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We present an analysis of photorefractive properties of bulk periodically poled lithium niobate. The results
obtained are applied to description and interpretation of phase-matched four-wave processes found recently in
this novel nonlinear material. These processes manifest themselves in rings, lines, and dots of light-induced
scattering that are essentially different from those known for single-domain crystals. We conclude that peri-
odically poled lithium niobate is a new nonlinear material promising for various photorefractive applications.
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1. INTRODUCTION
Periodically poled lithium niobate (PPLN) and other peri-
odically poled ferroelectrics have attracted considerable
research interest in recent years because of the prospects
for quasi-phase-matched frequency conversion1–4 and also
as photonic-bandgap materials.5 This interest is largely
due to the progress in fabrication of high-quality periodi-
cally poled ferroelectrics. Photorefraction was regarded
as a harmful effect at this stage. It was expected to be
avoided by the use of undoped (or specially doped) crys-
tals and also because of the suppression of the photore-
fractive response in the system of periodically alternating
domains.6

In 1995, it was found experimentally in undoped planar
PPLN wave guides that the photorefractive nonlinearity
manifests itself at high intensities in an unusual light-
induced scattering.7 Some features of this phenomenon
were interpreted in Ref. 8 on the basis of the conventional
photorefractive concepts.

In 1997, it was predicted9 that periodically poled ferro-
electrics can be considered as new photorefractive mate-
rials combining suppression of large-scale variations of
the refractive index (optical damage) with a strong non-
linear response at high spatial frequencies. This feature
allows one to avoid deterioration of coherent light beams
and, at the same time, provides their efficient nonlinear
coupling. A possibility for occurrence in bulk PPLN
samples of new nonlinear-wave processes, impossible in
single-domain crystals, was also indicated in Ref. 9. Fur-
thermore, it was found that the photorefractive properties
of PPLN are rather insensitive to spatial fluctuations of
the periodic domain structure.10

Fabrication of bulk Fe- and Y-doped PPLN samples en-
0740-3224/2002/071582-10$15.00 ©
abled recently, in 2000, direct experimental studies of the
photorefractive properties of this nonlinear material.11

The results of these studies have given solid evidence of
coexistence of strong grating recording at sufficiently high
spatial frequencies with a strong suppression of the opti-
cal damage. Further experiments12 revealed a wide va-
riety of nonlinear-wave processes in PPLN:Y:Fe, from
those known for single-domain crystals13 to essentially
new ones, which are caused by the periodicity of the do-
main structure.

Most of the nonlinear processes in PPLN:Y:Fe manifest
themselves as angular light singularities: rings, lines,
and dots of light-induced scattering. The positions of the
singularities are defined by proper phase-matching condi-
tions. These conditions may include not only the wave
vectors of the interacting waves but also the grating vec-
tor of the periodic domain structure.

It is important that the nonlinear properties of
PPLN:Y:Fe (as those of bulk LiNbO3 crystals) are polar-
ization sensitive. They involve not only a spatial modu-
lation of light intensity but also modulation of the polar-
ization state. This property is due to the dominating
photovoltaic mechanism of charge separation and tenso-
rial properties of the photovoltaic effect.14 The wealth of
possibilities for charge separation in LiNbO3 leads, in
combination with the effect of periodicity, to a wide vari-
ety of strong light singularities in PPLN:Y:Fe.

The purpose of this paper is to analyze the properties of
the photorefractive response of PPLN, including orienta-
tional and polarization dependences, to apply the results
obtained for description of the most important four-wave
processes, and to compare theoretical predictions with
available experimental data.
2002 Optical Society of America
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The paper is organized as follows: In Section 2 we for-
mulate a theoretical model of the transport and nonlinear
optical phenomena in PPLN. In Section 3, on the basis of
phase-matching conditions for light wave vectors, we ana-
lyze the general features of scattering processes and for-
mulate some goals for the subsequent quantitative con-
siderations. Section 4 is devoted to the photorefractive
response of PPLN for the drift, diffusion, and photovoltaic
mechanisms of charge separation. We assume here an
arbitrary orientation of the light wave vectors, the grat-
ing vector of the periodic PPLN structure, and the direc-
tion of the light-induced electric current. Our analysis
includes calculations of the amplitudes of the Fourier har-
monics of the light-induced change of the optical permit-
tivity and consideration of a number of particular cases.
In Section 5 we apply the results of Sections 3 and 4 to
description of a number of light rings, lines, and dots
detected in experiment. Conclusions are drawn in
Section 6.

2. BASIC MODEL
We assume in accordance with experiment11,12 that PPLN
structure consists of alternating plus and minus domains,
as shown in Fig. 1. The unit polar vector c characteriz-
ing the direction of spontaneous polarization is parallel
to the domain walls. The structure is symmetric, i.e.,
the positive and negative domains have the same size,
x6 5 x0 ; the period of the structure is therefore 2x0 .
This case is shown to be optimum for photorefractive
applications.9 The x axis is chosen to be perpendicular to
the domain walls, and the z axis is parallel to the vector c.
Next we define the grating vector of the periodic domain
structure, G 5 pnx /x0 , where nx is a unit vector along
the x axis. As a representative value of the period, we
choose 2x0 5 7 mm; this gives G . 0.9 3 104 cm21. As
the thickness of the domain walls is negligibly small, the
periodicity of PPLN structure does not influence the lin-
ear optical properties of the medium. They are charac-
terized by the ordinary (no) and extraordinary (ne) re-
fractive indices.

