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The transition of the single-frequency oscillation of a semilinear photorefractive coherent oscillator for suffi-
ciently large coupling strengths into two-frequency oscillation is predicted and is observed experimentally.
The critical value of coupling strength at which the bifurcation occurs is a function of pump-intensity ratio and
cavity losses. For certain combinations of these parameters, the critical coupling strength for spectrum bi-
furcation becomes smaller than the threshold coupling strength: in these cases double-frequency oscillation
appears at the threshold. The supercritical bifurcation in the oscillation spectrum is analogous to the second-
order phase transition. © 2002 Optical Society of America
OCIS codes: 190.4380, 190.5040, 190.5330, 230.4910.

Vol. 19, No. 12/December 2002/J. Opt. Soc. Am. B

2967

1. INTRODUCTION

A semilinear coherent oscillator with two pump waves
was the very first coherent oscillator with a photorefrac-
tive crystal as the gain medium.? Its cavity is formed by
an ordinary mirror and a photorefractive crystal that
serves as an amplifying phase-conjugate mirror when be-
ing pumped with two counterpropagating pump waves.
This configuration of a photorefractive oscillator attracts
attention because of potential applications in lasers
with capability for intracavity phase-distortion compensa-
tion.>* It served also as a model system for investigation
of deterministic chaos.>® The onset of coherent oscilla-
tion in this geometry, as it has been shown recently, is
similar to the second-order phase transition.”®

In all publications mentioned above, the frequency-
degenerate oscillation was considered except in Ref. 6,
where the authors report on excitation of the high-index
transverse modes that might be frequency shifted with re-
spect to the pump waves. Although most often the fre-
quency of output radiation in photorefractive oscillators
with unclosed cavities coincides with the frequency of the
pump radiation, this is not imposed by any general law.
As in usual lasers, in coherent oscillators the cavity
modes that oscillate should possess the largest gain and
smallest losses; nothing indicates in advance that this
must necessarily be the mode with the pump frequency.

In this paper we present the results of calculations that
predict a bifurcation in the oscillation spectrum of a semi-
linear coherent oscillator, within the plane-wave approxi-
mation, i.e., even for the lowest-index transverse modes.
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This prediction is further confirmed experimentally, when
studying a semilinear photorefractive oscillator with
BaTiO;.

Above the oscillation threshold, a photorefractive grat-
ing self-develops in the sample, which couples the oscilla-
tion waves to the pump waves. The splitting of the single
line in the oscillation spectrum into two symmetric lines
means that a single immobile refractive-index grating be-
low the bifurcation point is replaced above the bifurcation
point by two gratings with the same grating vector but
moving in opposite directions with the same speed. The
transition between these two ordered states (immobile
grating and moving grating) can be considered as a type
of phase transition that has no direct analogy in solid-
state physics. It is shown that the splitting in the oscil-
lation spectrum features properties of the second-order
phase transitions.

2. QUALITATIVE DESCRIPTION

The oscillator geometry shown in Fig. 1 is considered.
The photorefractive crystal (PRC) is illuminated with two
counterpropagating pump waves, 1 and 2. Any noisy
wave propagating in direction 4 (part of the pump radia-
tion scattered from optical imperfections of the sample)
gives rise to phase-conjugate wave 3, i.e., the photorefrac-
tive crystal serves as a phase-conjugate mirror. The ra-
tio of intensities of the wave 3 to wave 4 at the input face
z = 0 (see Fig. 1) is called phase-conjugate reflectivity,

R,.. A conventional mirror M with reflectance R serves
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Fig. 1. Schematic representation of the considered oscillator.
The oscillator consists of a four-wave mixing phase-conjugate
mirror, PCM, and a conventional mirror, M; the aperture D is
placed inside the cavity to reduce its Fresnel number to be Ny
= 1. Pump waves are labeled 1 and 2, and 3 and 4 define the
oscillation wave.

as the second cavity mirror. The aperture D is intro-
duced inside the cavity, with the diameter a that ensures
the cavity Fresnel number close to unity, Nz = a?/\L
= 1 (A is the light wavelength, and L is the distance be-
tween the phase-conjugate mirror and the conventional
mirror). In such a way, the lowest index transverse mode
is selected.

The steady-state oscillation occurs if the intensity of
the oscillation wave remains the same after one round
trip inside the cavity, which leads to condition

R,R = 1. 6}

In the undepleted-pump approximation, the phase-
conjugate reflectivity reads?

sinhz( ﬁ
2
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where vy, is the coupling constant, € is the interaction
length, and r = I5(€)/I1,(0) is the pump-intensity ratio.

