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Second-order optical phase transition in a
semilinear photorefractive oscillator

with two counterpropagating pump waves
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Soft-mode onset of coherent oscillation is revealed in a semilinear cavity with two counterpropagating pump
waves. From the dynamics of the oscillation intensity and the dynamics of the grating decay with the feed-
back applied, critical behavior is detected: Both the characteristic time of oscillation onset and grating decay
time go to infinity exactly at the threshold coupling strength. A conclusion is made about the similarity of this
type of oscillator to the second-order phase transition. © 2002 Optical Society of America
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1. INTRODUCTION
Photorefractive crystals may generate new optical beams
with the frequency of the pump wave if appropriate opti-
cal feedback is ensured by external mirrors or by a special
selection of pump-beam orientations.1–3 Below the
threshold of oscillation, the sample illuminated with the
pump beam exhibits light-induced scattering in a wide
solid angle (beam fanning). This scattering is due to dif-
fraction of the pump wave from the arbitrary oriented
low-amplitude noisy photorefractive gratings that self-
develop in the sample. Above the threshold, a rapid
growth of the amplitude occurs for one of these gratings,
which couples the pump wave to the oscillation wave.
The oscillation wave has a small divergence, and its in-
tensity may be comparable to that of the pump wave. In
this way, the system changes qualitatively: A new,
highly ordered state emerges from a completely disor-
dered state. In other words, the onset of optical oscilla-
tion in photorefractive coherent oscillators is similar to
the structural phase transitions in solid-state physics.
This similarity has been mentioned in several
publications.4–6 In some other publications the typical
features of the phase transitions were revealed in coher-
ent oscillation dynamics, without mentioning this similar-
ity. For example, critical slowing of fluctuations was re-
ported when the threshold was approached from below.7,8

Changes in correlation length of the generated fields in
the threshold vicinity have been a subject of interest.9–11

It should be noted that similarity of the oscillation
threshold in lasers to phase transition is known from the
classical works of Haken.12 For free-running lasers the
gain shows typical characteristics of second-order phase
transition.13,14 As distinct from conventional lasers, the
number of photorefractive coherent oscillators with differ-
ent cavity configurations and considerably different prop-
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erties is quite larger. Some of the oscillators exhibit the
features of the second-order phase transition,5 and the
others show those of the first-order phase transition.6 It
is not clear to which extent one can extend conclusions
formulated for any particular oscillator to all other pos-
sible oscillator geometries. Until now, the detailed stud-
ies have been performed for double phase-conjugate
mirrors,5 for generation of hexagonal patterns,6 and for
ring-loop coherent oscillators.15

In this paper we study the threshold behavior of the
semilinear coherent oscillator with two counterpropagat-
ing pump waves. The oscillator under discussion was
suggested by A. Yariv and D. Pepper16; it was then real-
ized experimentally by R. Hellwarth and J. Feinberg, to
our knowledge, as the very first photorefractive
oscillator.17 The practical interest of this configuration is
related to its possible applications in lasers with the ca-
pability of intracavity distortion correction.1,3,18 The dy-
namics of multimode oscillation well above the threshold
was studied in this oscillator earlier to reveal the transi-
tion to temporal chaos.8

At the beginning, we present the results of calculation
of the steady-state output characteristics for this oscilla-
tor within the approximation of nonlinear mixing of two-
plus-two counterpropagating plane waves. Then the ex-
perimental implementation of this coherent oscillator
with a BaTiO3 crystal is described, and the results are
compared with those calculated. Special attention is de-
voted to oscillation dynamics above the threshold and dy-
namics of photorefractive grating decay below the thresh-
old: Revealed is critical behavior with a characteristic
time going to infinity exactly at the threshold value of
coupling strength. In this way, manifestation of the
Curie–Weiss law is detected, for the first time to our
knowledge, in a coherent optical oscillator.
2002 Optical Society of America
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2. THRESHOLD AND OUTPUT
CHARACTERISTICS OF THE OSCILLATOR
The coherent oscillator under consideration has the geom-
etry depicted in Fig. 1. Two counterpropagating pump
beams, 1 and 2, enter the sample from the opposite faces.
For any signal beam this sample pumped with two waves
acts as a phase-conjugate mirror with the reflectivity
Rpc ,1 therefore it can form an optical cavity with the or-
dinary mirror M. The condition of the self-excitation im-
poses, as for any other optical oscillator, that the intensity
of the oscillation wave should be the same after every
round trip of the cavity, i.e.,

