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Abstract

We investigate the physics of a novel nonlinear system, feedback controlled photorefractive beam coupling. Inertia
of the electronic feedback is found to be an element crucial for permanent operation of this system. Theoretically and
experimentally we have found a wealth of periodic and quasi-periodic regimes for observable characteristics of the
feedback controlled wave coupling. A good qualitative agreement between theory and experiment is obtained for
LiNDbO; crystals. © 2001 Elsevier Science B.V. All rights reserved.
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Keywords: Feedback; Attractors; Photorefractive; Diffractivity; Grating; Stabilization

1. Introduction

Several exciting research areas such as spatial
solitons [1-3], pattern formation [4-6], subhar-
monic generation [7-9], and feedback controlled
beam coupling [10-13], have arisen in recent years
in the field of photorefractive nonlinear pheno-
mena. The last topic stands separately in this list in
the sense that it has, to our knowledge, no direct
analogues among the nonlinear wave phenomena.
This is greatly due to the big inertia of the photo-
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refractive nonlinearity which allows to send a con-
trolling electronic signal from output to input with
no big delay and to modify strongly the charac-
teristics of wave coupling.

In spite of the fact that feedback controlled
dynamic systems are under extensive study for at
least 10 years [14,15], the history of the feedback
controlled coupling of optical waves is rather
short. Initially, it was found empirically [10-12]
that a certain electronic feedback loop between
the output and input signal beam, controlling the
input phase ¢, (see Fig. 1) produces dramatical
changes in the dynamics of two-wave coupling as
well as in the diffractive properties of the spatial
index grating. It has been shown that application
of the feedback to nonlinear media with the local
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Fig. 1. Schematic of experiment; PD is a photodiode, LAI a
lock-in amplifier and integrator, PM a piezo-mirror.

response (unshifted refractive index grating) leads,
apart from stabilization of the interference pattern
[16], to 100% diffraction efficiency of the recorded
grating, to an efficient steady-state intensity cou-
pling of the recording beams, and to suppression
of light-induced scattering. The same technique
can produce a controllable phase shift between
zero order diffracted wave and first order diffracted
wave propagating in the same direction [17].

The first formulation of the feedback problem
in the terms of equations for beam coupling
and boundary conditions was proposed in 1997
[13]. Despite its apparent simplicity, the problem
proved to be resistant to the application of ana-
Iytical tools. This is caused by the peculiarity of the
situation, where the temporal development of
a distributed nonlinear system is governed by
strongly nonlinear feedback conditions coupling
wave amplitudes and phases on opposite crystal
faces.

Numerical simulations of the found equations
have shown [13] that within a short time the sys-
tem evolves to a state where the grating is fully
diffractive or transparent and the formulated
feedback conditions (that we call the ideal feed-
back conditions) fail. Thus the formulated mathe-
matical model remains correct only within a
restricted time interval. It is not capable of de-
scribing the whole evolution of the nonlinear sys-
tem that operates permanently in experiment.

We have overcome the inherent defect of the
previous studies taking into account inertia of the
feedback loop. This has allowed to gain insight
into the exciting physics of a novel nonlinear sys-
tem. The purpose of this paper is to present the
essence of the results obtained for the first time.

Instead of steady states familiar for photorefrac-
tive schemes, our theoretical and experimental
studies have revealed a wealth of periodic and
quasi-periodic regimes for the feedback controlled
two-wave coupling as well as a variety of transi-
tions between them. The found regimes include
doubling and tripling of the period, that corre-
spond to different attractors in the configuration
space, as well as various critical phenomena.

2. Basic relations

Let the reference (R) and signal (S) beams be
incident onto the crystal (see Fig. 1). These beams
build a dynamic refractive index grating and dif-
fract from this grating. The set of equations for
two-beam coupling we present in the general di-
mensionless form [13],

0:R = iES, (1)
0:8 = iE*R, 2)
(0, + 1)E = ¢“RS". (3)

Here & and 7 are coordinate and time, R and S the
complex amplitudes of the reference and signal
beams, E is the grating amplitude, and 6 the
characteristic phase. The coordinate ¢ varies from
0to 60.

