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ABSTRACT The saturation intensity, oscillation spectrum, and temporal dynamics of
oscillation are studied for a semilinear coherent oscillator with two counterpropagat-
ing pump waves and a photorefractive crystal with dominating reflection gratings.
The instability of the single-frequency oscillation spectrum is revealed, similar to that
known for an oscillator with dominating transmission gratings. The experimental man-
ifestation of this transition in the output characteristics of the oscillator is favourably
compared with numerical calculations.

PACS 42.65.Hw; 05.45.-a; 42.65.Pc; 42.65.Sf

1 Introduction

A semilinear coherent os-
cillator with two counterpropagating
pump waves consists of a conventional
mirror and a four-wave-mixing phase-
conjugate mirror that ensures an am-
plified phase-conjugate reflectivity [1].
With a phase-conjugate mirror in a cav-
ity such an oscillator allows for com-
pensation of intracavity phase distor-
tions [2], which makes it interesting
for practical applications: with a con-
ventional laser gain medium put inside
the cavity the small divergence of the
output oscillation wave should remain
nearly unaffected by imperfect optical
quality of the inserted gain medium [3].
It is attractive also as an example of
a nonlinear device with rich temporal
dynamics. For a multimode semilin-
ear coherent oscillator, the transition
from regular to chaotic behaviour was
revealed, by controlling a cavity Fres-
nel number [4]. Recently, the instability
of single-frequency operation was re-
ported for a semilinear coherent oscilla-
tor with a single transverse mode [5, 6].
The analogy of coherent oscillation in
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a semilinear cavity to a phase transition
was found and a Curie–Weiss law for
critical slowing down near the threshold
of oscillation was revealed [7, 8].

In the present paper we describe the
first (to our knowledge) implementation
of a semilinear coherent oscillator with
reflection-type photorefractive gratings.
The output characteristics are measured
and compared with the results of simula-
tion. The coupling from reflection grat-
ings is very seldom used in photore-
fractive coherent oscillators in spite of
the fact that the gain can be rather high
and the spatial overlap of the oscillation
wave and pump waves can be much bet-
ter than in oscillators based on transmis-
sion gratings [9–12].

It is shown that the threshold be-
haviour for the reflection-grating-based
oscillator is identical to that of an os-
cillator with transmission gratings. The
pump-ratio dependences of the oscilla-
tion intensity are shown to be strongly
affected by the transition from single-
frequency to two-frequency oscillation.
This transition spreads the interval of
pump ratios where oscillation occurs
and results, for a certain set of parame-

ters, in the increase of the oscillation ef-
ficiency. Both these effects are observed
experimentally, explained qualitatively,
and confirmed by calculations.

2 Experiment

A schematic representation
of the experimental set-up is shown in
Fig. 1. A cobalt-doped BaTiO3 crystal
(20 ppm in the melt) cut along crystallo-
graphic directions with dimensions a1 ×
a2 × c = 3.7 ×4 ×6.1 mm3 is used. An
Ar+-laser beam (TEM00, no etalon in-
side the cavity, wavelength λ = 514 nm,
400-mW output power, polarised in the
plane of the Fig. 1 drawing) is split
to form two counterpropagating pump
waves, 1 and 2. The path difference of
the two pump waves of about 75 cm is
large compared to the laser-beam coher-
ence length (a few cm). A conventional
cavity mirror Mc with 50-cm radius of
curvature is placed at 38 cm from the
sample. In such a way the path differ-
ence is reduced to zero for pump wave
1 and wave 4 that is reflected back to
the sample by the mirror Mc. A small
aperture (0.5 mm) is put inside the cav-
ity at 5 cm from the conventional mirror.
A Faraday rotator is placed at the Ar+-
laser output mirror to prevent undesir-
able feedback to the pump laser from the
coherent oscillator.

The sample is tilted so that pump
waves 1 and 2 are inclined 191◦ and 11◦
with regard to the spontaneous polari-
sation axis (Z axis). The position of the
conventional mirror ensures the angle
17◦ or 197◦ between the sample po-
lar axis and oscillation waves 3 and 4,
respectively. All values are given for an-
gles inside the sample. This geometry, in
accordance with the calculations of [9],
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FIGURE 1 Experimental set-up with the photorefractive crystal PRC, beam splitter BS, mirrors M,
photodetector PD, phase retarder λ/2, polariser P, and lens L1

is close to be optimised for a largest
possible gain from the reflection grating
in BaTiO3. In our experiment a strong
light-induced scattering was observed
in this direction. The estimated coup-
ling strength is not less than γ� ≈ 7
for a reasonable effective trap density
Neff ≈ 1023 m−3. Here γ is the coupling
constant (see e.g. [4]) and � is the crystal
length along the c axis.

The pump waves are loosely focused
inside the sample with a lens of 100-
cm focal length. A half-wave phase re-
tarder λ/2 and a polariser P allow for
reduction of the pump 1 intensity keep-
ing the intensity of pump 2 constant.
The smallest pump-intensity ratio is r =
I2(�)/I1(0) ≈ 20, i.e. the total intensity
of the two pump waves remains nearly
constant when r is changing (it varies
less than 5%).

