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Abstract. A general analysis of the threshold behavior for the photorefractive semi-linear oscillator is
performed within the linear approximation on the basis of the classical wave-coupling model. This analysis
shows that the well known particular results on the frequency degenerate oscillation are valid only within
a restricted range of the external parameters. The theory specifies the conditions for onset and properties
of the frequency non-degenerate oscillations, including the necessary values of the coupling strength, pump
intensity ratio, the increments of the instability, and the frequency splits. Important generalizations of the
basic model are considered.

PACS. 42.65.Hw Phase conjugation; photorefractive and Kerr effects – 05.45.-a Nonlinear dynamics and
chaos – 42.65.Pc Optical bistability, multistability, and switching, including local field effects – 42.65.Sf
Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical
spatio-temporal dynamics

1 Introduction

Strong photorefractive nonlinearity inherent in many
electro-optic materials (including ferroelectrics and semi-
conductors) has led to the emergence of numerous new op-
tical schemes and devices employing the advantages of the
phase conjugation and optical oscillation [1–5]. A generic
feature of such schemes is a complete (or almost complete)
frequency degeneracy. A variety of output characteristics
is achieved due to a wide range of possibilities for optical
feedbacks between the oscillation and pump waves.

The semi-linear photorefractive oscillator was one the
first nonlinear devices of this type [6]. Its cavity is formed
by an ordinary feedback mirror and a photorefractive crys-
tal that serves as an amplifying phase-conjugate mirror
pumped by two counter-propagating coherent light waves
of the same frequency, see Figure 1a. Owing to its appar-
ent simplicity, this scheme serves often as a sample for
the investigation of dynamic properties of photorefractive
oscillators, bifurcations including the threshold behavior
and the transition to chaos [7–10].

The operation of the semi-linear oscillator is based on
the buildup of refractive index gratings (by different pairs
of pump and oscillation waves) and diffraction from these
gratings. By playing with the coherence length and/or
material properties, one can realize the distinct cases of
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Fig. 1. (a) Schematic diagram of the semi-linear photore-
fractive oscillator; M is the ordinary feedback mirror, PC is
the photorefractive crystal. (b) The corresponding wave-vector
diagram.

transmission and reflection gratings. The basic dynamic
equations for these cases are well-known [2]. For the most
common gradient (diffusion) photorefractive response and
frequency degenerate oscillation, these nonlinear equa-
tions admit exact steady-state solutions incorporating the
effect of pump depletion [3,11]. In the transmission case,
these solutions correspond to the soft and hard excitation
scenarios for different values of the pump ratio r and the
feedback mirror reflectivity R. In the reflection case, the
steady states correspond to the soft threshold behavior.
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Experiment shows [12,13] that changing the pump ra-
tio can result in a frequency bifurcation of the oscillation
mode for the transmission case and diffusion photorefrac-
tive response: the single-frequency oscillation transforms
into a two-frequency oscillation. A first explanation of this
transition was given on the basis of a heuristic treatment
of the influence of the frequency splitting on the oscilla-
tion threshold [12–14]. The key point of this analysis is the
assumption of an automatic fulfillment of phase matching
for the oscillation wave during a round trip in the cavity.

In this paper we present the general theory of the
threshold and near-threshold behavior of the semi-linear
oscillator. It is based on the linearized conventional basic
model with proper boundary conditions for the oscillation
wave amplitudes. Our analysis incorporates uniformly the
intensity and phase matching conditions for the oscilla-
tion. Our theory says first that the heuristic assumption
of an automatic fulfillment of the phase matching is not
compatible with the basic model; this leads to quantita-
tive and qualitative changes of the predicted in [12–14]
threshold behavior. Second, the theory shows that the as-
sumption of a degenerate oscillation and the known exact
steady-state solutions are valid only within a restricted
range the control parameters. Our analysis specifies the
conditions for the non-degenerate oscillations (the neces-
sary values of the coupling strength, the pump intensity
ratio, etc.) and the values of the frequency split. It shows,
in particular, that there are regions of the experimental
parameters where degenerate and non-degenerate oscilla-
tion modes exist separately and the regions where these
modes compete with each other. Our theory fills thus an
obvious gap in the knowledge of the operation regimes of
the semi-linear oscillator. Possibilities for generalization
of the basic model and explanation of available results are
considered. The method of the temporal analysis which
is used in this paper is to be new in the field of photore-
fractive oscillators; it can be applied to other oscillation
schemes.