The photorefractive nonlinearity is caused by light-
induced charge separation leading to spatial variations of
the optical permittivity tensor dê owing to the linear
electro-optic effect. It is important that the tensor of the

Fig. 1. Geometric diagram of the PPLN domain structure.
linear electro-optic effect is a polar characteristic; it is dif-
ferent in sign in positive and negative domains. There-
fore we can write for the Cartesian components of the per-
mittivity tensor

demn~r! . 2 n4rmnlEl~r!p~x !, (1)

where n 5 (no 1 ne)/2 . no,e is the average refractive
index, rmnl is the conventional electro-optic tensor, El is
the lth component of the electric field, and p(x) is a peri-
odic function equal to 11 and 21 in the positive and nega-
tive domains, respectively. The largest independent com-
ponents of the electro-optic tensor rmnl are r333 [ r33 ,
r113 [ r13 , and r131 [ r51 . The components r33 and r13
are responsible for coupling between waves of the same
type of polarization, extraordinary (e) and ordinary (o),
respectively, whereas the component r51 is responsible for
coupling between o and e waves.

In our next step we define the relevant mechanisms of
light-induced charge transport in PPLN. These mecha-
nisms are the photovoltaic effect, drift, and diffusion of
photoexcited electrons.14,15 It is essential that the photo-
voltaic effect, in contrast to drift and diffusion, is polar in
nature; the direction of the photovoltaic current is oppo-
site in the plus and minus domains. Let A be the com-
plex slowly varying (in time but not in space) amplitude of
the light electric field vector so that I 5 uAu2 is the light
intensity. Then the expression for the mth component of
the current density j can be presented in the form

jm 5 p~x !bmnlAnAl* 1 k~Em 1 kBTe21¹m!uAu2, (2)

where bmnl is the photovoltaic tensor, k the specific pho-
toconductivity, kB is the Boltzman constant, T is the ab-
solute temperature, and e is the elementary charge.
Only the first term is here an alternating function of x.
The second and third terms, characterizing the drift and
diffusion contributions, are free of the influence of the pe-
riodic structure. We have neglected in Eq. (2) the anisot-
ropy of the photoconductivity, which is well justified for
LiNbO3 crystals.

The photovoltaic tensor is generally complex; it can be
presented in the form14

bmnl 5 bmnl
L 1 idmnkbkl

C , (3)

where b̂L and b̂C are the real tensors describing the so-
called linear and circular photovoltaic currents and dmnk
is the antisymmetric unit tensor. The tensor bmnl

L is
symmetric to permutation of n and l. Its independent
components are b33

L [ b333
L , b31

L [ b311
L , and b15

L [ b131
L .

The components b33
L and b31

L correspond to the currents
induced in the z direction by light polarized along and
perpendicular to the optical axis, respectively. The com-
ponent b15

L corresponds to a current directed perpendicu-
lar to the polar axis; to excite this current, the light field
should possess simultaneously the components parallel
and perpendicular to the optical axis. In other words, o
and e waves should be present simultaneously in the crys-
tal. The component b12

C is also responsible for the trans-
verse photovoltaic current induced by o and e waves.
Since the wave vectors of these waves are different, the
transverse currents are always spatially oscillating. The
main difference between the transverse spatially oscillat-
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ing currents related to b15
L and b12

C is that they are shifted
to each other by a quarter of a period. This difference is
important for nonlinear optical effects.

The ratios bmnl /k characterize the light-induced photo-
voltaic fields. In LiNbO3 doped with Fe or Cu the longi-
tudinal fields E33

L and E31
L range from a few tens to 100

kV/cm. The transverse fields E15
L and E12

C are roughly
smaller by one order of magnitude. The effects related to
the longitudinal and transverse photovoltaic currents are
distinguished by different polarization and orientation
properties.13,14 Usually the photovoltaic transport is
dominating in photorefractive LiNbO3 .

Note that the above phenomenological expression (2)
for the light-induced current is valid when the character-
istic scale of spatial changes of A is greater than the char-
acteristic transport lengths of the material; see Ref. 16 for
more details. In LiNbO3 this condition is usually ful-
filled up to the scale comparable with light wave length.

3. PHASE-MATCHING CONDITIONS AND
QUALITATIVE CONSIDERATION OF
SCATTERING PROCESSES
Parametric scattering processes are typically specified by
proper phase-matching conditions for light wave vectors.
These conditions carry also a great deal of information
about the general features of the parametric processes.
The relevant description for the single-domain case can
be found in Ref. 13. The presence of the periodic PPLN
structure results (i) in modification of the characteristics
of the processes known in single-domain LiNbO3 crystals
and (ii) in qualitatively new scattering processes. The
fingerprint of a new parametric process is the presence of
the vector of the periodic structure G in the corresponding
phase-matching condition. Below we consider several
representative examples of parametric four-wave pro-
cesses in PPLN.