For frequency-degenerate interaction with the pump
ratio

r = exp(yol), 3)

optimized to reach the highest phase-conjugate reflectiv-
ity, Eq. (2) reduces to R, = sinh%(y,¢/2) and predicts, for
high-enough coupling strengths, an exponential growth of
the phase-conjugate reflectivity R, = [exp(—y,{)/4. In
this way Eq. (1) takes the form

exp(—7yof) ~ 4/R. (4)

With —In(R) being the dimensionless losses because of
mirror transparency the oscillation condition becomes

(=vo0)tn = ~In(R) + In4. (5)

Equation (5) resembles, to a certain extent, the oscillation
condition for conventional lasers, which says that, to get
the oscillation, the exponential gain should compensate
for all types of cavity losses. The necessity to ensure R,
at least larger than unity to achieve the oscillation leads
to the additional term, In 4, on the right-hand side of Eq.
(5).
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There are several other fundamental differences be-
tween this photorefractive coherent oscillator and conven-
tional lasers. The semilinear geometry belongs to the os-
cillators with so-called unclosed cavities. After every
round trip in the cavity, the photons of the oscillation
wave leave the cavity forever, new photons being perma-
nently supplied by the diffraction of the pump wave from
the photorefractive grating. In other words, the phase-
conjugate mirror does not return the photons of the oscil-
lation wave back to the cavity but injects all the time new
photons. The resonant frequencies of the cavity with the
phase-conjugate mirror are not fixed,*'° and the oscilla-
tion may occur at any frequency imposed by the threshold
conditions (i.e., by the spectra of gain and losses).

A next distinction lies in the description that repre-
sents the coherent oscillator as the system with localized
gain (phase-conjugate mirror) and localized losses (ordi-
nary mirror), whereas conventional lasers are usually
treated as systems with distributed gain (medium with
inverted population) and either localized or distributed
losses. The fact that coupling strength in Eqgs. (3) and (4)
is a product of the coupling constant y, times the crystal
thickness ¢ might be misleading here: one should re-
member, however, that the sample thickness ¢ appears
only because it defines R, in Eq. (1), i.e., the intensity
ratio of the wave “reflected” from the phase-conjugate
mirror and the wave incident at its input face z = 0; see
Fig. 1.

The important distinction also is that the gain in the
cavity with the phase-conjugate mirror depends not only
on coupling strength but also on the pump-intensity ratio.
Up to now we have discussed the optimum case when the
pump ratio is related to the coupling strength through Eq.
(3), but in fact these are two independent control param-
eters for a photorefractive oscillator. As the coupling
strength is usually intensity independent in photorefrac-
tive crystals, r and R remain two suitable control param-
eters for the experiment.

The exact solution for the intensity of the oscillation
wave within the assumption of frequency-degenerate in-
teraction of four plane waves is presented in Ref. 8, with
pump depletion taken into account. Referring to these
results, we are reminded that in the vicinity of the thresh-
old the normalized amplitude of the oscillation wave
|E4(0)/E5(0)| = VI3(0)/I5(0)  features  supercritical

bifurcation,™!

() — €
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A being a constant independent of (yy€¢)y,. The latter
suggests the analogy of the oscillation threshold to the
second-order phase transition.®

We describe below the calculations where the oscilla-
tion frequency is not imposed to be equal to the pump fre-
quency (nondegenerate case). Assuming that the cavity
losses are frequency independent, the oscillation frequen-
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cies are determined from the position of the maxima of
the phase-conjugate reflectivity spectra'®* exactly at
threshold.

3. CALCULATION OF OSCILLATION
FREQUENCIES

The same condition of oscillation [Eq. (1)] is considered,
with low-signal phase-conjugate reflectivity given by Eq.
(2), which is well justified at the threshold of oscillation.
The distinction is that the oscillation wave is allowed to
be shifted in frequency to () with respect to the pump
waves, i.e., w; = wy = w, whereas w3 = w £ () and
ws= o F Q. Tt is known®!° that, being reflected from
the considered phase-conjugate mirror, the light wave
with frequency (o + ) acquires frequency (o — ) and
vice versa. This is one of the reasons why the oscillation
wave is self-reproduced only after two full round trips in
the cavity, as distinct from conventional lasers where one
round trip is sufficient. Therefore for the nondegenerate
case, the oscillation wave should always contain two com-
ponents, shifted symmetrically by =) with respect to the
pump frequency.

The coupling constant that becomes a complex value
due to the possible frequency shift of the oscillation wave
reads

(0 = =2 i (o + i)
L T A T T L A
(8)

where v, is the initial real coupling constant that charac-
terizes the diffusion-mediated photorefractivity with non-
local response (e.g., BaTiO;). The grating relaxation
time 7is equal, in the zeroth approximation, to dielectric
relaxation time 74 = €€y/0o, where €€y is the dielectric
constant and o is the photoconductivity, o = «I, with «
being the specific photoconductivity. With Eq. (8) taken
into account, the phase-conjugate reflectivity becomes

" ’yfe
sinh?| —| + sin?| —
R 2 2 ©
pe v'€ —Inr y' e
cosh?| —— | — sin?| —
2 2

It is now a function of frequency detuning because both '
and v depend on ().