2 Basic relations

2.1 Coupled-wave equations

The wavevector diagram for the semi-linear photorefrac-
tive oscillator in question is presented in Figure 1b. We
have two counter-propagating pump waves, 1 and 2, and
two counter-propagating oscillation waves 3 and 4. Two
wave pairs, 1, 4 and 3, 2, contribute to the recording of
the transmission grating with the grating vector K =
k1 − k4 = k3 − k2. Pump waves 1 and 2 diffract from
this grating to oscillation waves 4 and 3, respectively; the
reverse diffraction processes are important for sufficiently
strong oscillation waves.

The set of equations for this four-wave coupling scheme
is standard [2,3]. It consists of diffraction equations for the

complex amplitudes of the light waves A1,2,3,4,

∂A1

∂z
= ν∗A4,

∂A2

∂z
= νA3,

∂A3

∂z
= −ν∗A2,

∂A4

∂z
= −νA1, (1)

and a material equation for the grating amplitude ν,

tr
∂ν

∂t
+ ν =

γ0

I0
(A∗

1A4 + A2A
∗
3). (2)

The asterisk stands for the complex conjugation, γ0 is a
coupling constant (it is real for the diffusion response),
I0 = I1 + I2 + I3 + I4 is the total intensity, Ii = |A2

i | (i =
1, 2, 3, 4) is the intensity of the ith wave, and tr ∝ 1/I0 is
the photorefractive response time.

The boundary conditions for waves 1 to 4 read:

A1(0, t) = A0
1 = const, A2(l, t) = Al

2 = const,

A3(l, t) = 0, A4(0, t) =
√

R eiφ0 A3(0, t), (3)

where l is the crystal thickness, R is the reflection coeffi-
cient of the feedback mirror, and φ0 is a constant phase
shift determined by the distance to the mirror.

The following conservation laws are fulfilled:

I1(z, t) + I4(z, t) ≡ I+(t),

I2(z, t) + I3(z, t) ≡ I− = I l
2 = const. (4)

According to these relations, the total intensity I0 = I+ +
I− and the response time tr are generally functions of t.

In addition to the mirror reflectivity R, the control
parameters for this scheme are the pump ratio r = I l

2/I0
1

and the coupling strength g = γ0l.

2.2 Undepleted pump approximation

When the oscillation waves 3 and 4 are weak, I3,4 � I1,2,
one can neglect their influence on the pump and use the
undepleted pump approximation. Within this approxima-
tion we have A1 = A0

1 = const, A2 = Al
2 = const,

I0 = I0
1 + I l

2 = const, and the variables A∗
3, A4, and ν

obey a closed set of linear differential equations,

∂A4

∂z
= −ν A0

1

∂A∗
3

∂z
= −ν Al∗

2

tr
∂ν

∂t
+ ν =

γ0

I0
(A0∗

1 A4 + Al
2A

∗
3), (5)

with a constant response time tr. Coupling of the ampli-
tude A4 with the complex conjugate amplitude A∗

3 is the
fingerprint of the phase conjugation in our optical scheme.
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2.3 Steady-state solutions

Set (5) admits steady-state solutions of the form

A3(z, t) = A+
3 (z) exp(+iΩt)

A4(z, t) = A−
4 (z) exp(−iΩt)

ν(z, t) = ν−(z) exp(−iΩt), (6)

where Ω is an arbitrary frequency detuning. The spa-
tial amplitude ν− is algebraically expressed through A+

3

and A−
4 . The coordinate dependence of the wave ampli-

tudes obeys a linear second-order set of differential equa-
tions which follows immediately from equations (5). The
general solution for A−

4 and A+∗
3 is given by

(
A−

4

A+∗
3

)
= c1

(−Al
2

A0∗
1

)
+ c2

(
A0

1

Al∗
2

)
eΓ0z, (7)

where c1 and c2 are arbitrary complex constants and the
rate of spatial changes Γ0 is

Γ0 = − γ0

1 − iΩtr
. (8)

We are interested in a steady-state solution that meets the
boundary condition A+

3 (l) = 0. This solution describes the
steady-state transformation of the incident wave 4 (which
is detuned by Ω with respect to the pump) into a counter-
propagating wave 3 (which is detuned by −Ω). Such a
transformation is inherent in the phase-conjugation pro-
cesses. It is easy to find from equations (7) that the ampli-
tude ratio ρ(Ω) = A+∗