A. Processes Known for the Single-Domain Case
We consider first two processes, A: ee → ee and B: ee
→ ee, in which two extraordinary (e) pump waves p1, p2
transform into scatter e waves s1, s2. The relevant
phase-matching conditions are

kp1
e 1 kp2

e 5 ks1
e 1 ks2

e , (4a)

kp1
e 2 kp2

e 5 ks1
e 2 ks2

e . (4b)

They are illustrated by Figs. 2(a) and 2(b). One sees that
for the A process, and pair of diametrically opposed wave
vectors ks1

e , ks2
e meets Eq. (4a), i.e., the scatter waves

form on a screen (placed in the far field) a light ring pass-
ing the pump spots. For the B process the scatter waves
s1, s2 form two vertical lines passing the pump spots.

Experimental manifestations of the above processes in
the single-domain and PPLN parts of our 3-mm-thick
sample (see Ref. 12 for more details) are presented in
Figs. 3(a) and 3(b), respectively. The rings and vertical
lines correspond to A and B processes. Qualitatively, the
light distributions in the subfigures (a) and (b) are simi-
lar.
The diagrams presented in Fig. 2 allow comment on the
mechanism of spatial amplification of scattered waves.
This mechanism is different for the A and B processes.

In the case A, two refractive-index gratings, s and p,
are involved in amplification of the waves s1, s2. Two
wave pairs, s1, p2 and p1, s2, contribute to recording
of the s grating (the grating vector Ks 5 ks1

e 2 kp2
e

[ kp1
e 2 ks2

e ). The other two pairs, s1, p1 and p2,
s2, contribute to the p grating (the grating vector Kp
5 ks1

e 2 kp1
e [ kp2

e 2 ks2
e ). Diffraction of the pump

waves p1 and p2 from the gratings p and s, respectively,
increases the wave s1. Similarly, diffraction of the waves
p1 and p2 from the gratings s and p, respectively, ampli-
fies the wave s2. Mutually coupled recording and diffrac-
tion processes result in spatial amplification of weak seed
waves at the expense of the pump.13 The rate of spatial
amplification (brightness of the scatter ring) depends on

Fig. 2. Schematic diagram of the wave and grating vectors for
the processes (a) A: ee → ee and (b) B: ee → ee. The gray
dots mark the tips of the wave vectors.

Fig. 3. Far-field distributions of scattered light for (a) the
single-domain and (b) PPLN parts of the sample. Image dou-
bling is due to reflection from the output face. (c) Azimuth de-
pendence of the ring intensity; the open and filled dots corre-
spond to the cases (a) and (b), respectively.
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the azimuth angle wA. This is clearly seen from the ex-
perimental Fig. 3(c).

In the case B, four gratings, s, p, d, and f, are respon-
sible for the spatial amplification. Only the s grating
[see Fig. 2(b)] is contributed here by two wave pairs, s1,
p1 and s2, p2. The f grating is formed by the pump
waves, and it allows for mutual diffraction of weak waves
s1 and s2. Brightness of the lines depends on the dis-
tance from the pump spots; see Fig. 3(a).

The distinctive features of the above parametric pro-
cesses in PPLN can be explained qualitatively as follows.
Because of the periodic PPLN structure, the electro-optic
coefficient r33 , responsible for diffraction of e waves,
changes periodically its sign along the x coordinate; see
Fig. 1. Therefore in contrast to the single-domain case
the amplitude of a refractive-index grating cannot be ob-
tained by multiplying of the corresponding amplitude of
the space-charge field by r33 . Instead, it is necessary to
find the dependence Esc,z(r), to multiply it by r33(r), and
then to calculate the necessary Fourier component. Per-
formed in Ref. 9, this procedure shows a considerable de-
crease of the photorefractive response at the spatial fre-
quency K ! G. As applied to the above scattering
patterns in PPLN, this should result in decreasing bright-
ness of the light ring and lines in the vicinity of the pump
spots. This feature is clearly seen in Fig. 3(c).

The above-considered A and B processes belong to the
simplest and strongest in LiNbO3 crystals with dominat-
ing photovoltaic transport. At the same time, many
other strong parametric processes are known in this
material.13 They manifest themselves in a variety of
light rings and lines different in position and polarization.
Most of the parametric processes can be observed simul-
taneously in the single-domain and PPLN cases.

B. New Scattering Processes
Phase-matching conditions for new scattering processes
include not only light wave vectors but also the vector of
the periodic structure G. The new processes can be sepa-
rated into two groups. The processes of the first group
can run only for certain special values of the half-angle up
between the pump beams; they manifest themselves as
dots (spots) of scatter light.

As the first example, we consider the process 2G: ee
→ ee defined by the phase-matching condition

k2s
e 2 k2p

e 1 2G 5 k1p
e 2 k1s

e 2 2G 5 K , (5)

where K 5 k2p
e 2 k1p

e and the pump beams propagate
symmetrically to the x axis in the x,z plane. The corre-
sponding wave-vector diagram is shown in Fig. 4(a). The
phase-matching condition specifies both the pump angle
up and the scatter angle us .

A qualitative explanation of appearance of the scatter
waves s1 and s2 is as follows. The pump waves p1 and
p2 record a refractive-index grating. In PPLN, this grat-
ing possesses not only the main spatial frequency K but
also the side harmonics K 6 G, K 6 2G, etc. Diffrac-
tion of the pump waves from the side grating K 6 2G
gives just the waves 1s and 2s.