RRpc 5 1, (1)

with R being the reflectivity of the ordinary mirror. The
steady-state phase-conjugate reflectivity can be calcu-
lated in the undepleted pump approximation from the
known solution for backward-wave four-wave mixing in a
photorefractive crystal1:

Rpc 5

sinh2S gl

2 D
cosh2S gl

2
1

ln r

2 D , (2)

where l is the sample thickness, r 5 I2(l)/I1(0) is the
pump-intensity ratio, g is the coupling constant,

g 5 2
2p2reff n3kBT sin u

el2 cos u
, (3)

reff is the effective electro-optic coefficient, n is the refrac-
tive index, kB is the Boltzmann constant, T is the abso-
lute temperature, e is the electron charge, l is the wave-
length, and u is the half-angle in the air between the
pump wave and the oscillation wave.

Oscillation should occur if phase-conjugate reflectivity
overpasses Rpc > 1/R. The threshold coupling strength
(gl)th necessary to reach self-oscillation is deduced from
Eq. (2). For the optimized pump-intensity ratio, ln r
5 gl, we get

~gl !th 5 2 lnS 1 1 A1 1 R

AR
D . (4)

With a highly reflecting cavity mirror (R 5 1) the thresh-
old coupling strength is (gl)th . 1.76 for the pump ratio
r 5 0.17.

Linear-stability analysis predicts finite threshold cou-
pling strength but does not indicate the type of
bifurcation,19 either supercritical or subcritical. To de-
fine the behavior above the threshold, we use the exact so-
lution of the four-wave mixing problem, given by Cronin-
Golomb et al.1 The following relationships are deduced
from their solutions.1 They allow calculation of I3(0) as
a function of gl, and I1(0) and I2(l) are given by the
boundary conditions,

Fig. 1. Geometry of the oscillator considered.

Fig. 2. Calculated coupling-strength dependence of the
oscillation-wave output intensity for geometries (a) with two in-
dependent counterpropagating waves and (b) for the transmitted
pump wave retroreflected into the sample.
gl 5 S I0

AD2 1 4ucu2D lnF ucu2 2 I1~0 !I2~l ! 1 I3~0 !I2~l ! 2 I3~0 !AD2 1 4ucu2

ucu2 2 I1~0 !I2~l ! 1 I3~0 !I2~l ! 1 I3~0 !AD2 1 u4uc2G , (5)

ucu2 5 @AI1~0 !I2~l ! 2 RI1~0 !I3~0 ! 6 I3~0 !AR#2, (6)

D 5 I2~l ! 2 I1~0 ! 2 RI3~0 !, (7)

I0 5 I2~l ! 1 I1~0 ! 1 RI3~0 !. (8)
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When deriving these equations, the coupling strength was
assumed to be real (i.e., p/2 phase shift of the photorefrac-
tive grating with respect to fringes, which means a
diffusion-driven charge transport and interaction strictly
degenerate in frequency). As a consequence, phase dif-
ference of four interacting waves is considered to be inde-
pendent of the propagation coordinate.

Figure 2(a) represents the calculated dependence of
oscillation-wave intensity I3(0) normalized to I0 [see Eq.
(8)] as a function of coupling strength gl. The beam-
intensity ratio is taken to be r . 0.17, which is close to
the experimental value, as described below. The soft-
mode onset of oscillation is obvious, with the gradual in-
crease of the oscillation-wave intensity from zero to satu-
rated value for large coupling strength. The branch of
the solution with the smallest threshold is single valued.
The trivial solution with zero intensity for arbitrary cou-
pling strength also exists. A double-valued solution
shown by dots in Fig. 2(a) appears above a given coupling-
strength value. This last branch is similar to that known
for a semilinear oscillator with only one pump wave.1

The lowest threshold coupling strength coincides, of
course, with that calculated in the undepleted pump ap-
proximation.