The set (1)-(3) is valid for many particular
models of the photorefractive nonlinearity. Speci-
fication of the dimensionless parameters for the
simplest models can be found in Ref. [18]. Egs. (1)
and (2) describe mutual diffraction of R- and S-
beams from the grating. The total light intensity
remains constant during propagation, |R|*+
|S |2 = 1. Eq. (3) describes buildup of the grating by
the light interference pattern. The phase 6 char-
acterizes the type of the photorefractive response
and ranges from 0 to 2n. For the local photore-
fractive response one can set 6 = 0.

Most experiments on the subject have been
performed with LiNbO; crystals where the index
grating buildup is due to the photovoltaic charge
transport and the linear electro-optic effect [18,19].
We have here 0] < 1, £ = gx, and 7 ~ /14, where
x and ¢ are the real coordinate and time, ¢4 is the
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dielectric relaxation time, g ~ nn’rE,, /., n the re-
fractive index, A the wavelength, r the relevant
electro-optic coefficient, and E,, the photovoltaic
field. Typically, 4 ranges from 10' to 10° s. If the
light polarization is extraordinary, we have a nu-
merical estimate, g (cm™!) ~ 2E,, (kV/cm), for
A~ 530 nm. The photovoltaic field in LiNbO;
ranges from a few tens to ~100 of kV/cm. Hence
the thickness xp~1 mm corresponds to
Co=gxo > L.

To formulate the feedback equations, we rep-
resent R and S as sums of the diffracted and
transmitted components,

R = RORr + SORS7 (4)
S = RyS; + SoSs-
The fundamental amplitudes R .(¢), S:(¢) satisfy
Egs. (1) and (2) with boundary conditions R,.(0) =
1, S:(0) = 0. They describe testing of the spatial
grating by a single beam of unit amplitude incident
in R-direction (see Fig. 1). Analogously, R (&),
Ss(&) is the solution of Egs. (1) and (2) with
boundary conditions R (0) = 0, S;(0) = 1, which
correspond to testing of the grating by a unit S-
beam. One can check further that S;=R~ and
R.= —S:. The quantity n = |S;|> = 1 — |S,|” is the
diffraction efficiency of the grating. The depen-
dences of 5, S;, and S; on 7 are governed by Eq.
(3).

Next, we introduce the phase difference @, be-
tween the diffracted and transmitted components
of the S-beam at the output. According to Eq. (4)

P, = ¢, + arg[S:(&)] — ¢, — arg[S:(&); (5)

where ¢, = arg(R,) and ¢, = arg(S,) are the input
phases of the R- and S-beams. Then the ideal
feedback conditions read @, = +x/2. For nonzero
Ss(&) and S,(&), ie. for n(1—1n) #0, we can
fulfill them by adjusting ¢, and keeping ¢, =
const. If S;(&) or S:(&) is zero, the conditions
&, = £1/2 make no sense. This circumstance is
fatal for the ideal feedbacks that lead inevitably to
states with #(1 —#») =0 [13].

In experiment, the phase adjustment is accom-
plished by a modulation technique. An auxiliary
(small and fast) oscillating component, d¢, =
V4 sin wt, is introduced into ¢,. It does not affect

the grating buildup and serves for initiation of the
feedback loop. The auxiliary phase modulation
results in replacement of Sy by Sy exp(iyy, sin wt)
in Eq. (4) so that the output intensity |S(&,1)|*
acquires HF components oscillating as sinwt
and cos2wrt. The amplitude of the second har-
monic, which serves as an error signal in an
electronic feedback loop, is I, = 0.5|RoSo|(n(1—
11))1/ zlpﬁ cos @,. The error signal produces a mirror
displacement o ¢,. The essence of the feedback
controlled motion of the mirror is that its velocity
is proportional to I,,. This leads to the inertial
feedback equation for the time derivative ¢,

. 1
Py = :F‘C_f|ROSO| \% 1/](1 - 7’[) Cos ¢S7 (6)

where 1y is the response time of the feedback loop.
This time incorporates the amplification and inte-
gration of the error signal. It has to be very small,
1 < 1, to make the feedback operative. Inertia
becomes important when #(1 —#) approaches
zero. The phase ¢, loses here the ability to follow
the feedback signal and the phase @, deflects
strongly from its ideal value. As for the initial
stage, where n(1 — ) is far from zero, the differ-
ence between the inertial and ideal feedbacks is
very small.