3 (0)/A−
4 (0), characterizing the phase

conjugation, is given by

ρ(Ω) =
A0∗

1 Al∗
2

(
1 − eΓ0l

)
I0
1 + I l

2 eΓ0l
. (9)

The replacement Ω → −Ω transforms A±
3,4 to A∓

3,4.
Therefore we have ρ(−Ω) = A−∗

3 (0)/A+
4 (0). As follows

from equation (8), it is sufficient to replace Γ0 by Γ ∗
0

in equation (9) to obtain ρ(−Ω). In the case Ω = 0
we return to the known expression for the intensity ra-
tio |ρ|2 characterizing the phase conjugation [3], |ρ|2 =
sinh2(g/2)/ cosh2[(g − ln r)/2].

The found properties enable us to construct steady-
state solutions for the semi-linear oscillator.

3 Threshold equation

3.1 Derivation procedure

As we know, detuning Ω changes to −Ω during the phase
conjugation. On the other hand, the ordinary mirror, see
Figure 1a, transforms wave 3 into wave 4 without any
frequency change. Therefore, the only way to construct
a steady-state frequency non-degenerate solution for the
semi-linear oscillator is to accept that both ±Ω compo-
nents are present in each of the oscillating amplitudes.

This means that two round trips in the cavity are neces-
sary to return to the initial state.

We search thus for a steady-state solution in the form

A3,4(z, t) = A+
3,4(z) eiΩt + A−

3,4(z) e−iΩt

ν(z, t) = ν+(z) eiΩt + ν−(z) e−iΩt. (10)

According to the results of the previous section, we have
A+∗

3 (0)/A−
4 (0) = ρ(Ω) and A−

3 (0)/A+∗
4 (0) = ρ∗(−Ω). The

boundary condition A3(l, t) = 0 is automatically fulfilled.
Additionally, we have from equations (3) the boundary
conditions A±

4 (0) =
√

R exp(iφ0)A±
3 (0) for the ± compo-

nents. Expressing A±
4 (0) by A±

3 (0) and ρ and multiply-
ing these relations to each other we arrive easily at the
threshold equation in the form ρ(Ω) ρ∗(−Ω)R = 1. Using
equations (8), (9), we represent the threshold equation in
the following final explicit form:

√
rR

(
1 − eΓ0l

)

1 + r eΓ0l
= ±1. (11)

This equation admits an important generalization. By re-
peating the derivation procedure with the coupled-wave
equations for the case of dominating reflection grating
(they are present, e.g., in [2,3]) one can arrive at the same
threshold equation (11) if the definition of the pump ratio
r = I l

2/I0
1 is changed to r = I0

1/I l
2.

3.2 General properties

The threshold equation (11) is complex. It is equivalent
to two real algebraic equations in Ω, g, r, and R. These
enable one to calculate the detuning Ω and the coupling
strength g ≡ γ0l as functions of the pump ratio r and
the reflectivity R. The solution for Ω(r, R) and g(r, R) is
not unique, see below, it consists of a sequence of non-
intersecting branches.

The phase φ0, which is determined by the distance to
the feedback mirror, does not enter the threshold equation
and does not influence the threshold conditions.

By taking the absolute values of the left- and right-
hand sides of ρ(Ω) ρ∗(−Ω)R = 1 and using equations (8),
(9), we obtain the relation |ρ(Ω)|2 R = 1. It can be in-
terpreted as an equation of balance between the intensity
gain and losses during a round trip in the cavity. How-
ever, it cannot be used for optimization of Ω; the latter
is not a free parameter because of the necessity to equate
the arguments (phases) of the left- and right-hand sides
of equation (11). With given r and R, there are no inter-
nal additional free parameters within our model (except
for Ω) to ensure the phase matching.

3.3 Analysis of threshold equation

We consider first the frequency degenerate case Ω =
0 where Γ0l = −g. Two solutions for the coupling
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Fig. 2. Dependence g0
+(r) for three values of R.