The aim of the calculation is to find the oscillation fre-
quencies (4, at the threshold of oscillation and threshold
values of coupling strength (yy{)y, for different pump ra-
tios r and end-mirror reflectivities R. To do it, the set of
equations should be solved:

R, R =1, (10a)
dR

=0, (10b)
dQ

with R given by Egs. (9) and (8). The reflectivity R of
the end mirror is considered to be independent of fre-
quency detuning (). The second equation, Eq. 10(b), al-
lows us to interrelate the variables (y,f), r, and Q) at the
maxima of phase-conjugate reflectivity:
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d(y"¢) v'e Inr
—2 sin?| — |sinh| y"¢ — —
dQ 2 2
v y'€ —Inr
+ 2 sinh| — | cosh| ———
2 2

dy'¢ Inr
= - ) sin(y'{)cosh| y"¢ — - (11)

To solve this equation together with the threshold condi-
tion, Eq. (10a), the numerical simulations are used; only
some particular cases can be treated analytically.

Before presenting the summary of the numerical simu-
lations, some representative examples are shown and two
limiting cases are analyzed. We first impose constant
pump ratio » = 2 and vary coupling strength. For cou-
pling strength y,¢{ = — 1, the phase-conjugate reflectiv-
ity spectrum has only one maximum with R, smaller
than unity (curve 1 in Fig. 2); therefore the oscillation
does not occur. With yy,¢ = —2.1, the phase-conjugate
reflectivity spectrum still has only one maximum, but
R, = 1isreached (curve 2). This means that oscillation
in cavity with high-reflecting end mirror R = 1 will start
with only one frequency at the threshold. With larger
coupling strength y,¢ = —3, the phase-conjugate reflec-
tivity spectrum has two maxima, and the threshold of os-
cillation can be reached in the cavity with a mirror reflec-
tivity R = 0.53 (curve 3). Increasing further the
coupling strength to y,¢ = —5, we see that the oscillation
condition can be satisfied in the cavity with a mirror re-
flectivity R = 0.23 (curve 4).

It should be emphasized here that the appearance of
two maxima in the spectrum of phase-conjugate reflectiv-
ity is a consequence of parametric mixing of four light
waves; the spectrum of the gain factor I' = 29" always has
the Lorentzian shape given by Eq. (8).
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Phase conjugate reflectivity, R
Cavity losses, -InR
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—

-4 -2 0 2 4
Frequency detuning, QT

Fig. 2. Spectra of phase-conjugate reflectivity (black dashed and
solid curves) and cavity losses (horizontal gray lines) that show
the threshold condition of oscillation. Coupling strength is
equal to —1 (curve 1), —2.1 (curve 2), —3 (curve 3), —5 (curve 4),
and — (curve 5). Pump ratio r is equal to 2 for all dashed
curves and 1 for the black solid curve. The mirror reflectivities
are indicated near the horizontal lines, depicting loss levels.
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Let us suppose that the two pump waves have identical
intensities, » = 1, and that the cavity has a highly reflect-
ing mirror, R = 1. It is easy to deduce from Eq. (2) that
in the frequency-degenerate case the phase-conjugate re-
flectivity becomes R . = tanh?(y,¢/2); i.e., it approaches
unity only for an infinitely large coupling strength. As a
result, we come to the known conclusion that the
frequency-degenerate coherent oscillation is impossible
with r = 1, even in lossless cavity (R = 1). This be-
comes not true, however, if frequency degeneracy is re-
moved. It appears that Eq. (10) with R = 1 and r = 1
can be satisfied if

2 sin?(y'€/2) = 1, (12a)

’

d //e)
[(7 tan(y’€). (12b)

tanh(y"€) = —{

Equation (12a) leads to (y'€) = *=(#/2) + pm, where p
is an integer. By putting this on the right-hand side of
Eq. (12b) and taking into account that the left-hand side
of this equation remains finite, we need to impose Q=*+1
to satisfy Eq. (12b). In turn, this gives the coupling
strength (yo€)y, = —7. This example shows that
frequency-nondegenerate oscillation may occur for the set
of parameters where it is forbidden in the degenerate
case, and it shows that the coherent oscillation in a low-
loss cavity (R = 1) can be reached for the set of param-
eters other than that for curve 2 in Fig. 2; see solid curve
5 in Fig. 2.

The other limiting case is the mirrorless oscillation
that is supposed to appear if the conventional cavity mir-
ror is removed, R = 0, i.e., if R, tends to infinity. The
latter happens if the denominator of the right-hand part
of Eq. (9) becomes zero:

y'€¢ — Inr

5 ) = sin?(y'€/2), (13)

cosh2(
which leads to conditions

o= — (14)

) (15)

where superscript ml marks mirrorless oscillation.
Qualitatively, this result is in agreement with the conclu-
sion of Ref. 3, which predicted mirrorless oscillation for
media with a mixed local/nonlocal nonlinear response; in
other words, for media with complex coupling strength.

Figure 3 shows the pump-ratio dependences given by
Eqgs. (14) and (15). The lowest threshold of mirrorless os-
cillation (yo0)® = —27 and Q%' = 1 are reached for r
= exp(m) ~ 23.14. This allows us to conclude that the
mirrorless oscillation can be achieved in BaTiO; samples
with reasonable dimensions.