One can see from Fig. 2 that in the vicinity of the
threshold the intensity of the oscillation wave increases
linearly with overthreshold coupling strength, Iosc
5 I3(0) } @gl 2 (gl)th#. Oscillation field amplitude
E3(0) is therefore increasing as E3(0) } @gl 2 (gl)th#1/2,
i.e., the derivative dE3(0)/d(gl) becomes infinite at
threshold. The similarity to a conventional free-running
laser is evident: In lasers the output intensity Iosc is lin-
early increasing with over-threshold pump Iosc } (P
2 Pth), whereas oscillation field amplitude grows as (P
2 Pth)1/2.

Thus we conclude that oscillation starts by supercriti-
cal bifurcation19 of the order parameter that is the electric
field of the oscillation wave for this optical phase transi-
tion. Consequently, the photorefractive oscillator consid-
ered manifests behavior typical for the second-order
phase transition. Below, we present experimental confir-
mation of this behavior and give additional arguments in
favor of second-order optical phase transition based on a
study of the temporal dynamics.

It should be noted that the solution of Eqs. (5)–(8) can
be extended for the particular practically useful geometry
where the pump I1(0) is the wave I2(0) reflected by the
beam splitter BS (see Fig. 3). Only one input wave
I2(l) 5 1 is considered in this case, and the intensity of
the second pump is given by an additional boundary con-
dition:

I1~0 ! 5 @I2~l ! 2 I3~0 !#Rp , (9)

where Rp is the reflectivity of end beam splitter BS. Re-
flectivity Rp should account also for losses that are due to
the Fresnel reflection from the sample face and for the
sample absorption.

Figure 2(b) represents coupling-strength dependence of
oscillation intensity for Rp 5 0.17. Qualitatively, this
dependence remains similar to that shown in Fig. 2(a);
the threshold value of coupling strength is exactly the
same as in the case of two independent pump waves be-
cause the pump ratio is not affected by diffraction from
the grating at the threshold. The obvious advantage of a
geometry with a retroreflected pump lies in better pump
utilization.

The absorptionless case is considered in this section for
the sake of simplicity. It is known that amplified phase-
conjugate reflectivity (and therefore the coherent mirror-
less oscillation) can be achieved also in nonlinear media
with linear absorption.20 Qualitatively, the output char-
acteristics of the oscillator with linear-absorption losses
remain similar to those shown in Fig. 2, but the threshold
coupling strength becomes larger.

One more important assumption is a plane-wave ap-
proximation with a zero seed in the oscillation-wave di-
rection. We used this approximation to explain qualita-
tively the underlying physical effect, profiting from the
analytical solution for a simple model. For a more rigor-
ous description of real coherent oscillators one should use
the approach developed in Ref. 21 and numerical calcula-
tions with a seeding beam of finite spatial content.

3. EXPERIMENT
Schematic representation of the experimental arrange-
ment is shown in Fig. 3. The beam of an Ar1 laser
(TEM00 , 0.514 mm) is used to pump a 3.6-mm-thick
BaTiO3 sample (photorefractive crystal, PRC). The
transmitted pump beam is retroreflected by beam splitter
BS to generate a counterpropagating pump wave. An-
other mirror M forms a semilinear cavity with the
sample. The supplementary oblique light beam is used
to align the cavity; it serves also as a seeding beam to
record the grating below the oscillation threshold. It is
polarized parallel to the sample optical axis, in the same
way as pump beams. One more light beam, orthogonally
polarized, is used to control the coupling strength, with
its intensity varied. Partially transparent mirror M (R
5 0.96) extracts part of the oscillation intensity mea-
sured with the detector Det placed behind this mirror.

