aperture is
placed inside the cavity. The geometry of the interaction isoptimized to ensure high two-beam
coupling gain as it was described in [9]. A beam splitter is inserted inside the cavity to extract
a part of the oscillating waves 3 and 4. Each of these waves interfere with a reference beam
formed from the pump beam 2. In case of a non degenerate oscillation, the interference fringes
motion is recorded with a detector whose aperture is smallerthan the fringe spacing. The analy-
sis of the temporal frequency content in the signal is performed by taking the Fourier transform.
All other details reproduce the experimental conditions ofref.8.

The new feature as compared to [8] consists in the possibility to vibrate the conventional
mirror of the cavity which is mounted on a piezoceramic holder. The saw-tooth voltage from
a signal generator is applied to the piezoceramic. The maximum voltage is chosen such that it
ensures a mirror displacement of one half wavelength of the pump wave. This corresponds to
a 2π phase variation of the wave reflected by the mirror M. In such away a frequency shift is
introduced in the reflected wave, which is equal to the frequency of the saw-tooth modulation.
The sign of the frequency shift depends on the sign of the applied voltage; with a positive
voltage the mirror moving shortens the cavity length so thatthe frequency shift is positive.

First, let us consider the oscillation in the cavity with theimmobile mirror, where the spec-
trum contains only one frequency for a given set of pump ratior = I2/I1, coupling strengthγℓ,
and conventional mirror reflectivityR (i.e., the case of Fig. 2(a)). If the conventional mirror
starts to vibrate and introduces a frequency shiftΩM the frequency of the oscillation wave 3
moves up byΩM/2 while that of the wave 4 moves down byΩM/2, i.e. the oscillator operates
according to the case of Fig. 2(c). The linear relationship of frequencies holds throughout a
whole range of the existence of the oscillation (Fig. 3).

In the next step, the mirror M being immobile, we reduce the pump intensity ratio so that two
modes appear, shifted symmetrically by±Ω with respect to the pump frequencyωpump. Then
a saw tooth voltage with frequency|ΩM| is applied to the piezoceramic so that a frequency
shift is induced on the oscillation waves resulting in the beat frequencyω4−ω ′

4 = ω3−ω ′
3 in

the oscillation wave intensity. This beat diminishes and finally becomes zero as the feedback
frequency shiftΩM is increased up toΩM = 2Ω. For a further increase of|ΩM| no beats are
observed. Thus, the appropriate choice of the feedback frequency shift removes the temporal
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Fig. 3. Oscillation frequency versus frequency detuning introduced bya piezo-mirror. The
pump intensity ratio isr = 120. The data related with the oscillation waves 3 and 4 are in
red and blue, respectively.

modulation of the oscillation intensity.
The range ofΩM with the multifrequency oscillation and the type of response of the oscilla-

tion spectrum to the frequency shift of the feedback is very sensitive to a slight misalignement
of the two counterpropagating pump waves. A tilt of the wave 1of only 10−4 rad transforms
the dependence shown in Fig. 4 into that shown in Fig. 5. In this latter situation, the beat fre-
quency increases with increasing|ΩM| and suddenly disappears beyond a certain range ofΩM

(see Fig. 5). It is important to note that the cw output with nomodulation is always achieved
at sufficiently large feedback frequencies, in spite of qualitatively different behavior at small
feedback frequencies.

The data of Fig. 4 and Fig. 5 show that within the range of smallfeedback frequency shifts
the oscillation mode may contain four different frequency components. The relevant diagrams
of frequency self-reproduction are shown in Fig. 2(d-e). Asdistinct from the case of Fig. 2(c),
here the degeneracy of the waves 3 and 3′ (as also of the waves 4 and 4′) is removed. The two
coherent components with different frequencies propagatein each direction inside the cavity (
3, 3′ and 4, 4′). Thus, the intensity modulation occurs and the frequencies of the waves 3 and 4
in the general case have nothing to do with the feedback frequency shiftΩM, they may be either
larger or smaller thanΩM, for the cases of Fig. 2(d-e), respectively. However, the frequencies
ω3 = - ω4 may collapse to zero occasionally, as it happened atΩM ≈ -2 Hz in Fig. 4. In this case
ω ′

4 = - ω ′
3 becomes equal toΩM. The wave 4 moves down i.e., the oscillator operates according

to the case of Fig. 2(c) and the linear relationship between the oscillation frequency and the
ramp frequency is valid (Fig. 3).

4. Stability analysis

The dynamics of the oscillation in the considered coherent oscillator is described by the set
of propagation equations for the four complex amplitudes ofinteracting wavesAi , i = 1,2,3,4,
and an equation for the temporal variation of the index grating amplitudeν (see, e.g. [10]). To
analyze the threshold conditions it is sufficient to consider the undepleted pump approximation,
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Fig. 4. Oscillation frequency versus frequency detuning introduced bya piezo-mirror. The
pump intensity ratio isr = 2.7. The data related with the oscillation waves 3 and 4 are in
red and blue, respectively.

Fig. 5. Oscillation frequency versus frequency detuning introduced bya piezo-mirror. The
pump ratio isr = 2.7. The data related with the oscillation waves 3 and 4 are in red and
blue, respectively. The pump waves are tilted for 0.1 mrad with respectto the alignment of
previous figure.
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∂A1/∂z = ∂A2/∂z = 0, i.e., only three equations are necessary:

∂A3

∂z
= ν∗Aℓ

2, (1)

∂A4

∂z
= ν A0

1, (2)

τ
∂ν
∂ t

+ν =
γ
I0

(

A0∗
1 A4 +Aℓ

2A∗
3

)

. (3)

whereτ is a constant response time,Aℓ
2 = A2(z= ℓ, t) = const, A0

1 = A1(z= 0, t) = const, ℓ is
the crystal thickness andI0 is the total intensity :I0 = I0

1 + I l
2 = const. The asterisk stands for

the complex conjugation. The difference from the oscillator with the immobile mirror is in the
boundary condition

A4(ℓ, t) =
√

R A3(ℓ, t) exp(iΩMt), (4)

A3(0, t) = 0.