3. Numerical simulations

As our simulations show, the inertial feedback
operates permanently and exhibits a wealth of
different regimes. Below we present the most
prominent features of the nonlinear behaviour for
different values of the input beam ratio =
1So]>/|Ro|* and the value 6 = 6.6 x 10~2 represen-
tative for LINbO;.

Fig. 2 shows the evolution of ¢, 1, and cos &
for 1, = 1073, &, = 6.6, and = 4. After an initial
stage, 0 < 7 < 1, the input phase ¢, shows a reg-
ular but not periodic behaviour. It is characterized
by almost periodic upward steps of ~340°. The
time distance between them is ~0.35. The steps
produce a considerable positive average slope of
¢4(1), i.e., a frequency detuning Q> 1 for the
input S-beam. The step-like phase growth is ac-
companied by apparently periodic (with a fine
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Fig. 2. Dependences ¢,(1), n(t), and &4(z) for ff = 4.

structure) oscillations of # in the vicinity of 1. The
oscillation period (~0.35) equals the distance be-
tween the phase steps. The phase @, remains near
7/2 only during the initial stage; further develop-
ment is characterized by strong oscillations of
cos @;. Increase of T makes the steps of ¢, and the
oscillations of # and cos & strictly periodic.

The closed line in Fig. 3a exhibits the relevant
trajectory Ss(&p, 1) in the complex plane for 6 <
7< 8. About seven revolutions occur during this
time. Thus the point RS;(&y, 1), ISs(&y, T) moves
along a limit cycle (an attractor). This motion is
periodic in time, its period, 7 ~ 0.35, is the same as
that of 5(7) and cos &,(t). The motion of S, (&, 1),
that corresponds to the attractor, is a motion with
small constant angular velocity @, along the unit
circle |S;|~ 1 superimposed by fast T-periodic
oscillations.

How to combine the periodic behaviour of S;
and n with nonperiodic behaviour of S, and ¢,
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Fig. 3. Attractors for & = 6.6, 7y = 1073, and three values of .

taking into account that all these variables enter
Eq. (6)? To clarify this, we set ¢, = ¢ + Q1,
argS,] = arg[s,]’ — Q,1, where ¢P and arg[s,|” are
T-periodic components. Then the only possibility
to satisfy Eq. (6) is to demand that

(Q+ Q)T =2zN, withN=0,£1,£2... (7)
The number N depends on the attractor topology
and may be called topological charge. For Fig. 3a
we have N = 1.

A surprising feature of the described behaviour
is the relatively long oscillation period, 7 ~
0.35 > ;. To investigate the dependence T (t¢), we
have performed a numerical experiment: Starting
from t = 12 (when the periodic state for =4 is
achieved) we decreased 7; from 1073 to 4 x 1073
during t = 120, causing adiabatic changes of the
periodic solution. During this procedure, the at-
tractor preserved a bagel-like form whereas the
period T and the average (1 — n), decreased. The
following scaling relations were found: 7 ~
7(te/|RoSo)"%, (1 — i)y ~ 3.37¢/|SoRo|. They show
that the fast oscillations of ¢, and @, remain
strong even when 7y — 0.

Next we set = 6. Fig. 3b shows the corre-
sponding attractor. It consists of two loops and
has a smaller transverse size. The zero point is at
the central part of the orbit. An adiabatic decrease
of 17 results in a gradual decrease of the attractor
size without remarkable changes of the form. The
topological charge is 0 here. Fig. 4a gives the de-
pendence ¢ () for the periodic state. The average
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Fig. 4. Dependence ¢,(t) for (a) f =6 and (b) f = 1.
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slope is negative, Q ~ —0.924, and much smaller
than for f§ =4, the fine structure is not step-like
but oscillatory, and 7' ~ 0.33. Note that the values
of ¢ (t) in Fig. 4 correspond to ¢ (0) = 0. The
choice of the initial phase does not influence in-
deed the physical characteristics of the system.