With this arrangement, self-oscillation occurs when the
seeding beam is stopped by shutter Sh and when the in-
tensity of erasing beam IE is below a certain threshold
value. Typical temporal development of the oscillation
intensity is shown in Fig. 4. Qualitatively, it resembles

Fig. 3. Schematic representation of experimental arrangement:
PRC is the photorefractive crystal sample with the ferroelectric
axis in the plane of drawing, M is the mirror, BS is the beam
splitter, Det is the photodetector, and Sh is the shutter.
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the coupling-strength dependence of the output intensity:
For a comparatively long time the intensity of the oscilla-
tion beam is too weak to be seen in the shown plot, and
then, after a certain delay time Dtos , oscillation intensity
grows nonlinearly and reaches the saturation level.
Time delay Dtos can be considered, in fact, as a temporal
threshold of oscillation. Below Dtos the light scattered in
the direction of the future oscillation wave is gradually
amplified, but it remains much smaller than the satura-
tion value of oscillation intensity. Characteristic time
Dtos clearly divides the whole dynamics into two parts,
one with well developed oscillation and the other resem-
bling superluminescence of the amplifying media in con-
ventional lasers.

Below the oscillation threshold, the light scattered in
the direction of the oscillator optical axis is also amplified,
and the amplification process can be characterized by a
relevant time constant. With the feedback present, this
time constant can vary with the coupling strength. An
increase of the characteristic time of photorefractive scat-
tering in the vicinity of the oscillation threshold was re-
ported before in Ref. 5 for the double phase-conjugate mir-
ror.

In our experiment, a characteristic time below the
threshold is extracted in a different way, inspired by early
publications on forced Rayleigh scattering.22–24 In this
technique the relaxation of an artificially ‘‘heated’’ se-
lected spatial mode is studied instead of the relaxation of
spontaneous gratinglike fluctuation.

First, the photorefractive grating is recorded by an aux-
iliary coherent light beam, sent to the sample exactly in
the direction of the cavity optical axis and pump beam.
Then the seeding beam is blocked with a shutter, and the
intensity of the wave diffracted from the photorefractive
grating is measured with the photodetector Det (see Fig.
3). Below the threshold, the recorded grating is not self-
supported as happens above the threshold; therefore it
decays, and the intensity of the diffracted wave drops.
This is the measurement of the decay that provides infor-
mation on the characteristic time below the threshold.

A characteristic decay curve is shown in Fig. 5(a). As
distinct from the decay curves recorded with no feedback
and pump wave 1 blocked [Fig. 5(b)], the temporal behav-

Fig. 4. Temporal evolution of oscillation intensity. Curves 1, 2,
3, and 4 correspond to the decreasing coupling strength. The
dashed curve in curve 2 shows how oscillation delay time Dtos is
evaluated.
ior is not exponential. The above makes it more compli-
cated to evaluate the appropriate time constant: If taken
at the beginning of erasure, it can be a few times smaller
than at the tail of the erasure. We noted that the tails of
the decay curves were less reproducible as compared with
the initial part of the decay; quite often, even oscillatory
behavior was observed for the remaining intensity of the
weak diffracted beam. For this reason the initial linear
slope of the decay curve is selected to extract relaxation
time, i.e., the time when the signal drops to (1/e) of its ini-
tial intensity. Substantial slowing of the relaxation pro-
cess is clearly seen by comparing Figs. 5(a) and 5(b).

Further, we start measurements of oscillation intensity
and characteristic delay time as a function of the coupling
strength. As a rule, the coupling strength in photorefrac-
tive crystals is independent of pump intensity. To control
the coupling strength, an additional light beam is sent to
the sample, which partially erases the recorded grating to
the level that depends on the intensity ratio of recording
beams I0 and erasing beam IE . The erasing beam is or-
dinarily polarized to avoid recording of additional photo-
refractive gratings by a supplementary extraordinarily
polarized beam. The coupling strength of the crystal is
therefore

gl 5
~gl !0

1 1 ~IE /I0!
, (10)

where (gl)0 is the initial coupling strength for IE 5 0.
The alternative technique to control coupling strength

consists of changing the polarization of the incident pump
beam.5 The ordinary-polarization component appearing