Instead of 2G, we can set in Eq. (5) the vector G. Cor-
respondingly, instead of the above 2G process we obtain a
1G process with new expected values of up and us . In
reality, this 1G process is much weaker in PPLN as com-
pared with the 2G process. The reason for this lies be-
yond our qualitative considerations; it is explained in Sec-
tion 5.

Figures 5(a) and 5(b) show two scattering patterns ob-
tained in the PPLN and single-domain parts of our
sample under the same experimental conditions. The
side spots in Fig. 5(a) (of the extraordinary polarization)
correspond to the s1 and s2 scattered waves. No side
spots can be seen in Fig. 5(b). The experimental values
of the angles up and us are in a good agreement with those
calculated for the 2G process.

Another process of the first group is 1G: ee → oo; it
gives scatter waves different in polarization from the
pump. The corresponding phase-matching condition is

ks1
o 2 kp1

e 6 G 5 kp2
e 2 ks2

o 7 G 5 2K6. (6)

Two e-polarized pump beams propagate in the xy plane
symmetrical to the x axis. The upper and lower signs in
Eq. (6) correspond to two different diagrams shown in
Figs. 4(b) and 4(c). For the upper signs [Fig. 4(b)] the

Fig. 4. Wave-vector diagrams for the processes responsible for
the generation of anomalous light dots in PPLN; the cases (a)
and (b), (c) correspond to 1G: ee → ee and 1G: ee → oo pro-
cesses, respectively.
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pump and scatter angles can be estimated for our sample
as up

1 . 17.6° and us
1 . 65.3°, whereas for the lower

signs [Fig. 4(c)] we have up
2 . 6.6° and us

2 . 20.4°.
The corresponding experimental data for PPLN are

shown in Figs. 6(a) and 6(b). The polarizations of the
pump and scatter waves are mutually orthogonal. They,
as well as the actual angles, meet the above phase-
matching conditions with a high accuracy.

Qualitative explanation of the anomalous o spots is
similar to that given above for the e dots. The pump
beams record a grating of the optical permittivity de13(r),
which includes not only the fundamental frequency K but
also the side harmonics K 6 G. The e-polarized pump
beams diffract from these side gratings into o waves ex-
ploiting the electro-optic coefficient r51 ' 28 pm/V, which
is comparable with the biggest (for LiNbO3) coefficient
r33 ' 30 pm/V. It is interesting that the strong process
under study involves 1G side gratings. Recording of 2G
side harmonics (compare with the previous case) is not
necessary here. An explanation of this difference is
given in Section 6.

Let us touch lastly on the anomalous parametric pro-
cesses of the second group. The phase-matching condi-
tions for them can be obtained from the conditions known
for single-domain crystals [like Eqs. (4)] by adding in the

Fig. 5. Far-field intensity distributions for 2G: ee → ee scat-
tering process; the patterns (a) and (b) are obtained in PPLN and
single-domain parts of the sample, respectively. The central
pump spots are shadowed by small disks.

Fig. 6. Far-field intensity distribution for 1G: ee → oo scat-
tering process; the central (pump) and side (scatter) light beams
are e and o polarized, respectively.
right-hand side the vectors G, 2G, etc. The correspond-
ing processes run without any fine adjustment of the
pump angle, and they result in additional scatter rings
and lines. The relevant light patterns have been de-
tected experimentally (see, e.g., Fig. 6), but they are typi-
cally weaker in our sample as compared with the ‘‘nor-
mal’’ light rings and lines.

4. PHOTOREFRACTIVE RESPONSE
OF PPLN
Let the light field be superposition of two waves with
wave vectors k1 and k2 so that

A 5 A1 exp~ik1 • r! 1 A2 exp~ik2 • r!. (7)

In a single-domain crystal this would result in generation
of the fundamental grating of a space-charge field with
the grating vector K 5 k1 2 k2 and also higher harmon-
ics with spatial frequencies 2K, 3K ... . Smallness of the
higher harmonics is ensured by smallness of the ratio
uA1 • A2* u/I0 , where I0 5 uA1u2 1 uA2u2 is the total light
intensity. For most of photorefractive effects the higher
harmonics are of minor importance.

The periodic PPLN structure results in a strong modi-
fication of the spectrum of spatial frequencies presented
in the light-induced variation of the optical permittivity.
Instead of the fundamental spatial frequency K, a
sequence of spatial harmonics, K 1 sG, where
s 5 0, 61, 62 ..., is expected to be excited. Moreover,
the side harmonics with s 5 61, 62 ,... should not be
small in the general case because of an ultimately strong
periodic spatial modulation of the transport and electro-
optic properties expressed by the alternating function
p(x) 5 61.

To characterize the photorefractive response of PPLN,
we have to first calculate the space-charge field Esc(r) and
then find the spatial harmonics EK

(s) presented in the Fou-
rier expansion

pEsc 5 (
s

EK
~s ! exp@i~K 1 sG! • r# 1 c.c. (8)

Then, in accordance with Eq. (1), description of the light-
induced change of the permittivity tensor dê(r) reduces to
a simple algebraic problem.

With the higher harmonics 2K, 3K ,... neglected, the
contributions to dê(r) caused by drift plus diffusion and
photovoltaic effect become independent. It is convenient
to consider them separately.