Fig. 3. Dependence of g0
min ≡ ln(r0

min) on the reflectivity R.

strength g, that correspond to the signs ± in equa-
tion (11), are

g0
± = ln

(√
rR ± r√
rR ∓ 1

)
. (12)

According to this relation we have g0±(r, R) =
−g0

∓(r−1, R). In other words, for each positive value of
g0(r) we have the opposite negative value g0(r−1). It is
sufficient thus to consider the dependence g(r, R) > 0.
One can check that it is given by g0

+(r, R).
Curves 1, 2, and 3 in Figure 2 show the depen-

dence g0
+(r) for three representative values of the reflec-

tivity R in a logarithmic scale for the pump ratio r.
Each curve possesses a minimum. The position of the
minimum rmin and the corresponding minimum value of
the coupling strength g0

min = g0
+(rmin) depend on R.

These dependences are given by the relations r0
min(R) =

R−1(2 + R + 2
√

1 + R) and g0
min(R) = ln[r0

min(R)]. With
the reflectivity R decreasing from 1 to 0, the values of
r0
min and g0

min increase from �5.8 and 1.76, respectively,
to infinity, see Figure 3. The negative values of g0, given
by the branch g0−, can be obtained by the inversion of
the curves presented in Figure 2 with respect to the point
g = 0, r = 1.

Fig. 4. Threshold value of g versus r for R = 0.5 and different
branches: curves 1, 2, and 3 are plotted for branches g0

+, g1
+,

and g1
−, respectively.

The branches g(r, R) and Ω(r, R) with Ω �= 0 obey the
complex equation

g

1 + Ω2t2r

(
1 + iΩtr

)
= ln

(√
rR ± r√
rR ∓ 1

)
(13)

that follows from equation (11). The logarithm in the
right-hand side is understood according to the defini-
tion of the function of a complex variable Z, ln Z =
ln |Z| + i arg(Z). The solutions with Ω �= 0 are possible
only for (

√
rR ± r)/(

√
rR ∓ 1) < 0 when the argument of

this expression is π ± 2πn with n being an integer.
The lowest branches for g(r, R) and the corresponding

branches for Ω(r, R) are given by

g1
± = L± +

π2

L±
; Ω±tr =

s π

L±
, (14)

where L± = ln
[−(

√
rR±r)/(

√
rR∓1)

]
and s acquires the

values +1 and −1 independently of the ± signs. In other
words, we have two opposite values of Ω for each allowed
value of g. Furthermore, one can check that g1

±(r, R) =
−g1∓(r−1, R), i.e., the dependence of g on log r is even and
we can restrict again our analysis to the positive values of
the coupling strength. As follows from equations (14), the
minimum possible positive threshold value of g is 2π for
both ± branches; it is attained for L± = π and |Ω|tr = 1.

Curves 2 and 3 in Figure 4 show the dependences g1
±(r)

for R = 0.5; curve 1, shown for comparison, refers to the
branch g0

+(r) with Ω = 0. One sees that both g1± branches
allow positive values of the coupling strength. The branch
g1
+ exists within a narrow window of r; it is separated

from the branch g0
+(r). The branch g1− exists within a rel-

atively wide range of r; it co-exists with the g0
+ branch.

As follows from the data of Figure 4, only frequency non-
degenerate oscillations are possible within the interval of
pump ratio 1 � r � 2 for sufficiently large values of the
coupling strength. For larger values of r, degenerate and
non-degenerate oscillations can compete with each other
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Fig. 5. Dependence |Ω±(r)| for R = 0.5; lines 1 and 2, are
plotted for the + and − branches, respectively.

for g > 2π. For the chosen value of the reflection coeffi-
cient R, the absolute minimum of the coupling strength,
gmin � 2.3, corresponds to a degenerate oscillation, Ω = 0.

With decreasing R, the minima of curves 2 and 3 shift
towards each other and the minimum of curve 1 shifts up-
wards and (simultaneously) to the right, see also Figure 3.
For sufficiently small values of the reflection coefficient,
R < 7.5× 10−3, the minimum threshold value of the cou-
pling strength corresponds to frequency non-degenerate
oscillations (with Ω �= 0).

Figure 5 shows the dependences |Ω±(r)| for R = 0.5.
Note that Ω+ turns to zero at r � 2, which corresponds
to the point separating curves 1 and 2 in Figure 4.

4 Temporal approach

It is not difficult to obtain exact results for the tempo-
ral evolution of the oscillation amplitudes within the un-
depleted pump approximation. They show explicitly that
A3,4 grow/decay exponentially in time above/below the
threshold.