Fig. 5. Temporal dependence of grating decay below oscillation
threshold. (a) Grating decay with counterpropagating pump-
wave present; (b) decay with the beam splitter BS blocked.
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in the pump wave erases in part the grating, thus reduc-
ing gl. This technique is simpler and easier to imple-
ment, but it cannot be applied in the considered case:
With two counterpropagating waves of mixed polariza-
tion, another type of mirrorless coherent oscillation
develops,25,26 and this affects the measurements consider-
ably. That is why the technique with an additional
Bragg-mismatched erasing beam is chosen to control the
coupling strength.

Figure 6(a) shows the coupling-strength dependence of
oscillation intensity. It is easily seen that oscillation in-
tensity increases gradually above the threshold value of
coupling strength gl > (gl)th . No discontinuity is ob-
served exactly at the threshold. This points to the soft
mode of oscillation onset from the noise level. Qualita-

Fig. 6. Coupling-strength dependence of (a) oscillation intensity,
(b) characteristic relaxation time, and (c) inverse characteristic
time.
tively, this dependence corresponds to the increase of os-
cillation intensity above the threshold shown in Fig. 2.

Figure 6(b) gives the plot of characteristic time below
and above the threshold measured as explained above,
and Fig. 6(c) shows the same dependence replotted for re-
ciprocal relaxation time. The experimental points can be
fitted with a linear dependence

1

t
} ugl 2 ~ g!thu, (11)

separately for the downward and upward slopes. These
two fits give, within a few percent, the same value for
(gl)th . 0.89(gl)0 that agrees well with that measured
from the coupling-strength dependence of the oscillation
intensity [Fig. 6(a)].

Dependences similar to the one shown in Figs. 6(a) and
6(b) were measured for different initial values of coupling
strength (gl)0 controlled by the angle between the oscil-
lator cavity-axis and pump-wave directions. The linear
dependence given by Eq. (11) is always observed (see, e.g.,
our preliminary data in Ref. 27). Besides, for larger
(gl)0 we were able to follow gradual variation of oscilla-
tion intensity near the threshold within four orders of
magnitude.

Note that the slopes of linear dependences in Fig. 6(b)
differ several times from each other. It is not, however,
possible to compare these derivatives; no other conclusion
can be made from these dependences apart from that t 21

is a linear function of gl 2 (gl)th and vanishes to zero ex-
actly at threshold coupling strength gl 5 (gl)th for both
branches, below and above the threshold. The absolute
values of t [and the derivatives dt/d(gl)] below and
above the threshold cannot be compared because they are
measured in essentially different ways; one is character-
istic (nearly exponential) decay time of the diffraction ef-
ficiency, and the other one is effective (essentially nonex-
ponential) buildup time. It is known also that oscillation
buildup time depends strongly on the initial level of the
seeding radiation,21,28 whereas the decay time of the pre-
recorded grating is supposed to be independent of the ini-
tial diffraction efficiency of this grating.

4. DISCUSSION
Our calculations and experimental data confirm the simi-
larity of onset of coherent oscillation in a semilinear pho-
torefractive oscillator and second-order phase transition.
The soft mode of oscillation onset is observed, with a
gradual increase of oscillation intensity from the scatter-
ing noise up to saturation. The latter corresponds to a
continuous increase of the order parameter (normalized
amplitude of the oscillation-wave electric field) from zero
level to a certain saturation level, smaller or equal to one
for order–disorder phase transitions. Note also that the
derivative of the order parameter is infinite exactly at the
threshold, as it should be for a second-order transition.

