Light pulse amplification by photorefractive two-wave mixing
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Abstract: It has been shown recently (see, e.g., Nature, 397, 594, 1999; 409, 490, 2001)
that light pulses can be remarkably slowed down in resonant gases under very low
temperatures. We show theoretically and experimentally that a similar in nature (and
stronger in value) phenomenon occurs in photorefractive nonlinear media. The pulse-
maximum velocity can be reduced here to the value of thickness/response time because of
the two wave coupling effect. Specific properties of pulse propagation depend on the type
of the photorefractive response and also duration and shape of the input pulse. Our
theoretical results for the nonlocal nonlinear response are in a good agreement with
experimental data obtained with BaTiO; and Sn,P,Se crystals.

OCIS codes: (190.5330) Photorefractive nonlinear optics: (190.7070) Two-wave mixing.

Introduction

Our interest to pulse propagation in photorefractive (PR) media stems from resent results on slowing
down of light pulses in resonant gases under very low temperatures [1.2] caused by the effect of electro-
magnetically induced transparency (EIT) [3]. We argue that an effect similar in nature (but much
stronger in value) occurs in photorefractive media under conditions usual for continuous-wave (CW)
two-wave-mixing experiments. The pulse-maximum velocity of the pulse can be made here
incomparably smaller than the speed of light. The similarity between the PR and EIT cases concerns the
form of the initial nonlinear equations, the shape of output light signals. and the necessity to use input
pulses whose width is larger than the nonlinear response time to avoid broadening effects. The nonlinear
effects under study differ strongly from the linear effects of time dependent absorption [4].

Furthermore, to our best knowledge the elementary problem of pulse amplification by two-wave
mixing was never considered in the literature for the CW-range. The known pulse experiments dealt
mainly with grating recording and very short pulses, whose duration is comparable with (or smaller
than) the characteristic microscopic times of the medium, see, e.g., [5-7]. The subject matter differs
considerably from the known problems of transient beam coupling [8.9].

Schematic diagram of a light pulse amplification
experiment is shown in Fig.l. Two coherent light
beams are incident onto the same input face of a
photorefractive crystal, ==0. a pump beam of a
constant amplitude and a signal pulse beam. whose
input intensity peaks at #=0. Our task is to find the
time profile of the output beam and investigate the .
main tendencies of the nonlinear pulse propagation for Loy
two main types of the p hotorefractive response - the FIG. 1: Schematic of a pulse amplification experiment:
local and nonlocal response [10]. Cis the polar axis of the crystal.
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The constituencies of the pulse amplification are not different from those typical of two-wave
coupling. The pump and signal beams form a refractive index grating and experience Bragg diffraction
from this grating. What makes our case specific is a restricted duration of the processes under study. If
the pulse duration is much shorter than the PR response time, the grating recording is inefficient and the
output signal intensity is not much different from the input one. The most interesting events are expected
in the case when the input pulse duration is comparable with (or larger than) the response time. The
leading edge of the input pulse cannot be strongly changed during propagation because of a weak effect
of the light-induced index grating. As for the main body of the output pulse and (especially) its trailing
edge. they can be affected strongly because of the recording inertia. A stronger amplification of the
trailing edge results in delay of the pulse maximum and, therefore, in an effective slowing down of light
propagation. The output shape of the pulse is expected to depend essentially on the crystal thickness and
the type of the nonlinear response.

Theoretical background
Diffraction equations for the signal beam amplitude 4 and the pump beam amplitude 4, we write
down in the conventional form [10,11],
94 Y n'r
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Here FE = E(z.t) is the grating amplitude. » is the background refractive index, ris the relevant
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P
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electro-optic coefficient, 4 the wavelength, and the asterisk stands for complex conjugation. The light
absorption is expected to be negligible.

The material equation for the grating amplitude £, which supplements the set (1) - (2), can be chosen
as follows:

i peg Ah
—+1|E=E ——*%—. (3)
or |4, +4

where 7 is the response time (usually, it is inversely proportional to the total light intensity) and E_ the

characteristic (generally complex) space-charge field which is known for many particular models of
charge transport [10.11]. For the local and non-local responses E. is real and imaginary, respectively.