Below, the pump-ratio dependences of (yy€)y, and Qy
are calculated numerically from Eqgs. (10a) and 10(b) for
cavity mirrors with different reflectances. The results
are presented in Fig. 4. They include also the analytical
solutions for the limiting cases described above. One can
see from the data presented in Fig. 4B that for any par-
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Fig. 3. Calculated pump-ratio dependences of the threshold-
coupling strength (solid curve) and threshold frequency detuning
(dashed curve) for the mirrorless coherent oscillation.
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Fig. 4. Calculated pump-ratio dependences of (A) the threshold
coupling strength and (B) the threshold frequency detuning for
the coherent oscillation in a semilinear cavity. Cavity mirror re-
flectivity R = 1 for filled dots, 0.5 for diamonds, 0.25 for slanted
crosses, 0.1 for straight crosses, 0.01 for triangles, 0 for the dot-
ted curve (mirrorless oscillation), and 5 for the dashed curve (os-
cillation with amplifier inside the cavity). Solid curves in (A)
represent an analytical solution for single-frequency oscillation.

ticular R there exists a certain critical value of pump ratio
7 below which the single line in the oscillation spectrum
bifurcates into two lines symmetric with respect to the
pump frequency (only one, positive branch is shown in
Fig. 4B because a log plot is used). Within the interval of
the pump ratio where the oscillation spectrum possesses a
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single frequency, the threshold coupling strength can be
calculated from Eq. (7). Solid curves in Fig. 4A show the
results. A good agreement with the numerical calcula-
tions is obvious, which proves the validity of the numeri-
cal calculations for the whole range of r values investi-
gated.

The detailed analysis in the close vicinity of the critical
pump ratio shows (see Fig. 5) that below r, the threshold
frequency Qy, is reasonably well described by a square-
root dependence,

Inr, — Inr
Qu=B\/———, (16)
Inrg,
where B is constant, i.e., the splitting occurs by super-
critical bifurcation.'12

The smaller the cavity mirror reflectivity is, the larger
value of r is needed to get single-frequency oscillation.
Inevitably, this is accompanied by the increase of the
threshold coupling strength. The smallest coupling
strength needed to reach the bifurcation in a low-loss cav-
ity goes to (yof), ~ —1.7 (see Fig. 4A). Even lower val-
ues are possible in case the conventional laser amplifier is
put inside the cavity. As an example, the dashed curve
is shown in Fig. 4A for an effective mirror reflectivity
R = 5. Altogether, the data of Fig. 4 lead to the conclu-
sion that the double-frequency oscillation is quite natural
for a semilinear coherent photorefractive oscillator with
two pump waves and should be easily observed in the ex-
periment.

Figure 6 represents a two-dimensional “phase diagram”
(coupling strength and pump ratio) that shows the white
area where oscillation is impossible without extra ampli-
fiers; the area of existence of single-frequency oscillation
is marked by light gray color, and the area of possible ex-
citation of double-frequency oscillation is marked by
deeper gray color

The solid black curve separating the white area from
filled areas defines the smallest threshold of oscillation in
lossless cavity (R = 1) as a function of r (curve taken
from Fig. 4B). The vertical solid straight line indicates
the smallest pump ratio r below which the oscillation oc-
curs with two frequencies even at threshold. The tilted
straight line represents the condition y”¢ = Inr that op-
timizes R in the nondegenerate case. At last, the dot-
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Threshold detuning, (£2T),,

'
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Pump ratio, r
Fig. 5. Calculated pump-ratio dependence of the threshold fre-
quency detuning for coherent oscillation with a high-reflecting
(R = 1) cavity mirror in the vicinity of the bifurcation point.
The curve shows the fit to a square-root dependence of Eq. (16).
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Fig. 6. Two-dimensional diagram of coherent oscillation exis-
tence. Light-gray color defines the area where only single-
frequency oscillation is possible, and deep-gray color marks areas
where both single-frequency and double-frequency oscillation
may occur, depending on cavity losses. For pump ratios smaller
than that indicated by a white straight line, only double-
frequency oscillation can be excited. Diamonds show the pump-
ratio dependence of the smallest threshold coupling strength for
different cavity mirror reflectivities. The tilted straight line
represents the coupling strength that optimizes the phase-
conjugate reflectivity for a frequency-degenerate oscillation.

ted curve that defines the border of the deep-gray area in
Fig. 6 shows the coupling strength that corresponds to the
bifurcation in the frequency spectrum. This dependence
is found from the condition

d’R
pc
—— =0, 17
0 am
supplemented with the condition given by Eq. (10b).
These two equations give the relationship between vy,€
and r:

Yol exp(yofl) + 2[1 — exp(yof)] 18)
r= .
= vot exp(—yot) + 2[1 — exp(—7ol)]

Note that the condition of oscillation [Eq. (10a)] has not
been explicitly used in this calculation: It is supposed
that R is changing along with changing r in such a man-
ner that Eq. (10a) is permanently satisfied.