Since the first two transport mechanisms are insensi-
tive to the presence of the periodic structure [see Eq. (2)],
their contributions to Esc are the same as in the single-
domain case, and calculation of EK

(s) reduces to calculation
of Fourier harmonics of p(x). Correspondingly, we have
for the drift–diffusion contribution

EK
~s ! 5

2in

sp
~n • E0 1 iED!

A1 • A2*

I0
, (9)

where E0 is an externally applied electric field, ED
5 kBT/e is the diffusion field, n 5 K/K is the unit fun-
damental grating vector, and the number s takes only the
odd values 61, 63 ,... All the harmonics with even s, in-
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cluding EK
(0) , turn to zero. This result is not different

from that found in Ref. 9. This means, in particular, that
two light waves cannot be coupled in PPLN through the
fundamental grating in the case of drift–diffusion trans-
port. As follows from Eq. (9), the nonzero harmonics
EK

(s) } n and their amplitudes decrease rather slowly with
increasing s. Note that the value m 5 2uA1 • A2* u/I0 is
the contrast of the light interference pattern.

Characterization of the photovoltaic contribution,
which is usually dominating in LiNbO3 , is a more diffi-
cult problem. The point is that the photovoltaic trans-
port is sensitive to the periodic alternation of the polar
axis [see Eq. (2)]. For this reason, the problem of calcu-
lation of Esc(r) is not one dimensional. Under some sim-
plifying assumptions, which were too strong for the pur-
poses of our study, this problem was solved in Ref. 9.
Referring the reader to Appendix A for details, we present
here the final result,

EK
~s ! 5 2

K'

K2x0
F q~n • E!n

q* 2 isG
tanhS q* x0

2 D
1

q* ~n* • E!n*

q 1 isG
tanhS qx0

2 D G 2 n~E • n!ds0 ,

(10)

where ds0 is the Kronecker symbol, n 5 nx 1 in' ,
q 5 K' 1 iKx , the subscript ' refers to the component
perpendicular to nx , and mth component of the effective
(generally complex) photovoltaic field E is defined by
Em 5 bmnl An Al* /kI0 . Note that Eq. (10) is valid only
for even numbers, s 5 0, 6 2 ,... . For odd numbers,
EK

(s) 5 0. This circumstance comes from the polar nature
of the photovoltaic transport.

The main difference between Eq. (10) and a similar
equation derived in Ref. 9 is in an arbitrary orientation of
the vector E. In particular, this vector can have a non-
zero x component, which means that the photovoltaic cur-
rent is not parallel to the domain walls. This means, in
turn, charging of the domain walls.

Particular Cases
A. E,Kinz . A geometrical diagram for this case is
shown in Fig. 7(a). Waves 1 and 2 are of the same type
here (e or o), the interference fringes are perpendicular to
the domain walls and the photovoltaic current, character-
ized by either b33

L or b31
L , is perpendicular to the fringes

and parallel to the domain walls. In this case we have
Kx 5 0, K' 5 K, and q 5 K. Furthermore, instead of
the vectorial wave amplitudes A1,2 , we can use here the
scalar amplitudes A1,2 . Then Eq. (10) gives for the first
two nonzero spatial harmonics

EK
~0 ! 5 2nzEpvF1 2

2

Kx0
tanhS Kx0

2 D G A1A2*

I0
,

EK
~2 ! 5 Epv tanhS Kx0

2 D ~Kx0/2!nz 1 pnx

~Kx0/2!2 1 p2

A1A2*

I0
,

(11)

where Epv is E33
L and E31

L for e and o waves, respectively.
The result for the fundamental amplitude EK

(0) coincides
with that obtained in Ref. 9. We see that the fundamen-
tal harmonic has only a z component. For Kx0/2 @ 1 its
value corresponds to the single-domain case. As seen
from Eq. (11), the periodic structure does not change the p
shift between the fundamental spatial harmonic and the
light interference pattern. The first nonzero side har-
monic, EK

(2) , has not only a z but also an x component.
The dependences of EK

(0) , EK,z
(2) , and EK,x

(2) on the product
Q 5 Kx0/2 are shown in Fig. 8. Whereas EK

(0)(Q) grows
monotonically from zero to its saturated value equal one,
the functions EK,z

(2) (Q) and EK,x
(2) (Q) experience maxima at

Q ' 1.4 and 3 and then tend to zero. The maximum val-
ues of EK,z

(2) and EK,x
(2) are noticeably smaller than one.

In accordance with Eq. (1), the fundamental harmonic
EK

(0) modulates the diagonal elements of the permittivity
tensor (i.e., the extraordinary and ordinary refractive in-
dices) at the spatial frequency K, but it does not produce
any changes in the nondiagonal elements of ê. The light-
induced changes de33 and de11 are proportional to the
electro-optic constants r33 and r13 ; they allow for mutual
diffraction of e and o waves, respectively. The first side
harmonic EK

(2) produces the changes of both diagonal and

Fig. 7. Geometric diagrams for four different cases of grating re-
cording in PPLN.