Further, we shall use the undepleted pump approximation by assuming that | 4| << | 4 , |* . Within
this approximation 4, = const , and Eqgs. (1), (3) form a closed set of linear partial differential equations
for 4 and E. Since the amplitude A(-.r) tends to zero for 7 — Zeo, one can use the Fourier
transformation  A(z.f) = A4,(z). After elementary calculations we have at the output.
A, (d)y=A,(0)explyd (1-iwt) '], where y=—imn’r E /A is the rate coefficient and 4 (0) is the
Fourier transform of the input amplitude 4(0,7). Generally, the rate coefficient is complex, y = y'+i ",
the quantity 2y' is the exponential intensity gain factor for two-wave coupling, which is zero for the

local response.
To calculate the output intensity | A(d,t) | . one has to perform the inverse Fourier transform and take
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the square of its absolute value. This can be done numerically for any particular shape of the input
amplitude. From now on we restrict ourselves to the Gaussian input beam,

A(0.t) = Ay exp(—t /1) (4)

with A4, being the input pulse amplitude and ¢ the input pulse half-width. Then
A(w.0) = \/;AO t, exp(-m’ t; /4) and for the output amplitude we obtain the following explicit relation:

o0

A(d.t) = %i exp[—ix (t/T)—x"(t,/27)" + W (1-ix)" ] dx. (5)
The right-hand side is a function of the normalized time ¢/7: its form is controlled by two
dimensionless parameters, the ratio ¢, /7 and the coupling strength 7 .

Let us consider shortly the similarities between the PR and EIT cases. Both of them deal with
nonlinear effects. The role of atomic coherence and its rise time play in our case the index grating and
the PR response time, respectively. In the EIT case, the role of the rate coefficient 2 y' plays the light
absorption coefficient. In the case of nonlocal response
(y"=0) there is one-to-one correspondence between ‘ ~
the shapes of the output pulses if the EIT effect is Lol /;' ) OFI0 T 0810 |
driven far from saturation. The main distinction of the ' ’ < a
PR case is the presence of spatial amplification of the
output pulse.

-
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Theoretical and experimental results

We consider first the simplest case of the nonlocal 0.0
response, when the rate coefficient y is real. We are m m
dealing here with the amplitude amplification while the
phase distortions are absent. According to Eq. (5). the
ratio A(d.t)/ A, is real in this case.

Figure 2a shows the shape of the output pulse for
t,/7 =1 and three values of the coupling strength; the

trailing edge is to the right of the maximum. The case
wl =0 corresponds to free pulse propagation: the

output intensity profile is the same here as the input
profile. With the spatial amplification present, the
output pulse is remarkably delayed against the input 0.0
one; the larger /., the longer is the delay time :

o . 0 10 20
At =t (it is defined as the time of the output

Time t. s
intensity maximum). The time delay is accompanied by
the pulse amplification: the relevant scaling factors are FIG. 2: (a) The normalized time dependences of the

indicated in Fig. 2a. The longer Ar. the larger is the output intensity for the nonlocal response. 7/ = 1: the
lines 1.2.3 and the corresponding normalization factors

peak value of [ A(d.)|" and the overall pulse power. are calculated for ¥ d = 0. 5. and 10. respectively. (b)

Furthermore, the pulse width grows clearly with Experimental dependences of the input (line 1) and

increasing wf . output (line 2) intensities for BaTiOs; the input half-
width 7, = 0.92 s.
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Taking into account the output pulse delay the
effective pulse velocity in the medium has to be
evaluated as ¢ /Ar =1/yr . Since the response time 7

ranges from 107 to 10°s in CW-experiments, this
velocity is incomparably smaller than the speed of
light. The underlying reason for this huge slowing
down is indeed the specific inertial photorefractive
two-wave mixing.

Most experimental data on pulse amplification we
have obtained with a BaTiO;:Co sample in an optical
configuration shown in Fig. 1. The shape of the input
pulse was PC-controlled via an electro-optic
modulator; typically this shape was Gaussian. The
main experimental parameters were as follows: The
thickness ¢ =2 mm, the wavelength 4 =633 nm, the

light absorption coefficient =1 cm ', the input pump
intensity =3 W/cm®, the input intensity
|4,/ 4, |*=10°, the grating period =2.64 m, and the

ratio

response time 7 = 3s. No external electric fields were
applied, hence the charge separation was due to the
diffusion mechanism. The light beams were
extraordinarily polarized; the coupling strength ¥/ was
estimated as = 4.5 from auxiliary two-wave coupling
experiments; this corresponds y=22cm .
Additionally, we used Sn:P»Se crystals showing a
strong diffusion-type nonlocal response [12]. The
response time of these crystals is typically much

shorter than that of BaTiOs.
Figure 2b shows representative experimental data

obtained with our BaTiOs sample for ¢, =0.92s. One

to

sees that the output pulse is substantially delayed and
broadened, its shape is in a good qualitative agreement
with the theory. The effective velocity of the pulse
maximum can be estimated as = 0.025cm/s. Similar
results have been obtained with SnaP.S¢ crystals; the
pulse velocity in these crystals was = 40cm/s. This is
more than three orders of magnitude higher than the
value of the speed typical of our BaTiOs sample. The
scale of the light slowing down remains, nevertheless.
very impressive.