One can see from Fig. 4A that the solutions for different
R are not intersecting each other; i.e., for every set of r
and R, only one (yy{)y, can be found. At the same time,
the absolute minimum of the threshold-coupling strength
for gradually decreasing R has a multivalued region when
plotted as a function of pump ratio (Fig. 6, diamonds). It
might be expected that this absolute minimum can be
found from the condition y"¢ = Inr that optimizes R in
the nondegenerate case (tilted straight solid line in Fig.
6), but this proves to be true only within the limited in-
terval of r where optimum conditions correspond to
single-frequency oscillation. When the coupling strength
necessary for frequency splitting becomes smaller than
that given by the condition y"¢ = Inr, the absolute mini-
mum in threshold-coupling strength strongly deviates
from y"¢ = Inr dependence.

To this point, we have discussed the dependences of
(yo€)n and Qy, on pump-intensity ratio r. The other pos-
sible control parameter to observe the frequency splitting
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in this photorefractive oscillator is the cavity mirror re-
flectivity R. With the data of Fig. 4B redrawn to show
the dependences of (y,€)y, and Qy, versus In R, the same
type of subcritical bifurcation is revealed in the frequency
spectrum as that shown in Fig. 5.

4. EXPERIMENT

A. Experimental Technique

The semilinear oscillator depicted schematically in Fig. 7
consists of a phase-conjugate mirror in a cobalt-doped
photorefractive barium titanate PRC and a conventional
highly reflecting convex mirror M, with a 50-cm radius of
curvature. The distance between the mirror and the
crystal is 38 c¢cm; the 0.5-mm aperture is placed ~12 cm
from the conventional mirror.

The Ar*-laser beam (514 nm, TEM,,, no etalon) is
loosely focused by the lens L;, with 100-cm focal length,
into the sample (the distance between the sample and
lens is 90 cm). A beam splitter BS, which divides the in-
cident beam into two beams with the intensity ratio 3:1,
and two flat highly reflecting mirrors M; and M, are used
to form counterpropagating pump waves 1 and 2. The
polarizing prism P and a M2 phase retarder between the
mirrors M; and M, serve to change pump-intensity ratio
by decreasing the intensity of a weak backpropagating
pump wave. Both pump waves are polarized in a way to
be extraordinary waves in the BaTiO; sample. A Fara-
day isolator is placed close to the Ar*-laser output mirror
to prevent undesirable feedback to the pump laser from
the coherent oscillator. If not specified, the used output
power of the Ar*-laser is ~250 mW.

An Ar" laser with a short coherence length is selected
as a pump source in these experiments deliberately to
prevent the direct recording of the reflection gratings.
Special care is taken to ensure the smallest possible path
difference between the oscillation wave sent to the sample

Mi
PD A2
Q. R o ®
e p P A\
§ ) 3*7- . ¢ L1
pump 1 Q \ [
M2 PRC  bump2 -

Fig. 7. Experimental arrangement for the study of coherent os-
cillation in a semilinear cavity. Beam splitter BS and mirrors
M; and M, form two counterpropagating pump beams that im-
pinge upon the BaTiO5 sample (PRC). M., is a highly reflecting
conventional convex mirror, D is a diaphragm, and L, is a lens
that collects the oscillation light (reflected from the sample face
closest to the beam splitter) and sends it to photodetector PD.
The polarizer P and half-wave phase retarder M2 serve to control
the intensity of pump wave 1. The Faraday optical isolator (not
shown in this picture) is put between the argon laser and beam
splitter.
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from mirror M, and copropagating pump wave 1. In such
a way, the recording of the transmission gratings only is
favored.

The BaTiO3:Co sample has 3.7 mm 4.0 X mm X 6.1
mm dimensions along X, Y, and Z crystallographic direc-
tions. The pump waves enter the sample from two oppo-
site faces normal to the polar ferroelectric axis (¢ axis);
the sample is aligned in a way that backscattered waves
from pump 1 are amplified. To increase the coupling
strength for copropagating waves 2 and 3, the pump-
incidence angle is chosen to be 32° in air, and the angle
that the optical-cavity axis makes with the crystal ¢ axis
is 8°. The coupling strength estimated for BaTiO3 (n,
~ 2.488, n, ~ 2.424, r45 = 1640 pm/V), according to the
procedure described in Refs. 15 and 16, should be 7, i.e., is
sufficient for the observation of frequency splitting with
cavity oscillation and for the detection of mirrorless oscil-
lation.

When the oscillation is achieved, a part of it is reflected
from the sample faces; this light is focused by the lens L,
to the detector PD to measure the oscillation dynamics.
In some experiments, a part of this oscillation beam is
used to form the fringe pattern together with the refer-
ence beam from the Ar* laser to measure the frequency
detuning from the beat-frequency mark. The path differ-
ence between the oscillation and reference waves is mini-
mized to obtain high-contrast moving fringes.