Fig. 8. Dependence of the harmonics EK
(0) , EK,z

(2) , and EK,x
(2) on

Q 5 Kx0/2 (curves 1, 2, and 3, respectively) for the photovoltaic
transport in the case (a) of Fig. 7.
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nondiagonal elements of the permittivity tensor. The lat-
ter are proportional to the electro-optic constant r51 and
allow for anisotropic (o 2 e) diffraction of auxiliary
(Bragg matched to the spatial frequency K 1 2G) ordi-
nary or extraordinary light beams.
B. Einz , K'nx , Ki”nz . The corresponding diagram is
shown in Fig. 7(b). Here u is the angle between K and E.
The expressions for EK

(0) and EK
(2) can be obtained from

Eqs. (11) by the replacement Epv → Epv cos u, nz → n.
The changes of the refractive indices are smaller here by
a factor of cos2 u as compared with the case A.
C. Einz , K P x, z plane. The relevant geometrical
scheme is shown in Fig. 7(c). The angle between nz and
K we again denote u so that Kx 5 K sin u, K' 5 K cos u,
q 5 K exp(iu), and n 5 nx 1 inz . Using Eq. (10), we ob-
tain for the fundamental amplitude

EK,z
~0 ! 5 Epv cos u(Q21 Re$exp~2iu!

3 tanh@Q exp~2iu!#% 2 cos u) A1A2* /I0 ,

EK,x
~0 ! 5 Epv cos u(Q21 Im$exp~2iu!

3 tanh@Q exp~2iu!#% 2 sin u) A1A2* /I0 .

(12)

The z component is responsible for the effects of coupling
between e or o waves (isotropic diffraction). Figure 9
shows the function EK,z

(0) (u) for three representative val-
ues of Q 5 Kx0/2. This function is decreasing from the
initial value that corresponds to the case A (KiG) to zero
value at u 5 p/2 (K'G). A highly pronounced plateau
for Q 5 1.5 (curve 2) looks surprising at first sight. This
peculiarity is caused by proximity of the spatial resonance
K 5 G at u 5 p/2. One can find out that the limiting
value of the ratio shown in Fig. 9 is 4/p2 > 0.405 for
Q → p/2 and u → p/2; this is only slightly smaller than
the initial value of .0.416 of the same ratio at Q 5 p/2.
D. Kiny , E'nz . This is the case when the transverse
photovoltaic current is responsible for grating recording,
and this current is not parallel to the domain walls [see
Fig. 7(d)]. Here we have Kx 5 0, K' 5 K, q 5 K, and

Fig. 9. Dependence EK
(0)(u) for different values of Q 5 Kx0/2 in

the case (c) of Fig. 7. Curves 1, 2, and 3 are plotted for Q 5 1,
1.5, and 5, respectively.
n 5 nx 1 iny . The waves 1 and 2 are assumed to be or-
dinary and extraordinary, respectively; they do not pro-
duce any spatial modulation of light intensity. To specify
the vector E, it is useful to represent the vectorial wave
amplitudes in the form A1,2 5 eo,eAo,e , where eo,e are the
unit polarization vectors and Ao,e are the scalar ampli-
tudes. Then, using the results of Section 2, we have
E 5 eo(E15

L 2 iE12
C )A0Ae* /I0 . The angle between the

vector eo and the x axis we denote u. Using Eq. (10), we
obtain then for the fundamental component of the space-
charge field

EK
~0 ! 5 ~E15

L 2 iE12
C !@nx cos uQ21 tanh Q

1 ny sin u~1 2 Q21 tanh Q !#AoAe* /I0 . (13)

It is interesting that the x component of EK
(0) tends to zero

for Kx0 → `, whereas the y component tends to a nonzero
limiting value, and this value does not correspond to the
single domain case. This feature is general for the situ-
ations where Ei”K.

The light-induced transverse field produces the change
of the nondiagonal (de13) element of the permittivity ten-
sor, and this change is proportional to the electro-optic co-
efficient r51 . This leads to coupling of orthogonally po-
larized o and e waves.

It is important to notice that in the above analysis we
did not explicitly use the fact that the polar c axis (see
Fig. 1) is perpendicular to the domain walls. At first
sight, Eq. (10) is valid for an arbitrary orientation of the
vectors K, G, and E irrespective of orientation of c. The
problem is that in the case c • G Þ 0 the longitudinal
photovoltaic current results in generation of a strong pe-
riodically alternating electric field even in the absence of
light-field modulation, A(r) 5 const. This field modifies
strongly the linear optical properties of the sample and
leads perhaps to new optical effects.

5. APPLICATIONS TO PARTICULAR
SCATTERING PROCESSES
The technique for description of various parametric pro-
cesses in the single-domain case is described in Ref. 13.
In its main features, this technique is applicable to the
above processes in PPLN. The main difference is in the
appearance of proper correction factors in the expressions
for the grating amplitudes and also in appearance of new
spatial frequencies in the response of the medium to an
exposing periodic light pattern. We illustrate below how
this technique, in combination with the above results for
the photorefractive response, can be applied to particular
scattering processes observed in PPLN.

A. Light Rings and Lines in PPLN Owing to ee \ ee
Processes
In this case (see also Figs. 2 and 3) the photovoltaic field
E33

L defines the charge separation, and the electro-optic
constant r33 defines the rate of light diffraction. The rel-
evant K vectors are perpendicular to G, and they are not
parallel to the z axis. This situation corresponds to case
B of the previous section. If K is the length of the grating
vector, the relevant correction factor for the grating am-
plitude is F(Q) 5 1 2 tanh(Q)/Q, where Q 5 Kx0/2. As
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for the effect of tilt between K and the nz , it is the same
for the single-domain and PPLN cases.