The detector PD is used to measure
the dynamics of the oscillation inten-
sity. It collects the beam reflected from
the sample face and therefore the signal
measured is proportional to I3(0). De-
pending on the particular value of the
pump ratio the oscillation dynamics at
saturation is either smooth or features
periodic variations, in a similar way as
for a semilinear oscillator with transmis-
sion gratings [5, 6]. The periodic varia-
tion of the oscillation intensity in time
proves the existence of two temporal
frequencies in the oscillation spectrum;
they can be extracted from the beat fre-
quency.

From the oscillation dynamics meas-
ured at different intensities of pump 1
the pump-ratio dependences are plot-

ted for the oscillation intensity and the
oscillation frequency. Figure 2 shows
three representative pairs of depen-
dences. For every pair (with identical
symbols used, either filled dots, or tri-
angles, or diamonds) the pump ratio is
the only parameter that is changing. Dif-
ferent pairs are obtained after readjust-
ment of pump waves inside the sample
(which can affect, in principle, the coup-
ling strength) and, more important, after
readjustment of the aperture position
inside the cavity (which affects consid-
erably the efficient cavity losses).

A common feature of all three spec-
tra is a supercritical bifurcation that

FIGURE 2 Experimentally measured dependences of oscillation intensity (a, c, e) and oscillation
spectra (b, d, f) on pump-intensity ratio for coupling strength γ0� ≈ −7

has already been observed for oscilla-
tors with transmission gratings [5, 6].
The comparison of dependences for
the spectrum and output intensity also
shows the singularities at critical points
for the oscillation intensity. No discon-
tinuity is observed in the oscillation
intensity, but a pronounced change of
derivative dI3/dr is obvious. In Fig. 2a
and b, where the critical value of r is
close to the threshold of oscillation, the
effect is rather modest but still well
detectable: the rate of fall-off of the
oscillation intensity with decreasing r
becomes smaller below the bifurcation.
In Fig. 2e and f the growth rate of the
oscillation intensity with decreasing r
increases strongly. Finally, in Fig. 2c
and d even the change is observed in
the sign of the derivative: the oscilla-
tion intensity already decreasing with
decreasing r starts to grow again be-
low the bifurcation. In practically all
cases (shown in Fig. 2 and observed in
other experiments) the splitting of the
oscillation spectrum is accompanied by
a more or less pronounced improvement
of the specific oscillation efficiency, i.e.
dI3/dr is decreasing.

It should be noted that the oscillation
beam that propagates roughly in the di-
rection of the cavity axis was observed
also in the case where the conventional
mirror was removed. This proves that
parametric mirror-less oscillation can be
achieved with reflection gratings, too.
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3 Calculations

The oscillation is analysed
within the plane-wave approximation
with the standard set of equations for
slowly varying amplitudes Ai [2]:

dA1

dz
= γ

I0

(
A1 A∗

3 + A∗
2 A4

)
A3,

dA∗
2

dz
= γ

I0

(
A1 A∗

3 + A∗
2 A4

)
A∗

4,

dA∗
3

dz
= γ

I0

(
A1 A∗

3 + A∗
2 A4

)
A∗

1,

dA4

dz
= γ

I0

(
A1 A∗

3 + A∗
2 A4

)
A2. (1)

The photorefractive crystal itself pos-
sesses a purely nonlocal nonlinear re-
sponse and its coupling constant γ0 is
therefore real; γ becomes complex in
the case of nearly degenerate wave mix-
ing, as discussed later.

When written in such a form, ((1))
take into consideration only reflection
gratings that couple pump waves to the
oscillation waves. Equations ((1)) have
no terms responsible for coupling of two
counterpropagating pump and/or two
counterpropagating oscillation waves
because in the experiment these waves
are mutually incoherent.

The approach that is used in the
present paper differs from [2] in solving
((1)) with the allowance for a small arbi-
trary frequency shift Ω of the oscillation
wave with respect to the fixed frequency
of the two pump waves. This implies
that the coupling constant of the pho-
torefractive crystal with the diffusion-
driven nonlinearity has the complex
value

γ� = γ0�

1 + (Ωτ)2
+ i

Ωτγ0�

1 + (Ωτ)2

= γ ′′�+ iγ ′�, (2)

where τ is the space-charge decay time.
Such an approach makes it possible
to predict and study the bifurcation in
the oscillation spectrum that occurs at
a certain critical value of pump-intensity
ratio and then to calculate the oscillation
intensity.

It has already been pointed out in [2]
that the last two equations of the set
((1)) are identical to those of a set for
transmission gratings if the beams are
renamed A1 → A3 → A2 → A4 → A1.
This leads to the important conclusion
that in the undepleted pump approxi-
mation (when the first two equations of

FIGURE 3 Calculated dependences of oscillation intensity (a, c, e) and oscillation spectra (b, d, f)
on pump-intensity ratio for coupling strength γ0� ≈ −7 and different reflectivities of the conventional
mirror, Rc = 0.05 (a, b), 0.01 (c, d), and 0.005 (e, f)

the set ((1)) are reduced to dA1/dz =
dA∗

2/dz = 0) all predictions of the the-
ory that was developed for transmission
gratings are valid also for wave mixing
with reflection gratings.