B. Oscillation in Semilinear Cavity

When the aperture is removed from the cavity, several
modes with high transverse indices are oscillating simul-
taneously and/or changing each other, and the temporal
dynamics of the oscillation wave is irregular. This is in
agreement with the results reported in Ref. 6, especially
taking into account the higher coupling strength in our
experiment as compared with that in Ref. 6.

The onset of oscillation is similar to that already de-
scribed for other photorefractive coherent oscillators (e.g.,
double phase-conjugate mirror'’ or ring-loop oscillator'®):
After the beginning of exposure of the virgin sample to
pump waves, the intensity of the future oscillation wave
remains for a certain time very small and then is increas-
ing nonlinearly, quickly reaching its saturation level.
This type of dynamics is shown in Fig. 8A for the oscilla-
tor with no aperture inside the cavity. The steady state
is characterized by irregular variations in the oscillation
wave intensity.

With the 0.5-mm aperture introduced into the cavity,
only one transverse mode is oscillating. Its temporal dy-
namics is either smooth, as shown in Fig. 8B, or features
periodic variations (Fig. 8C). The periodic modulation
usually occurs for a smaller imbalance of pump intensi-
ties; it disappears if the backward pump-wave intensity
becomes much smaller than that of the forward pump
wave.

To check that the observed dynamics in Fig. 8C is an
inherent feature of the studied photorefractive oscillator
and not an artifact, the intensity dependence of the modu-
lation frequency has been measured (Fig. 9). This depen-
dence is nearly linear, as one can expect by taking into ac-
count that the space-charge relaxation rate is governed by
photoconductivity. In fact, because of sublinear intensity
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dependence of photoconductivity, o = «I*, typical for
crystals with shallow traps,'® the measured intensity de-
pendence of the beat frequency is better fitted by o« I*
dependence. The exponent x extracted from this fit,
x = 0.83, is the same as that already reported for our
sample in a previous publication.?’

The high-contrast nearly harmonic modulation of the
oscillation intensity in Fig. 8C results from the simulta-
neous excitation of two longitudinal modes with different
frequencies. To prove that these two frequencies are
shifted symmetrically with respect to the pump frequency,
the coherent reference wave is sent to the detector along
with the oscillation wave. Figure 10 shows how the
modulation frequency is changing if the reference wave is
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Fig. 8. Temporal evolution of the oscillation intensity for the
semilinear cavity (A) with a large Fresnel number (no aperture
inside the cavity) and (B,C) with a 0.5-mm aperture inside. The
cavity mirror reflectivity is R = 1, the pump ratio r = 200 for
(B), and r = 20 for (C).
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Fig. 9. Beat frequency in the oscillation wave versus laser pump
power. The dashed curve is the fit to I* dependence.
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Fig. 10. Temporal intensity variations for the oscillation wave
plus a coherent reference wave from the Ar*-laser and intensity
variations of the oscillation wave only.

added or removed. In case the reference wave is present,
the most pronounced beat frequency is two times smaller
than without the reference wave. This is just what was
expected: Without the reference wave, two components
in the oscillation spectrum with the frequencies w=() give
the beat frequency 2(). With the strong reference wave
with frequency w, the main beat frequency becomes ().
This is confirmed also directly by the Fourier spectra of
the relevant signals.

The oscillation dynamics is measured here for different
pump-intensity ratios r. Typical examples of pump-ratio
dependences of the averaged oscillation intensity and
modulation frequency are shown in Fig. 11. These de-
pendences agree well with that predicted by calculations
(see Fig. 4). Within the whole interval of » where the os-
cillation occurs, there are two well separated regions, one
with a single-frequency oscillation (large values of r) and
another with a two-frequency oscillation.

The largest oscillation intensity is observed roughly
near the transition point between the single-frequency
and two-frequency domains; it is decreasing gradually
both for increasing and decreasing r. This reflects the
pump-ratio dependence of the threshold-coupling
strength shown in Fig. 4A: The largest oscillation inten-
sity corresponds to the largest difference between the cou-
pling strength that is ensured by the sample and the cal-
culated threshold-coupling strength (similar to
conventional lasers where the output intensity is propor-
tional to the overthreshold pump intensity). One can see
from Fig. 4 that, for the pump-ratio range of interest, the
position of the minimum of threshold coupling strength is
rather close to the position of the transition point. The
oscillation intensity drops when the threshold coupling
strength is approaching the sample coupling strength.
The measured pump-ratio dependence of the beat fre-
quency (Fig. 11B) resembles that calculated (Fig. 4B).

Next, the dependence of the oscillation frequency ver-
sus the pump ratio is measured more carefully near the
transition point. The results are presented in Fig. 12 by
dots in a semilog plot that allows showing explicitly the
bifurcation. The same figure represents three curves cal-
culated for R = 1, 0.1, and 0.01, shown in gray. The ob-
served behavior is qualitatively similar to that predicted
by calculations. The frequency splitting occurs at a well-
defined pump ratio, and the frequency shift is increasing
from zero gradually. At the same time, the experimental
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curve measured for a high-reflecting cavity mirror, R
= 1, is much closer to that calculated for R = 0.1. This
discrepancy can be attributed in part to other cavity
losses not taken into account in calculation (such as losses
related to two Fresnel reflections from the sample face at
every round trip, diffraction losses because of a small cav-
ity Fresnel number, effective losses because of incomplete
overlap of oscillation, and pump waves inside the sample).

