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ABSTRACT The sequence of optical phase transitions is con-
sidered for a photorefractive coherent oscillator with a conven-
tional mirror and a four-wave mixing phase conjugate mirror.
Analogous to phase transitions in solids, the phase diagrams
are constructed and defined qualitatively as different states of
a whole system (light-induced scattering below the threshold
of oscillation, single-frequency oscillation, two-frequency os-
cillation, and multimode mirrorless oscillation). The attempt of
experimental mapping of a phase diagram is presented for a co-
herent oscillator with Co-doped BaTiO3.

PACS 42.65.Hw; 05.45.-a; 42.65.Pc; 42.65.Sf.

1 Introduction

In several recent publications the onset of oscilla-
tion in coherent oscillators based on nearly degenerate four–
wave mixing was treated as an optical phase transition [1–5].
The state of the system below the threshold is considered as
a disordered state (the crystal emits radiation with uncorre-
lated phases in a wide solid angle) while above the threshold
the order is established (only one component of spatial spec-
trum is radiated and it collects the intensity which is much
larger than the intensity of any particular scattered wave be-
low the threshold). A strong modification occurs also in the
spatial structure of the refractive index changes, below the
threshold it looks like an irregular speckle-like pattern while
above the threshold this random distribution transforms into
a regular 3D index grating with a well defined single grating
vector. These features suggest the scenario of an oscillation
threshold to structural order–disorder phase transition in solid
state physics that occurs with increasing temperature.

It is known that quite often one can also observe within the
crystalline state, the other phase transitions when the crystal
symmetry undergoes abrupt changes (e.g., ferroelectric phase
transitions) or the crystal acquires a non–zero magnetic mo-
ment (ferromagnetic phase transitions). In a similar way the
coherent oscillator can show critical changes in its operation
mode, already above the threshold, for well developed oscilla-
tion. One example consists of the transition from an immobile
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refractive index grating to two gratings that are moving in op-
posite directions [6, 7]. This transition occurs when changing
the pump intensity ratio or crystal coupling strength.

The purpose of this paper is to define the existence area
for different characteristic modes of operation of a semilinear
photorefractive coherent oscillator and to construct, in a way
similar to how it is done in solid state physics, the diagrams of
states (or ‘phases’). Such phase diagrams help to deepen un-
derstanding of the analogy between phase transitions in optics
and other fields of physics. They are useful also for conscious
selection of the control parameters that ensure a desirable
mode of operation.

Most of the theoretical dependencies follow from previ-
ously known calculations and they are assembled in a phase
diagram for the first time. The experimental measurement of
a phase diagram for BaTiO3 : Co is also presented.

2 Semilinear oscillator with two pump waves

The schematic representation of the coherent os-
cillator under consideration is shown in Fig. 1. The photore-
fractive crystal PRC with the nonlocal nonlinear response
(index grating π/2-shifted with respect to the immobile light
fringes) is pumped with two counterpropagating light waves.
It serves as a phase conjugate mirror for any coherent inci-
dent beam with the same frequency and polarization and can
form, together with the conventional mirror M a semilinear
photorefractive oscillator, first described in the beginning of
the 1980’s by Feinberg et al. [8]. In Fig. 1, oscillation waves
4 and 3 develop from the light scattered from optical imper-
fections of the sample in the direction of cavity axis and are
amplified via four wave mixing.

The oscillation waves are coupled to the pump waves ei-
ther by the transmission or by the reflection refractive index
gratings. To favour a specific type of coupling the two pump
waves are chosen to be mutually incoherent with specially se-
lected path differences. For transmission grating recording,
e.g., the path of pump wave 1 is taken to be longer than the
path of the wave 2 exactly for a doubled length of the cavity
(the doubled distance 2L is between the crystal PRC and con-
ventional mirror M). In this case, the light of pump wave 2
scattered in the direction of the conventional mirror M as wave
3 and reflected back to the crystal as wave 4, is mutually co-
herent to the light of pump wave 1, and is a prerequisite for
the recording of an efficient transmission grating. In the oppo-
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FIGURE 1 Semilinear photorefractive coherent oscillator with two counter-
propagating pump waves. PRC is the photorefractive crystal, M is a conven-
tional mirror

site symmetrical case when pump 2 propagates a longer way
as compared to pump 1, the waves 4 and 2 become coherent
and the reflection grating self-develops in the sample. A ma-
jority of the results reported in this paper are valid both in the
case of only having either a transmission grating recording, or
a reflection grating recording. In the following we will mainly
discuss therefore, the transmission geometry. If not stated ex-
plicitly, the results can be taken as applicable also for the case
of a reflection grating.