Therefore, all data for the thresh-
old coupling strength and for oscillation
spectra at threshold for the reflection-
grating-based oscillator are identical to
those for oscillation with the transmis-
sion gratings [5, 6].

Furthermore, we consider strong in-
teraction and calculate for the first time
the oscillation intensities. Within the
range of parameters where frequency-
degenerate operation occurs (Ωτ = 0)
the analytical solutions are found for the
oscillation intensity by combining the
condition for persistent oscillation

R× Rpc = 1 (3)

and the exact solution for the reflectivity
of a phase-conjugate mirror with a π/2-
shifted reflection grating [2],

Rpc = I1(0)

I4(0)
tanh2 |g0| L, (4)

where R is the reflectivity of the con-
ventional mirror Mc, q = I4(0)/[I1(0)

+I2(�)], and |g0| L can be found from
the equation

sinh (|g0| L)

=
√

(r +1)rq
[
1 − exp(−γ�)

]
1 + r exp(−γ�)+ (r +1)q

. (5)

A boundary condition

I4(0) = RI3(0) (6)

gives the relation for the intensities of
two oscillation waves counterpropagat-
ing inside the cavity.

It follows from ((2))–((4)) that I3(0)

is a solution of

r2 R2
(

I3(0)

I2(�)

)2

+ rR

(
I3(0)

I2(�)

)

× (
2(1 + r e−γ0�)+ r(1 − e−γ0�)2)

+ (1 + r e−γ0�)2 − rR(1 − e−γ0�)2 = 0.

(7)

For nondegenerate oscillation the pho-
torefractive coupling constant is a com-
plex value and the numerical simula-
tions have been performed to find the
phase-conjugate reflectivity. The fre-
quency shift for any particular pump
ratio was imposed to be that found at the
threshold, independently of the oscilla-
tion intensity. This important assump-
tion was justified by calculation and also
experimental results: the frequency de-
tuning was found to change no more
than 15% when the coupling strength
was increased by 25% from its threshold
value.

Figure 3 shows three pairs of cal-
culated pump-ratio dependences I3 =
I3(r) and Ω = Ω(r) for γ0� = −7 and
a reflectivity of the conventional mirror
R = 0.05 (Fig. 3a and b), 0.01 (Fig. 3c
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and d), and 0.005 (Fig. 3e and f), re-
spectively. The value of the coupling
strength is chosen to be close to that
ensured by the sample used in the ex-
periment, while particular R values are
chosen to get dependences qualitatively
similar to those experimentally meas-
ured (Fig. 2). The solid lines in Fig. 3a,
c, and e represent an analytical solu-
tion for Ω = 0. In every frame they
are valid only above the critical value
r ≥ rcr where a bifurcation of the oscil-
lation spectrum occurs. For r below rcr

the results of computer simulation are
shown as filled squares.

4 Discussion

Let us summarise some gen-
eral features of the calculated depen-
dences. First of all, the critical value of
the pump ratio rcr becomes smaller if
cavity losses are decreasing (R becomes
higher). This is in agreement with our
previous calculations of the oscillation
spectra for different R [5, 6].

Also consistent with previous data
is the conclusion that bifurcation can
occur at rcr, which is larger than the
pump ratio that provides maximum out-
put intensity (high cavity losses and
mirror-less oscillation with rcr → ∞) or
smaller than this value (relatively small
cavity losses). The behaviour of the os-
cillation intensity is quite different in
these limiting cases. For small losses the

frequency splitting results only in a rela-
tively small extension of the r interval
where oscillation occurs and a relatively
small change of the derivative dI3/dr
(see Fig. 3a and b). For large cavity
losses (see Fig. 3e and f) the changes
are more dramatic: with the onset of
two-frequency oscillation both the abso-
lute oscillation intensity and the deriva-
tive dI3/dr become much larger than
above the bifurcation. By varying the
cavity losses it is possible to find the
situation where a frequency split oc-
curs near the maximum intensity of the
single-frequency oscillation. Here too,
the changes in oscillation intensity and
in the derivative are very pronounced
(see Fig. 3c and d).

Qualitatively, three representative
solutions of Fig. 3 correspond to three
experimental sets of measurements
shown in Fig. 2. A question may arise:
do we really meet in the experiment
such high cavity losses as for the cal-
culated curves? While it is difficult to
believe in high absolute values of losses,
minor changes in the lateral position and
in the tilt of the 1-mm-long, 0.5-mm
cylindrical aperture can strongly af-
fect real values of an effective R. This
explains a high sensitivity of oscilla-
tion parameters to precise adjustment of
pump waves and cavity elements.

To conclude, the simulation proced-
ure used is well justified either for small
frequency detunings, Ω → 0, and/or for

small oscillation intensities. Neverthe-
less, it gives reasonable results even be-
yond these limits, as one can judge from
the rather fair qualitative agreement of
data presented in Figs. 2 and 3.
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