The first above boundary condition takes into account the feedback frequency shiftΩM imposed
by the vibrating mirror. An ansatz relevant with the equations (1-3) and the boundary conditions
(4) has the form :

A3(z, t) = a3(z)exp[(p− iΩM/2)t], (5)

A4(z, t) = a4(z)exp[(p+ iΩM/2)t],

ν(z, t) = n(z)exp[(p+ iΩM/2)t].

Herep is an exponent andΩM/2 is the frequency detuning of the oscillation wave with respect
to the pump waves.

By substituting Eqs. 5 into Eqs. 1-3 and taking into account the boundary conditions (Eqs.
4), one arrives to the equation for the exponentp

Rr =
exp(2a)+2r exp(a) cosb+ r2

exp(2a)−2exp(a) cosb+1
, (6)

with

a =
γℓ(1+ τ p)

(1+ τ p)2 +(ΩMτ/2)2 , (7)

b =
γℓΩMτ/2

(1+ τ p)2 +(ΩMτ/2)2 .

The details of the linear stability analysis will be presented elsewhere, here we outline only
the main results important for the discussion:

(i) The instability according to the diagram of Fig. 2(c), witha frequency detuning +Ω or -Ω
which is equal toΩM/2 appears in a wide range of coupling strengths and pump intensity ratios.

(ii ) The solutions of Eq. 6 are symmetric with respect to the frequency detuning : the change
of +ΩM to -ΩM results in no change of Eq. 6.

(iii ) The solutions of Eq. 6 are insensitive to a simultaneous change of the sign of coupling
strength,γℓ →−γℓ and reversion of the pump intensity ratio,r → 1/r. This known property of
the conventional semilinear coherent oscillator [11] remains valid also in the case of oscillator
with frequency shifted feedback.
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It is important to add that Eq. 6 can be reduced to a simple condition of oscillation,RpcR =
1, with the standard expression for the phase conjugate reflectivity [11]

Rpc =
sinh2(a/2)+sin2(b/2)

cosh2[(a/2)− (ln r)/2]−sin2(b/2)
. (8)

This means that the phase condition of the oscillation is metfor any possible feedback fre-
quency detuning automatically for our oscillator, providing the condition|Ω| = |ΩM/2| holds.

Exactly at the threshold of oscillationp = 0 and Eq. 6 allows to define the threshold coupling
strength for any pre-imposed frequency shiftΩM = 2Ω. A representative example is shown in
Fig. 6 for a low-loss cavity (R= 1) and the pump ratior = 1.5. We remark that for smallΩM the
threshold coupling strength at first decreases with increasing detuning; the smallest threshold
γℓth ≈ 2.49 is reached atΩM = τ/2 . The important conclusion that can be made from this

Fig. 6. Calculated threshold coupling strength versus frequency detuning of the oscillation
which is controlled by the feedback frequency shiftΩM for R = 1 andr = 1.5.

graph is that the shifted frequency oscillation can be reached at moderate values of coupling
strength. This is different from the prediction of natural splitting into two lines for spectrum of
oscillator with the immobile mirror [10]. In this latter case, the stability analysis was conducted
with another ansatz so that another class of solutions was found with different characteristics :
in particular, the splitting into two lines for the spectrumis expected to occur only aboveγℓth =
2π. It follows from Fig. 6 that, for a given pump ratio, there is arange of frequency detunings for
which the oscillator has a lower threshold in comparison with that where there is no frequency
detuning. This should result in a higher output intensity for a shifted frequency (whatever is the
sign of the detuning), what was really observed with the experimental conditions of Fig. 4.

Thus the results of the stability analysis are in agreement with the data of Fig. 3. They are also
in agreement with the experimental data of Fig. 4 and Fig. 5 for a sufficiently large frequency
detuning introduced by the vibrating mirror, i.e., in a range of ΩM where the frequency degen-
eracy is removed. The stability analysis of a multi frequency oscillation at a moderate coupling
strength needs a more complicated model; it will be necessary, probably, to go beyond the plane
wave approximation or to consider a slight deviation from the exact phase matching.
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5. Conclusion

To conclude, we described a new modification of the semilinear photorefractive coherent oscil-
lator with a frequency shifted feedback. By this mean, it is shown that an oscillation free from
intensity modulation can be achieved even at high values of the coupling strength and small
values of pump ratio, i.e., in the range where usually a two-frequency oscillation occurs.

The linear stability analysis shows that such a type of oscillation is possible with moderate
values of the crystal coupling strength.

The experiment confirms qualitatively well our expectations: In the oscillator with no nat-
ural frequency split (i.e., in oscillator with rather largepump intensity ratio) we measure the
oscillation frequencyΩ which is exactly equal toΩM/2. To suppress the instability in the spec-
tral domain (in oscillator with rather small pump intensityratio) the frequency modulation of
the feedback should overpass a certain threshold frequencywhich falls in the interval between
natural frequency shift atΩM = 0 and its doubled value.

In the experiment we observe also more complicated operation modes, with four frequen-
cies excited simultaneously by the moving mirror. Their appearance may be related to a slight
misalignement of the counterpropagating pump waves; it mayhave the same origin as two-
frequency oscillation at small coupling strengths, described in [4,5].
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