The necessary condition of oscillation in the considered
geometry is in the self-reproduction of oscillating waves after
one round trip in a semi-opened cavity. As one of the cav-
ity mirrors is a phase conjugate mirror, the condition of self
reproduction for the phase of the oscillation wave is met au-
tomatically for an arbitrary cavity length L. The condition of
self reproduction for oscillation wave intensity imposes a con-
dition that the wave intensity should remain the same after
two consecutive reflections, once from the conventional mir-
ror and then from the phase conjugate mirror, i.e.,

RRpc = 1, (1)

where R and Rpc are the reflectivities of the conventional and
phase conjugate mirrors, respectively. If supplemented by the
dependence of Rpc on the main experimental parameters, (1)
allows tracing of the threshold curve, i.e., to separate the area
of parameters where the system is below the threshold from
where oscillation occurs.

For frequency degenerate backward wave four wave mix-
ing, the explicit expression for Rpc has been known for a long
time [9]. The considered oscillator does not always generate
only one single frequency that coincides with that of the pump
waves, a bifurcation in the oscillation spectra occurs at a cer-
tain critical value of the parameters (such as coupling strength,
beam ratio, or conventional mirror reflectivity). The problem
is to find this frequency splitting from the self-consistent the-
ory. Whenever this problem is solved one can define the above
mentioned threshold curve and plot, in addition, the other
curve that separates the areas of single-frequency and two-
frequency oscillation.

At sufficiently high values of the coupling strength mirror-
less oscillation may occur that can be regarded as one more
state of the system. The propagation direction for this oscilla-
tion is not fixed by the cavity and it is always nondegenerate in

frequency. Thus our phase diagrams should include a border
that separates the area of mirrorless oscillation too.

Finally, it should be mentioned that the semilinear oscilla-
tor can also operate with only one of two pump waves [10],
in particular with pump wave 2 as shown in Fig. 1. The on-
set of oscillation in this particular case requires a seeding
radiation and features the properties of the first order phase
transition [11, 12]. For a semilinear oscillator with one pump
wave the single frequency oscillation is predicted [10]. The
minimum coupling strength limit below which this type of
oscillation is impossible is known from refs. [10, 11]. It is
reasonable to mark in the phase diagrams,the regions where
conventional oscillation with two pumps and oscillation with
only one pump can compete.

In the next sections we recall the necessary solutions that
allow design of the diagrams of state for semilinear coherent
photorefractive oscillators, and to plot the diagrams them-
selves and compare them with the experimental data for a
BaTiO3 based oscillator.

3 Results of calculations

The oscillation is analysed within a plane wave ap-
proximation with a standard set of equations for slowly vary-
ing amplitudes Ai [10]
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with the complex coupling constant

γ = γ0

1 + (Ωτ)2
+ i

Ωτγ0

1 + (Ωτ)2
= γ ′′+ iγ ′, (3)

that accounts for possible frequency detuning of the oscilla-
tion wave Ω = ω4 −ω1 (ω1 ≡ ω2 , ω3 ≡ ω4), τ being a space
charge decay time. The photorefractive crystal itself possesses
a purely nonlocal nonlinear response and its coupling constant
γ0 is therefore real.

The set of equations of (2) are written for transmission
gratings and it should be underlined that two last equations
coincide with those for the reflection geometry case if A1 →
A3 → A2 → A4 → A1. From this it can be concluded that in
the undepleted pump approximation (when the two first equa-
tions of the set (1) are reduced to dA1

/
dz = dA∗

2

/
dz = 0) all

the results of the theory for transmission gratings are also ap-
plicable for wave mixing with reflection gratings.

The intensity gain factor Γ = 2γ ′′ features a standard
Lorentzian shape with the maximum at the frequency of the
pump waves, Ω = 0 (see (3)). The phase conjugate reflec-
tivity Rpc may feature, however, either one or two maxima
symmetric with respect to Ω = 0 [13]. Figure 2 represents
the spectra of reciprocal phase conjugate reflectivity 1/Rpc for
γ0� = −1, −2.1, and −5, for the curves 1, 2, and 3, respec-
tively (� is the interaction length).
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FIGURE 2 Threshold conditions of oscillation for the considered geom-
etry, 1/Rpc = R. The oscillation is expected to appear at the frequencies Ωτ

that correspond to the minima of 1/Rpc

The horizontal lines show the reflectivity R of a conven-
tional mirror. The oscillation occurs in the minima of R−1

pc
where the condition R−1

pc = R is met (see (1)). One can see
that for a moderate coupling strength R−1

pc possesses only one
minimum centered at Ω = 0 while for γ0� < −2.1 the two
symmetric minima appear. Note that such a form of presenta-
tion of the threshold condition remains the same as the tran-
sition from one-minimum to two-minima dependence for free
energy in the theory of phase transitions [14].