Now we can turn to calculations of the main character-
istic of the parametric amplification, the rate of spatial
exponential growth G, also often called the increment.
We consider separately the characteristic features of G for
the ring and the lines.

1. Angular Dependence of the Increment for the Ring
Using the results of Section 7 of Ref. 13 and parametriz-
ing the position of the point 1s in Fig. 2(a) by the polar
angle wA , which varies from 0 to 180°, we come to the fol-
lowing expression for the increment:

GA 5 upmpn3r33E33
L /2luFA~ wA!,

FA 5 cos2~ wA/2!F@Q sin~ wA/2!#

1 sin2~ wA/2!F@Q cos~ wA/2!#. (14)

Here mp 5 2AIp1Ip2/I0 is the contrast of the pump inter-
ference pattern, Q 5 Kx0/2, and K 5 4p sin up /l is the
pump grating vector. Two correction F factors entering
the expression for FA correspond to the s and p gratings
in Fig. 2(a). To return to the single-domain case, one
should set F 5 1; we have then FA 5 1. At mp 5 1 and
l 5 514 nm we have the numerical estimate GA @cm21#
' FAE33

L @kV/cm#. Since E33
L is often as high as several

tens of kV/cm, the amplification factor for seed intensity,
exp(2GAd) (d . 3 mm is the thickness of the sample), can
be huge.

Figure 10(a) shows the angular dependence of FA for
three different values of the pump angle up . One sees
that near the pump spots, i.e., for wA . 0, p, FA is
strongly decreasing. The curves are symmetric about the

Fig. 10. Dependences (a) FA( wA) and (b) FB( wB) for three dif-
ferent values of the pump angle up (in air) and l 5 514 nm.
point p/2 where GA reaches its maximum. With increas-
ing up the factor FA tends to 1. The described features
are in a good qualitative agreement with experiment [see
Fig. 3(c)].

2. Light Distribution Along the Lines
In this case, like in Ref. 13, we restrict ourselves to the
case of equal intensities of the pump beams. To param-
etrize the positions of the points s1 and s2, we introduce
the inclination angle wB , as shown in Fig. 2(b). As seen
from this diagram, the longitudinal photovoltaic current
can participate only in recording of the s, p, and d grat-
ings. It is clear also that recording of and diffraction
from the p and d gratings suffer from inclinations of the
vectors Kp and Kd to the z axis. As for the s grating,
which is contributed to by the wave pairs, p1, s1 and p2,
s2, the relevant recording and diffraction processes pos-
sess no additional smallness. The above-described fea-
tures result in the following modification of Eq. (42) of
Ref. 13 for the increment:

GB 5 upn3r33E33
L /4luFB ,

FB 5 2F~Q tan wB!

1 sin2 wBF~Q/cos wB!. (15)

The value of Q is the same as in Eq. (14). The first and
second contributions to the factor FB correspond to the s
and p, d gratings, respectively [see Fig. 2(b)]. For
F 5 1 we return to the result known for the single-
domain case. Figure 10(b) shows the dependence
FB( wB) for several values of up . One sees that for small
values of wB , i.e., in the vicinity of the pump spots, FB
(and GB) is very small. This smallness is mostly due to a
small correction factor for the s grating [see Fig. 2(b)].
The contributions from the p and d gratings are also
small here because the corresponding grating vectors are
almost perpendicular to the z axis. The larger up is, the
stronger is the dip near zero. With increasing wB the
curves in Fig. 10(b) monotonously approach the value of 3.
The described behavior of the increment near the pump
spots corresponds qualitatively to the experimental data
for the light-induced line presented in Fig. 3(b). The de-
crease of the line’s intensity far from the pump spots is
explained by a decreasing overlap between the pump and
scattered beams.

B. Anomalous Light Dots
Here we apply the results of Section 4 to evaluate the ef-
ficiencies of the processes responsible for the appearance
of anomalous light dots in PPLN. Qualitatively these
processes were considered in Section 3.

1. Light Dots Owing to Isotropic Diffraction
Interpretation of the 2G process proposed in Section 3 re-
quires calculation of the second side harmonic EK,z

(2) .
From Eq. (11) we obtain

EK,z
~2 !

E33
L 5

mpKx0 tanh~Kx0/2!

K2x0
2 1 4p2

. (16)

The product Kx0 can be estimated from the corresponding
phase-matching condition as ;24.7. This gives uEK,z

(2) u
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. 0.04E33
L mp . Using further the standard equations of

Bragg diffraction, we obtain for the sought intensities of
the waves s1 and s2

~I1s /I1p!1/2 5 ~I2s /I2p!1/2 ' pn3r33duEK,z
~2 ! u/l. (17)

Using proper values of n, r33 , and the above estimate for
uEK,z

(2) u, we can estimate the square roots in Eq. (17) as
;0.1mpdE33

L with E33
L measured in kV/cm. For E33

L

, 30 kV/cm, which is probably the actual case, the inten-
sities I1s,2s are considerably smaller than the total pump
intensity.

A similar phase-matched 2G process can be observed
for o waves. The relevant estimates of the angles are not
much different from those given above. As for the effi-
ciency of this process, it can be estimated from Eq. (17) if
we replace the electro-optic constant r33 by r13 .