It should be emphasized that the comparison with cal-
culation can be only qualitative here. This is because we
measure the oscillation frequency for a well developed os-
cillation, sometimes for pump ratios where coupling
strength of the sample is far above the threshold value
and the calculation is performed in the undepleted-pump
approximation, i.e., always in the vicinity of the transi-
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A B

Fig. 13. Far-field intensity distribution for double-frequency os-
cillation, recorded (A) at maximum and (B) minimum of periodic
intensity variations.

tion point. Keeping this in mind, we can state a quite
reasonable agreement of the measured and the calculated
data.

The angular distribution of the oscillation wave has
been studied, too. Within the pump-ratio range where a
single-frequency oscillation is observed, the far-field in-
tensity distribution is bell shaped (Fig. 13A), close to the
Gaussian distribution of a TEM,, mode of the cavity. For
a two-frequency oscillation, the bell-shaped intensity dis-
tribution can be observed also, but quite often the periodic
appearance of a deep-black fringe is visible (see Fig. 13B)
The contrast of this fringe becames the largest every time
the periodically modulated oscillation intensity (shown in
Fig. 8C) reaches its minimum. At the maxima of the in-
tensity modulation, the intensity distribution remains
bell shaped.

It might be thought that two low-transverse-index cav-
ity modes are oscillating simultaneously as it was sug-
gested in Ref. 6. We believe, however, that the observed
behavior is not due to the interference of TEM,, and
TEM,; (or TEM,,) oscillation modes. Simultaneous exci-
tation of TEM,, and TEM,; modes usually results in char-
acteristic dynamics of the far-field pattern with periodic
out-of-phase modulation of the intensity in two lobes
(“dancing modes”1?2). From the other side, every cavity
eigenmode possesses by definition its own eigenfrequency.
This presumes that, when the reference beam from an
Ar*-laser interferes with the two-lobe oscillation mode,
the light fringes are either stable in time (two waves with
the same frequency) or move in the same direction (the
same frequency shift for both lobes of eigenmode).

A qualitatively different behavior is observed experi-
mentally: The symmetric two-lobe pattern is alternating
with a bell-shaped pattern (Fig. 13), and no out-of-phase
modulation in two lobes occurs. Furthermore, the inter-
ference fringes shown in Fig. 14 are moving in opposite
directions in the two lobes of the far-field pattern. Two
immobile opaque markers placed on the white screen (in
the right-hand top corner and in the left-hand bottom cor-
ner of the patterns shown in Fig. 14) allow detecting op-
posite directions of the fringes motion in two lobes.

This motion results in fringe discontinuity within the
far-field light spot. The fringe pattern becomes uniform
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Fig. 14. Fringe pattern of far-field intensity distribution for
two-frequency oscillation and Gaussian reference beam from an
Ar* laser. Consecutive frames A and B show clearly the switch
of interlinks between the fringes in two bright areas, which is
due to the fringe motion in opposite directions. Markers on the
screen allow the detection of the fringe-motion directions.
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Fig. 15. Schematic representation of tilted rays in the cavity
with the phase-conjugate mirror (see text).

Vol. 19, No. 12/December 2002/J. Opt. Soc. Am. B 2975

throughout a whole bright spot (Fig. 14A) only at the
maxima of oscillation intensity. Figures 14A and 14B
show two consecutive snapshots (taken from a movie re-
corded with a CCD camera) near the minimum of the os-
cillation intensity, when the fringes in two lobes are
nearly out of phase. The abrupt switching of interlinks
between two sets of fringes for exactly one fringe spacing
is obvious; it results from contradirectional fringe motions
in two lobes.

Such a behavior is typical for an oscillation wave that
consists of two components, oppositely shifted in fre-
quency and making a small angle (=103 rad) between
them. This behavior can be explained if we assume the
excitation of a mode with the rays structure shown in Fig.
15. Two partially overlapping areas in the phase-
conjugate mirror are postulated that “reflect” the incident
slightly tilted wave exactly in the back direction and
change the sign of the frequency detuning to the opposite.
An argument in favor of this explanation is the observa-
tion of up to three moving black fringes in the far-field
pattern for the coherent oscillator with a larger aperture
(1 mm) inside the cavity. The excitation of these modes
may be a consequence of an inexact angular alignment of
the two counterpropagating pump waves. It may be re-
lated to a nonlinear phase mismatch in this four-wave in-
teraction coming from the frequency shift of the oscilla-
tion waves. It is known that such a phase mismatch
might be compensated for by the angular misalignment.!*

C. Mirrorless Oscillation

Several types of coherent mirrorless oscillation have been
reported for different parametric mixing processes in
BaTiO; crystals,?®?* but, surprisingly, the most simple
one that is due to backward four wave mixing™® has not
been yet observed, to our knowledge. Most probably, this
is because the researchers are using in their experiments

B

Fig. 16. Angular distribution of (A) light-induced scattering and
(B) light-induced scattering with mirrorless oscillation.
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quite moderate coupling strength, y,¢{ = (2 ... 3), which
is not sufficient for a self-excitation of mirrorless oscilla-
tion.