3.1 Threshold of oscillation in the cavity

Taking into account that at the threshold the phase
conjugate reflectivity is

Rpc =
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2

)
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2
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) , (4)

and that oscillation should occur at the frequencies that ensure
the largest possible phase conjugate reflectivity

d Rpc

dΩ
= 0, (5)

one can arrive at the equation
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FIGURE 3 Phase diagram for considered semilinear oscillator with R = 1.
The thick solid line defines the threshold condition; the gray dashed line
marks the bifurcation of single-frequency into two-frequency oscillation, and
the dotted line separates the area where mirrorless oscillation occurs

that allows, when solved numerically together with (1), the
calculation of the threshold condition of oscillation. The de-
pendence of the threshold coupling strength (γ0�)th on pump
ratio r is shown in Fig. 3 by the solid line. It should be noted
that the analytic solution is also available for those r values for
which the oscillation occurs with a single frequency [7]:

(γ0�)th = ln

√
r R − 1

√
r

(√
R + √

r
) . (7)

3.2 Threshold of bifurcation

By definition bifurcation occurs in the vicinity of
the extremum when the curvature of Rpc (Ω) changes its sign

d2 Rpc

dΩ2
= 0. (8)

Equations (1), (4), (5), and (8), when solved together, lead to
the relationship

r = γ0� exp (γ0�) + 2
[
1 − exp (γ0�)

]
−γ0� exp (−γ0�) + 2

[
1 − exp (γ0�)

] , (9)

that defines the border line between the area of single-
frequency oscillation and two-frequency oscillation. It is
shown by dashes in Fig. 3.

3.3 Threshold of mirrorless oscillation

This threshold dependence can be derived analyti-
cally from (1) and (4) by imposing Rpc = ∞, i.e. R = 0, which
means that the cavity is not closed with a conventional cavity
mirror. The relevant equation reads as:

(γ0�)
ml
th = − ln r

[
1 + (π/ ln r)2] , (10)

where the superscript ml at the coupling strength denotes mir-
rorless oscillation. This dependence is plotted in Fig. 3 by
dots.
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3.4 Thershold of oscillation with only one pump wave

The threshold has been detailed for this case by
Cronin-Golomb et al. [10]. In a formal way the threshold of
oscillation is infinitely large in this case but if initially seeded,
steady state oscillation is self-supported. The relevant expres-
sion for the minimum coupling strength at which oscillation
still exists is given by:

(γ0�)th = √
1 + R ln

[√
1 + R−1√
1 + R+1

]
. (11)

It depends on R and corresponds to r = ∞ (no backward
pump is needed). Equation (11) is derived for strictly degen-
erate four-wave mixing.

According to (11) the smallest threshold that corresponds
to R = 1 is (γ0�)th = −2.49. This means that for (γ0�)th <

−2.49 such an oscillation can compete, in principle, with that
which is due to the presence of two pump waves.

It is important to underline the fact that oscillation with
one pump wave cannot occur in the case of the reflection grat-
ing recording.

4 Experimental

To check the predictions described above requires
studying of the oscillation in a semilinear cavity with a Co-
doped BaTiO3 sample (Fig. 4). Ar+-laser light (0.51 µm,
about 200 mW in single transverse mode) is used to pump the
crystal. A conventional spherical cavity mirror Mc closes the
cavity. The path difference of the two pump waves is large
compared to the laser beam coherence length (a few cm). It
is chosen to ensure mutual coherence for pump wave 1 and
wave 4 that is reflected back to the sample by the mirror M.
A small aperture (0.5 mm) is put inside the cavity at 5 cm from
the conventional mirror. A Faraday isolator is placed at the
Ar+-laser output mirror to prevent undesirable feedback to the
pump laser from the coherent oscillator.

The pump waves 1 and 2 make angles of 167.7◦ and 12.3◦
with regard to the spontaneous polarization axis (Z–axis) in-
side the sample. The position of the conventional mirror en-
sures respective angles of 170.6◦ and 9.4◦ between the sample
polar axis and oscillation waves 3 and 4, also inside the sam-
ple. This geometry, in accordance with the calculations of

FIGURE 4 Experimental set-up with photorefractive crystal PRC, mirrors
M, lenses L, half wave phase retarders, polarizer P, aperture D, and photode-
tector PD

Feinman et al. [15], is close to optimal for the largest possible
gain from the transmission grating in BaTiO3.