It is remarkable that the described behavior occurs
only for the values of the half-width ¢, that are

sufficiently large as compared to the response time 7.
In the opposite limit, new distinguishing features take
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FIG. 3: The calculated shape of the output pulse for the
nonlocal response. yd = 4. and three values of 7,/T.
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FIG. 4: Experimental dependences of the output
intensity for yd = 4.5 and two different values of #,: the
lines 3 and 4 correspond to #, = 0.33 and 2.4 s: the lines
1 and 2 show the input profiles.
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place. The main tendencies of the pulse shape changes with increasing ¢, /7 are shown in Fig. 3 for

w =4. For t,/7=0.02, the output pulse consists of a sharp practically non-shifted peak and a weak

long tail. The height and width of the non-shifted peak are not much different from those of the input
pulse. The tail generally possesses a maximum at As >>7,. With increasing ¢, /7, the tail is growing in

value. its maximum is gradually shifting to the right, whereas the non-shifted narrow peak is getting less
and less pronounced. Lastly, for #,/7 = 0.2 the non-shifted peak has fully disappeared and what we can

see at the output is a single delayed pulse. which is strong and wide. Note that the transition from the
one-maximum to the two-maxima behavior occurs critically; for a certain chosen value of W it

corresponds  to a unique threshold value of ¢, /7 (this
value equals = 0.25 in Fig. 3). The above described
features are of prime importance because the half-
width 7, , the response time 7, and. therefore, the ratio

t,/ 7 can be easily varied in experiment (in contrast to

the coupling strength 7 ).

Figure 4 exhibits the relevant experimental results
obtained for our BaTiO; sample. They correspond to
the coupling strength 3/ = 4.5. One can clearly see the
disappearance of the non-shifted peak, the growth of
the time-delayed pulse, and its shift to the right with
increasing half-width ¢, .

The solid lines in Fig. 5 show the delay time Af as a
function of the input half-width ¢#, for three different
values of the coupling strength /. These lines are
plotted on the basis of Eq. (5). For 7, << 7 the delay
time is almost a constant that increases rapidly with
increasing 3 . In the range ¢, 2 7 the function As(¢,)
experiences a clear growth. The filled squares in Fig. 4
are the experimental results for our BaTiO; sample.

They show a fairly good agreement with the theoretical
predictions for 3/ = 4. especially in the range of small

half-width ¢,. For ¢, >20s the experimental values of

At are noticeably larger than those predicted by the
theory. Possibly, this is due to the effects of light
absorption and light-induced scattering.

Lastly, we consider shortly the case of the local
photorefractive response, y =iy''". No steady-state
spatial amplification occurs here during two-wave
coupling and amplification of the light pulses is
possible only due to the transient effects. An example
of photorefractive medium with the local response is
LiNbO;3:Fe crystals with dominating photovoltaic
charge transport [13].
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FIG. 5: Dependence of the delay time Af on the input
pulse half-width #, for the nonlocal response: the curves
1. 2. and 3 are plotted for yd = 3. 4, and 5. respectively.
The filled squares are experimental data for 7= 3 s.
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FIG. 6: The output pulse shape for the local response.
1/t = 1 the lines 1. 2. and 3 are plotted for yd = 0. 8.
and 16. respectively. The numbers 8-10~ and 107 are
the normalization factors.
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AV N
The presence of the time delay, which is correlated with the spatial amplification, is clearly seen from
these data. Note that the output intensity depends here only on the absolute value of the rate coefficient
7 but not on the sign of its imaginary part. Considerably larger values of the coupling strength u/

(compared to the case of nonlocal response) are needed to reach equally strong amplification and delay
effects. Experiments with PR crystals showing the local response are currently in progress.

Figure 6 shows representative time dependences of the normalized output intensity | A(d.t)

Summary

We have studied theoretically and experimentally spatial amplification of light pulses in photorefractive
media with nonlocal and local nonlinear response. It is shown that the output pulse is characterized by a
considerable time delay with respect to the input signal. This delay grows rapidly with increasing
coupling strength and raises slowly with increasing input pulse width. The effective velocity of pulse
propagation in the nonlinear medium is extremely small as compared to the light speed. Furthermore.
this velocity is controlled by the input pump intensity. The transition to the time delayed regime occurs
critically in the range of small input pulse width. The found nonlinear effects can be useful for
information processing and material characterization.
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