If no other restrictions are imposed, the angular distri-
bution of the oscillating wave(s) should reflect the angular
distribution of the gain factor (i.e., the angular depen-
dence of the coupling strength). So the oscillation within
a rather wide angular window could be expected, roughly
corresponding to the angular distribution of the light-
induced scattering but with better-defined edges and
much stronger intensity.

Experimentally, it is easier to detect the self-
development of mirrorless oscillation by observing it in a
direction where it is not masked by the scattered light.
Figure 16A shows the angular distribution of the scat-
tered light copropagating with the forward (more intense)
pump wave. It has the characteristic shape of a cross
centered in the direction of the crystal polar axis.???
The right-hand side ray of the cross is absent because of a
much smaller gain factor for this direction: scattered
light is not amplified sufficiently. Whenever the mirror-
less self-oscillation occurs, it propagates both in the
brightest left ray of the scattering cross and also in the
opposite direction. This backpropagating oscillation
wave is reflected by the sample face close to the beam
splitter (see Fig. 7) in the direction of the missing right
ray of the cross (Fig. 16B).

According to the calculation presented above, the mir-
rorless oscillation can never occur with the same fre-
quency as that of the pump waves (the dashed curve in
Fig. 4B does not intersect abscissa for any finite ). The
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dynamics of the intensity variation of the observed mir-
rorless oscillation is not smooth but exhibits pronounced
irregular oscillations (Fig. 17A). The Fourier spectrum
of this signal features a long tail slowly decreasing with
the temporal frequency (Fig. 17B). This corresponds to
excitation of a large number of modes with different
eigenfrequencies, which is not astonishing, taking into ac-
count that the sample coupling strength is larger than the
smallest threshold coupling strength 27 and threshold
condition can be satisfied, in principle, within a rather
wide range of detuning frequencies.

Qualitatively, the observed features do not contradict
the expected ones for mirrorless oscillation, which is due
to backward-wave four-wave mixing with the dominant
transmission gratings. At the same time, additional
proof is necessary to make an unambiguous conclusion
about the nature of the observed mirrorless oscillation.

5. DISCUSSION

From the comparison of the experimental data and the re-
sults of calculation, one can state the satisfactory agree-
ment between them. The two-frequency oscillation is
predicted for semilinear oscillator with the external mir-
ror and observed experimentally with the properties close
to expected ones.

It would be interesting to compare the reasons for mul-
tifrequency oscillation in conventional lasers and in pho-
torefractive oscillators. In lasers with nondispersive
cavities (cavity losses independent of frequency), the ori-
gin of multifrequency oscillation is usually related to dif-
ferent kinds of inhomogeneity, which results in the possi-
bility for different (weakly interacting or noninteracting)
spectral components to reach the threshold
independently.?” The inhomogeneity might be spatial:
modes of the Fabry—Perot cavity with different indices
have different spatial structures and therefore get ampli-
fied in incompletely overlapping areas of the active me-
dium, thus leading to spatial hole burning.?® It may be
also spectral: The ultimate case is the gas laser, where
different longitudinal modes are fed by different compo-
nents of the Doppler-broadened gain spectrum.?® The
solid-state lasers with inhomogeneously broadened gain
spectra (such as Nd?'-glass lasers) are good examples,
t00.2%3%  And, finally, the polarization inhomogeneity
may also become a reason of multifrequency oscillation.?!

In photorefractive oscillators, a double-frequency oscil-
lation can also result from inhomogeneity: it may be
caused by the simultaneous formation of two space-
charge gratings by the carriers with different charges,
such as in SnyS,Ps.%2 In such a material, the gain spec-
trum itself has a two-maxima profile, and the oscillation
is nondegenerate for all possible configurations of optical
oscillators.

The onset of multifrequency oscillation occurs in differ-
ent ways in all these cases. The single-mode oscillation
at the threshold can be transformed either in multimode
oscillation with a continuous spectrum (spatial hole burn-
ing and spectral hole burning in gas lasers?®) or split into
two (and later, maybe, into three and four) spectral com-
ponents (spectral hole burning in Nd®* glasses,?%3 split-
ting of one mode in gas lasers into two with different
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polarizations®!). In a formal way, the frequency bifurca-

tion in the considered photorefractive oscillator is closer
to the two last-mentioned conventional lasers. The rea-
son for a frequency split is, however, completely different
from usual lasers, as no type of inhomogeneity is consid-
ered for a photorefractive oscillator. The transformation
of the phase-conjugate reflectivity spectrum from a one-
maximum to a two-maxima profile occurs rather because
of competition of two contributions to four-wave mixing
gain, one from the local and the other from the nonlocal
nonlinear response.
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