Let us search for the amplitudes in the form [compare
with Eqs. (10)]

A3,4(z, t) = [A+
3,4(z) eiΩt + A−

3,4(z) e−iΩt] ept

ν(z, t) = [ν+(z) eiΩt + ν−(z) e−iΩt] ept , (15)

where the increment p and the frequency detuning Ω are
arbitrary real parameters. As earlier, equations (5) couple
with each other the variables A+∗

3 , A−
4 , ν− and the vari-

ables A−∗
3 , A+

4 , ν+. One can check that the solution for
A+∗

3 , A−
4 meeting the boundary condition A+

3 (l) = 0 is
now(

A−
4

A+∗
3

)
= C1

[(
A0

1

Al∗
2

)
eΓz +

(
I l
2/A

0∗
1

−Al∗
2

)
eΓ l

]
, (16)

where C1 is an arbitrary complex constant and the rate
of spatial changes Γ is

Γ = − γ0

1 + (p − iΩ)tr
. (17)

This rate depends on the increment p; for p = 0 we
have Γ = Γ0. The amplitude ν− can be readily expressed
by A−

4 , A+∗
3 .

Analogously we obtain for A−∗
3 , A+

4 under the condi-
tion A−

3 (l) = 0:
(

A+
4

A−∗
3

)
= C2

[(
A0

1

Al∗
2

)
eΓ

∗z +
(

I l
2/A

0∗
1

−Al∗
2

)
eΓ

∗l
]

, (18)

where C2 is a new arbitrary complex constant.
To describe the semi-linear oscillator, we have to

satisfy additionally the boundary conditions A±
4 (0) =√

R eiφ0 A±
3 (0). Substituting A±

4 (0) and A±
3 (0) from equa-

tions (16) and (18), we obtain easily a set of linear uniform
algebraic equations for C1 and C∗

2 . Equating to zero the
determinant of this set (the solvability condition) and us-
ing equation (17), we arrive at the necessary dispersion
equation for the increment p and the frequency detun-
ing Ω:

g

1 + p tr − iΩtr
= ln

(√
rR ± r√
rR ∓ 1

)
. (19)

Its right-hand side is generally complex. For p = 0 we
return to the threshold equation (13).

Consider now what follows from equation (19). In the
region of r, R where the bracket in the right-hand side is
positive (it corresponds to Ω = 0) we have

p tr =
g

g0±
− 1, (20)

where g0
±(r, R) are the threshold values of the coupling

strength for g ≷ 0 from Section 3. Thus, the increment p
is negative below threshold, tends to zero when approach-
ing the threshold (which means the critical slowing down
phenomenon [15]), and increases linearly with increasing
supercriticality parameter g − g0

±. The generation onset
can indeed be interpreted as the instability of the state
with A3,4 = 0.

Let now the bracket in equation (19) be negative, i.e.,
the imaginary part of the right-hand side be equal to ±π
and Ω �= 0. In this case, we obtain:

p tr =
g

g1±
− 1 ; |Ω| = |Ω±| g

g1±
, (21)

where g1
±(r, R) and |Ω±| = π/|L±(r, R)| are the threshold

values of g and |Ω| from Section 3. Again, we have the crit-
ical slowing down when the coupling strength g is passing
its threshold value g1

±. It is interesting that the frequency
detuning becomes larger than its threshold value during
an exponential growth of the oscillation amplitudes for
|g| > |g±|.

Note finally that the remark about validity of the
threshold analysis for the case of dominating reflection
grating, which is made in Section 3, is fully applicable
to the temporal analysis of the oscillation instability. The
above results are valid in the reflection case if we invert
the definition of the pump ratio r.
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Fig. 6. Geometrical scheme for angularly split oscillation
waves; M is ordinary mirror and PC is photorefractive crystal.

5 Angular split of oscillation waves

The above analysis admits one more important generaliza-
tion. The oscillation waves can be incident not normally
onto the feedback mirror within the experimental arrange-
ment shown in Figure 1a. This possibility is illustrated by
Figure 6. Wave 3 is incident onto the mirror M at a small
angle θ to be reflected into wave 4′. Wave 4′, in turn, cre-
ates counter-propagating phase-conjugate wave 3′. This
wave, being reflected by the mirror, gives rise to wave 4
whose phase-conjugate counterpart is wave 3. Within this
scheme we have not one but two spatial gratings with grat-
ing vectors K = k1 − k4 = k3 − k2 and K′ = k1 − k′

4 =
k′

3 − k2. The angle θ can be considered as an additional
free parameter for minimization of the threshold coupling
strength.