Dispersion of the domain sizes can result in a decrease
of the scattering efficiency because the phase matching
can be fulfilled only in a part of the sample. Such a dis-
persion should also result in decreasing angular selectiv-
ity of the process.

Note that 1G processes (G instead of 2G in the phase-
matching conditions) are forbidden within the photovol-
taic model for the symmetric domain structure. Corre-
spondingly, their efficiency has to include an additional
small ratio ED /E33

L .

2. Light Dots Owing to Anisotropic Diffraction
In accordance with interpretation of these dots given in
Section 3 [see also Figs. 4(b) and 4(c)], we have to calcu-
late first the side harmonic EK

(1) induced by the pump
beams. In the absence of an applied field, the only ex-
pected recording mechanism is diffusion of photoexcited
electrons. As we know from Section 4, diffusion gives
just odd-number side harmonics; the strongest of them is
indeed EK

(1) . mpED /p. The diffusion field ED
5 kBKT/e is expected to be much smaller in LiNbO3 :Fe
than E33

L and E31
L . However, the diffusion-mediated side

harmonic does not include the small correction factor
typical of the photovoltaic recording for Kx0 @ 1. The
rate of anisotropic (e → o) diffraction of the pump beams
from the side harmonic is characterized by the electro-
optic constant ur51u. Correspondingly, we have for inten-
sities of the scattered o waves

~I1s
o /I1p

e !1/2 5 ~I2s
o /I2p

e !1/2 ' mpn3r51EDd/l. (18)

For the case shown in Fig. 4(b) we have ED . 2 kV/cm.
This gives a fairly strong efficiency of the relevant pro-
cess. For the case of Fig. 4(c) the diffusion field is ap-
proximately three times smaller, and the corresponding
intensities are expected to be smaller by a factor of
;1021. Dispersion of the domain sizes decreases the ob-
servable dot’s intensities.

6. CONCLUDING REMARKS
We have demonstrated that bulk periodically poled
LiNbO3 crystals admit a rich variety of parametric four-
wave scattering processes. Some of them are known for
single-domain crystals, but many nonlinear processes are
essentially new. We have generalized the results on the
photorefractive response of PPLN and have applied them
to description of a number of particular scattering pro-
cesses. This has allowed us to explain a number of dis-
tinctive features of scattering patterns observed in experi-
ment.

We suppose that investigations of photorefractive
PPLN are in an initial stage. Actually, only one bulk
photorefractive PPLN sample has until now been avail-
able for experiment. Growth of deliberately doped PPLN
crystals of different periods and orientation of spontane-
ous polarization is expected to extend considerably the
range of available and controllable photorefractive prop-
erties.
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APPENDIX A: CALCULATION OF SPACE-
CHARGE FIELD FOR THE PHOTOVOLTAIC
TRANSPORT
Since the problem of calculation of the space-charge field
is a three-dimensional one, it is useful to express Esc
through the scalar electrostatic potential, Esc 5 2¹w.
Then we represent this potential as w(r) 5 wK(x)
3 exp(iK • r) 1 c.c., where wK(x) is a 2x0-periodic func-
tion. Last, from the stationary continuity equation
¹ • j 5 0 we obtain the differential equation for wK :

S d2

dx2 1 2iKx

d

dx
2 K2DwK 5 ip~x !~K • E!, (A1)

where Em 5 bmnlAnAl* /kI0 . In contrast to Ref. 9, we put
no restrictions on orientation of the characteristic photo-
voltaic field E. In particular, this vector can have a non-
zero x component, which means that the photovoltaic cur-
rent is not parallel to the domain walls.

The second-order linear differential equation (A1) has
to be solved within the negative, @2x0 , 0#, and positive,
@0, x0#, intervals. Its general solution has the form

wK
6 5 C1

6exp~q* x ! 1 C2
6 exp~2qx ! 7 i~K • E!/K2,

(A2)

where q 5 K' 1 iKx and K' is the modulus of the projec-
tion of K to the plane perpendicular to G (see also Fig. 1).
Four constants, C1,2

6 , have to be found from proper bound-
ary conditions. Two of them, wK

1(0) 5 wK
2(0) and

wK
1(x0) 5 wK

2(2x0), express continuity of wK at zero and
periodicity. Two remaining conditions are obtained from
the requirement of the continuity of the component jx at
the domain walls. They read

~dwK
1/dx !~0 ! 2 ~dwK

2/dx !~0 ! 5 2Ex ,

~dwK
1/dx !~x0! 2 ~dwK

2/dx !~2x0! 5 2Ex . (A3)

Using Eqs. (A2) and (A3) and the other two boundary con-
ditions, we obtain, after some calculations,



Podivilov et al. Vol. 19, No. 7 /July 2002 /J. Opt. Soc. Am. B 1591
C1
6 5

q~n • E!

2K2 sinh~q* x0!
@1 2 exp~7q* x0!#,

C2
6 5

q* ~n* • E!

2K2 sinh~qx0!
@1 2 exp~6qx0!#, (A4)

where n 5 nx 1 in' and n' 5 K' /K' is the unit vector
perpendicular to the x axis and lying in the G, K plane.

The space-charge field is expressed through wK as

Esc 5 2~iKwK 1 nxdwK /dx !exp~iK • r! 1 c.c. (A5)

Multiplying Esc(r) by p(x) and calculating the coefficients
of the Fourier expansion (8), we obtain Eq. (10).
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