The pump waves are loosely focused inside the sample
with a lens of 100 cm focal length. A half-wave phase retarder
λ/2 and a polarizer P allow for a reduction of the pump 1 in-
tensity while keeping the intensity of pump 2 constant.

The oscillation intensity is measured with the detector PD
that collects the beam reflected from the sample face; there-
fore I3(0) is monitored. Depending on the particular value of
the pump ratio the oscillation dynamics at saturation is either
smooth or features periodic variation what proves the exis-
tence of two temporal frequencies in the oscillation spectrum.
Thus, two qualitatively different operation modes can be re-
vealed and the bifurcation points can be found.

As the coupling strength in BaTiO3 is independent of
pump intensity it was controlled by changing the polariza-
tion of the two pump waves. The identical λ/2 phase retarders
were placed in each pump beam before the sample and they
were both rotated to the same angle α. The coupling strength
was therefore decreased to

γ� = γ�0 cos2 2α. (12)

In the experiment, at first α is set to zero and two-frequency
oscillation is observed. Than α is increased, step by step,
to detect the value at which the two frequencies collapse
into one. In this way a critical bifurcation value of coupling
strength is measured. With α increasing further we come to
the second critical value of coupling strength that marks the
disappearance of oscillation (threshold of oscillation). Such
a procedure is repeated for different pump ratios. The results
are shown in Fig. 5.

In the same figure the calculated dependencies are shown.
Two fitting parameters are used here. One is the unknown
effective reflectivity Reff of the conventional mirror that ac-
counts for all kinds of cavity losses. The other one is the initial
coupling strength of the crystal. The quantities extracted from
the fit are Reff = 0.25 and γ0� ≈ −3.8.

The value for Reff looks reasonable if one takes into ac-
count Fresnel reflections from sample faces, sample absorp-

FIGURE 5 Experimentally measured phase diagram. The Solid line marks
the threshold condition for Reff = 0.25, the dashed line defines bifurcation in
the oscillation spectrum, and the dotted line indicates the possible onset of
mirrorless oscillation
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tion, diffraction losses because of a small diaphragm, etc. It
is close to that evaluated in our previous experiments on fre-
quency splitting [6].

The value for γ0� is nearly one half of the initial coupling
strength measured in for this sample a few years ago [6, 7].
This can be a consequence of the appearance of misaligned
ferroelectric domains in the bulk after extensive use in optical
experiments.

It should be noted that close values for γ0� and Reff were
also extracted from the independent check, from the range of
oscillation existence in the pump ratio. Exactly at the thresh-
old, the coupling strength is related to the pump ratio r via (7).
In the degenerate case, the oscillation occurs within a certain
range of pump ratio, with two limiting values r1 and r2 that
satisfy the relation :

(γ0�)th = ln

√
Reffr1 −1√

r1(
√

Reff +√
r1)

= ln

√
Reffr2 −1√

r2(
√

Reff +√
r2)

.

(13)

From the above equality, the reflectivity Reff and the coupling
strength can be written as:

Reff =
[√

r1 +√
r2√

r1r2 −1

]2

, (14)

(γ0�)th = − ln
√

r1r2 . (15)

The numerical values of (γ0�)th ≈ −3.9 and Reff ≈ 0.3 de-
duced from the measured pump ratio dependence of the os-
cillation intensity, are in close agreement with the values ex-
tracted from the fit shown in Fig. 5.

5 Supplementary phase diagrams

There is one more control parameter apart from the
coupling strength and pump ratio considered above. It is the
reflectivity of a conventional mirror. A 3D phase diagram can
be constructed, or two additional 2D diagrams may be plotted.

Figure 6 shows a phase diagram of variable pump ratios
against conventional mirror reflectivity values. The threshold
curve that separates the area where oscillation can exist with
a crystal of γ0� ≈ −3, is shown by the thick solid line. For
a crystal with smaller coupling strength, γ0� ≈ −2, a higher
reflectivity of the conventional mirror is necessary to get os-
cillation (black dotted curve). These curves are calculated
numerically by solving (1), (5), and (6) with the given values
of γ0�.