Within the undepleted pump approximation, the am-
plitudes A′

3,4, ν
′, which are relevant to the K ′ grating,

obey the same set of equations as the amplitudes A3,4, ν
for the K grating, i.e., set (6). The difference between the
coupling constants γ′

0 and γ0 in these sets is negligible for
θ � 1. Waves 3′ and 4 (as well as waves 3 and 4′ are cou-
pled only via the feedback mirror. As earlier, each of the
wave amplitudes A3,4, A′

3,4 consists of the ± components
which are proportional to exp(±iΩt) and the amplitude
ratio ρ(Ω), see equation (10), is the same for the pairs 3, 4
and 3′, 4′.

With these preliminaries, a derivation of the thresh-
old conditions is reduced to manipulation of a linear set
of algebraic equations. It is not difficult to show that the
generalized model possesses exactly the same threshold
characteristics as the above considered basic model. The
angular split θ does not lead to lowering oscillation thresh-
old.

6 Summary

We have presented above a full-scale analysis of the thresh-
old conditions for the semi-linear coherent photorefrac-
tive oscillator. This analysis is based on the conventional

coupled-wave equations for the wave and grating ampli-
tudes. It includes both the steady-state and temporal ap-
proaches and is free of any a priori assumptions about
the amplitude and phase matching. The main outcomes
of this analysis are:

– determination of the lowest branches for the threshold
value of the coupling strength as function of the pump
ratio and the feedback-mirror reflectivity;

– determination of the corresponding branches for the
frequency detuning between the pump and oscillation
waves;

– the absence of influence of a small angular split for the
oscillation waves on the threshold behavior;

– identity of the behavior of the semi-linear oscillator
in the cases of dominating transmission and reflection
grating within the undepleted pump approximation.

Consider now the relationship between our analysis of
the threshold behavior of the semi-linear oscillator and the
previous steady-state analysis presented in [12–14]. The
main assumption of these papers, expressed in our terms,
is that the fulfillment of an energy balance equation for
a round trip in the cavity, |ρ(Ω, g, r)|2R = 1, is sufficient
for the oscillation. Within this assumption, the detuning
Ω was considered as a free parameter for minimization of
the coupling strength g(Ω, r, R). It was found in this man-
ner that the minimum value of g does not correspond to
Ω = 0 in a certain range of r, R.

The present analysis has shown that the threshold
equation (11) is real (and equivalent to the above balance
equation) only for Ω = 0. In the general case (Ω �= 0),
the threshold equation is complex, which means that the
condition of phase matching after a round trip in the cav-
ity can be fulfilled only for special values of Ω. In other
words, the frequency detuning cannot be considered as a
free parameter for minimization of the coupling strength.
Taking into account other possible varying parameters of
the model (the distance to the feedback mirror and the
angular split for the oscillation waves) does influence the
threshold behavior and cannot lead to an automatic ful-
fillment of the condition of phase matching. It is useful to
mention also that the present analysis shows the pres-
ence of two minima in the threshold diagram for non-
degenerate oscillations (Fig. 4) as opposed to the single
minimum expected in references [12–14].

The most interesting feature of the experiments [12,13]
with the semi-linear oscillator is the appearance of fre-
quency splitting between the oscillation and pump waves
with changing pump ratio r. Within our model, such a
split is possible only for sufficiently high values of the
coupling strength, |g| > 2π. This value is higher than the
values that were estimated in the experiments of [12,13].
However, since the value of g was not determined indepen-
dently in the above experiments, it is not excluded that
the observations are compatible with the basic model.

The general points of agreement between experiment
and the heuristic analysis [12–14], such as the linear inten-
sity dependence of the frequency splits and the presence
of a window of the pump ratio where the non-degenerate
regime takes place, are compatible with our analysis.



P. Mathey et al.: Threshold behavior of semi-linear photorefractive oscillator 451

Additional experiments are needed to establish precise val-
ues for the coupling strength in relation with the thresh-
olds for non-degenerate oscillation, in view of the present
theoretical results.

We remark finally that the present model employs
some simplifying assumptions like the plane wave approx-
imation or the absence of transverse structure. Inclusion
of these effects can modify the threshold values of the cou-
pling strength and frequency detuning.
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