Critical behavior is detected in the vicinity of the
threshold, confirming the results of Ref. 8. Reciprocal
relaxation time is shown to be proportional to
ugl 2 (gl)thu. Such dependence is typical for the second-
order phase transitions, for which different parameters
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increase with temperature as uT 2 Tcuz, with z standing
for the critical exponent and Tc being a transition tem-
perature (Curie temperature). For example, for ferro-
magnetic phase transition the temperature dependence of
magnetic susceptibility x is described by the Curie–Weiss
law,29 i.e., x is proportional to uT 2 T0u21, with T0 stand-
ing for Curie–Weiss temperature. Curie–Weiss law
holds also for some ferroelectric crystals, for temperature
dependence of dielectric constant e, and for piezoelectric
and elasto-optic properties above the transition
temperature.30 Thus the observed coupling-strength de-
pendence of t 21 can be considered as an optical analogy of
the Curie–Weiss law.

It should be emphasized that the Curie–Weiss tem-
perature coincides with the transition temperature for
the second-order phase transitions but it does not for the
first-order phase transitions.30 Thus the coincidence of
the coupling-strength value at which the reciprocal char-
acteristic times diverge with the threshold coupling
strength also points to the second-order phase transition.

In the vicinity of the threshold, the critical exponent
approaches 1, both for temporal development of scattering
below the transition and for development of oscillation
above the transition. Critical slowing below the thresh-
old of mirrorless oscillation has been reported for photo-
refractive Bi12SiO20 crystals7 and BaTiO3 crystals.8 The
critical exponent equal to one has been measured for
Bi12SiO20 . For the temporal dynamics of some other op-
tical processes such as switching in optically bistable
étalons,31,32 the critical exponent can be 1/2, i.e., signifi-
cantly different from 1.

Considering the Landau theory of second-order phase
transitions, one could expect asymmetry in slopes of lin-
ear dependences t0

21 5 t 21@gl 2 (gl)th# below and
above the transition point to occur; in the ideal case of no
fluctuations, the universal ratio of the slopes equal to 2
should hold. We do observe the difference in prefactors of
linear dependences of the reciprocal relaxation times on
coupling strength, as seen in Fig. 6(b) (as the authors of
Ref. 5 have observed for the double phase-conjugate mir-
ror), but the unknown seed level and different techniques
used for evaluation of t above and below the threshold
prevent us for the moment from a correct comparison
with theoretical predictions.

The arguments given above prove, in our opinion, that
the threshold of oscillation in a semilinear cavity with two
counterpropagating waves can be considered as a second-
order phase transition within the investigated range of
parameters. There is still a question of whether this
similarity is valid for any semilinear oscillator with two
pump waves or not. The background of this question is
related to the known property of a semilinear oscillator
with only one pump wave: This oscillator exhibits sub-
critical bifurcation and is therefore close to a first-order
phase transition.1,33

Additional computer simulations of oscillation inten-
sity versus coupling strength (as shown in Fig. 2) revealed
a change of bifurcation type at r . 0.02. For r 5 0.01
the width of the expected hysteresis loop in the coupling
strength (the difference in the threshold coupling
strength for increasing coupling and decreasing coupling,
normalized by the threshold coupling strength itself) be-
comes approximately 0.1. This value is large enough to
be measured experimentally, but the absolute value of
coupling strength (gl)th . 2.47 is too high to be reached
with the BaTiO3 sample available.

5. CONCLUSIONS
The conclusion about the second-order optical phase tran-
sition in a semilinear coherent photorefractive oscillator
is based on the following observations: (1) a soft mode of
oscillation onset (a gradual increase of the oscillation field
from zero to saturated value), (2) an infinite derivative
dEosc /d(gl) at the threshold coupling strength, (3) detec-
tion of the inverse power law for grating relaxation and
buildup, with a critical exponent equal to 1 (analogous to
the Curie–Weiss law), and (4) the coincidence of Curie–
Weiss coupling strength and threshold coupling strength.
Thus the formal analogy of the oscillation threshold in the
oscillator considered to second-order phase transition is
quite evident, but the question still remains of how far
this analogy may go. The open fundamental questions
are, e.g., in which way free energy for optical phase tran-
sition can be introduced5 and interpreted, and what is an
equivalent of the susceptibility for optical phase transi-
tion. The answers for these and other related questions
will be found, we hope, in future work on this subject.
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