The gray dashed line separates the area of single frequency
oscillation and two-frequency oscillation. The relation linking
rcr and the reflectivity R of the conventional mirror is deduced
from (1) and (8) with Ω = 0. For Ω = 0, (8) gives the result in-
dicated in (3), and (1) (RRpc = 1) leads to (7). Rewriting this
expression for γ0� in (9), yields:

ln
√

rcr(
√

R+√
rcr)√

Rrcr −1
= 2(1 + rcr)

√
R

(1 + R)
√

rcr
. (16)

The dependence of R on rcr in Fig. 6 is calculated from (16).
The third phase diagram is plotted with coupling strength

and conventional mirror reflectivity as the variables. The
threshold curves are calculated numerically from the equa-

FIGURE 6 Phase diagram with control parameters R and r. Two threshold
lines are shown, one for coupling strength γ0� = −3 (thick solid line), and the
other for γ0� = −2 (dotted line). The gray dashed line marks the bifurcation
in the temporal frequency spectra

FIGURE 7 Phase diagram with control parameters γ0� and R. Three
threshold lines are shown, for the pump ratio r = 10 (thick solid line), for
r = 2 (dotted line), and for r = 1 (rare dots). The gray dashed line marks
bifurcation in the temporal frequency spectra

tions (1), (5), (6) while the bifurcation curve is deduced from
the common solution of (9) and (16).

Here again we can see that on increasing the coupling
strength, the oscillation can start from a single frequency that
bifurcates further into two frequencies, or double-frequency
oscillation appears at the threshold. The range of existence of
single-frequency oscillation becomes smaller with a decreas-
ing pump ratio. For r = 1 single-frequency oscillation does
not occur at all [7].

Until now we considered only oscillators with an empty
cavity. This is not however always the case. An amplifier may
be placed between the conventional mirror and phase conju-
gate mirror so that the effective reflectivity of the conventional
mirror becomes larger than unity, R > 1. This hybrid oscil-
lator that combines the gain from conventional laser medium
and that from four-wave mixing is of particular interest be-
cause of its potential ability to generate aberration-free beams
with a small divergence [10, 16, 17].

The use of a mirror with a reflectivity higher than unity
makes less rigid the requirements of the coupling strength, so
the threshold coupling strength becomes smaller. The thresh-
old curve in Fig. 3 goes up, therefore decreasing the area
below the oscillation threshold. The amplifying mirror also al-



350 Applied Physics B – Lasers and Optics

FIGURE 8 Phase diagram with control parameters R and r. The thick solid
line separates the area where oscillation can exist. The gray dashed line
marks bifurcation in the temporal frequency spectra

lows for oscillation over an extended range of pump ratios,
especially for r < 1. At the same time even with R > 1 there
are some combinations of parameters where oscillation can
never be achieved. This is illustrated with the extended range
R− r phase diagram shown in Fig. 8.

Below the thick threshold line, for example, the oscilla-
tion cannot occur whatever the coupling strength γ0�, of the
crystal. If the pump ratio r is larger than 1 the oscillation
with two pump waves may occur even for R = 0 (mirrorless
oscillation) [7]. This oscillation is always nondegenerate in
frequency. For γ0� < −2.49 oscillation becomes possible for
r → ∞, i.e., with only one pump wave, and its frequency co-
incides with that of the pump waves.

Of course, for moderate values of coupling strengths γ0�,
the threshold curves are not as that shown in Fig. 8 for
γ0� → −∞, and the area where oscillation occurs becomes
smaller. Two particular threshold curves are shown in Fig. 6
for γ0� = −2 and γ0� = −3. Thus the phase diagram pre-
sented in Fig. 8 defines the areas where single-frequency os-
cillation and/or two-frequency oscillation can exist in prin-
ciple. For any point below the threshold curve, oscillation is
impossible. Above this curve oscillation may or may not exist.
However, depending on particular values of r and R, it will al-
ways be either single-frequency oscillation or two-frequency
oscillation.

6 Conclusions

Three types of phase diagrams are constructed for
the optical phase transitions in a semilinear photorefractive

oscillator with two pump waves. The coupling strength of
the sample, pump intensity ratio, and reflectivity of a con-
ventional mirror, are chosen as the control parameters, while
the normalized oscillation intensity and normalized frequency
detuning serve as the order parameters. Several new relations
are derived from the solution of the standard set of equa-
tions (2), that are necessary to define the borders of ‘phases’
in phase diagrams.

It should be stressed that all curves that separate different
‘phases’ represent the respective threshold values, i.e., corres-
pond to zero intensity of the oscillation wave. This approach
is obviously true for the second order phase transitions, as
for example, with the onset of oscillation with an increasing
coupling strength [5]. It may happen that the transitions with
other control parameters feature subcritical bifurcations and it
will be necessary to modify the notion of the threshold. Inves-
tigations in this direction are now in progress.

The experimental data for BaTiO3 based coherent os-
cillators are in reasonable agreement with the results of
calculation.
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