Now we consider the case f = 1. The temporal
development ends up here by attraction to a new
limit cycle, Fig. 3c. The full period T corresponds
here to three revolutions around zero. This leads
to a period tripling for ¢ (z) and (). The at-
tractor size is larger than earlier, which gives larger
oscillations of # in the vicinity of 1. The topolog-
ical charge N = 3. Fig. 4b shows the dependence
¢,(7). Here T ~ 0.97, which is ~3 times larger than
earlier, and Q ~ 19.3. The phase dependence ex-
hibits three substeps within a period.

Further variations of f give no qualitatively
new attractors for &, = 6.6. The transitions be-
tween the periodic solutions with changing f are,
however, far from trivial. Fig. 5 shows what hap-
pens with the bagel-like attractor when we slowly
increase f§ from 6.6 to 8. Initially, gradual changes
of the bagel occur. With § approaching ~6.8 these
changes accelerate and within interval 6.8 < f <
7.3 (which took 7~ 15) the trajectory becomes
apparently irregular. Then, for f~7.4 a new
attractor with N = 0 is formed. The above transi-
tion is very pronounced for the time dependence
¢,(7). The change of the average slope € is very
sharp despite of an irregular behaviour of the
corresponding trajectories.

The transition between the three- and one-loop
attractors (see Fig. 3c and a) occurs differently.

-0.15 E
2010 -0.05 0.00 0.05 0.10 0.5 0.20 0.25 0.30

Fig. 5. Trajectory Ss(&, ) for f(7) increasing from 6.6 to 8.

With f increasing from 1 to 2 a gradual conver-
gence of different loops takes place. It is not ac-
companied by the change of the average slope €
but means that the topological charge N =3
transforms into N = 1.

In the region of large beam ratios, § 2 20, when
we are near the threshold of auto-oscillations, a
slowing down of the transient processes, typical of
critical phenomena [20], takes place. For § > 22,
auto-oscillations are absent and 1 — 5 is far from 1.
Increasing &, expands the region of f yielding os-
cillatory regimes. An adiabatic increase of &, from
6.6 to 15 has not shown any transition to chaos
typical of many feedback controlled dynamic sys-
tems [14,15].

4. Experiment

In our feedback experiments we used a 0.35 pm
thick LiNbOj;:Fe crystal. A cw single-frequency
frequency-doubled YAG:Nd** laser is used as the
light source. Two extraordinary waves impinge
upon the sample in the plane containing the crystal
c-axis. The total light intensity at the sample input
face is ~45 mW/cm? in all experiments. A free-
space angle between the recording beams 20, ~
12° is chosen to ensure a relatively weak diffusion
field (Ep ~ 650 V/cm for grating spacing A ~
2.5 um at 532 nm, while the photovoltaic field
is estimated as E,, =~ 100 kV/cm). The recorded
volume grating is thick according to the Klein
criterium [21]. Correspondingly, the higher dif-
fraction orders were negligibly small. For the ex-
traordinary polarized beams the dimensionless
thickness &, = 8.

The design of our setup is similar to that de-
scribed in Ref. [10-16]. The feedback is imple-
mented with the help of a lock-in amplifier,
summator/integrator, and piezodrive with maxi-
mum displacement of 15 pum. The piezo-mounted
mirror placed in one of two interferometer lags
introduces a small amplitude (0.1 rad) fast (5007%
rad/s) sinusoidal phase modulation of the signal
wave. This frequency is large enough to use the
self-stabilization technique with LiNbO; at the
specified intensity. The signal beam intensity is
measured by a photodetector connected to the
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input of the lock-in amplifier. This lock-in ampli-
fier is tuned to measure the second harmonic term
of the transmitted signal beam intensity /. Any
nonzero error signal from the lock-in amplifier is
accumulated in the analogue integrator feeding the
piezoelectric-supported mirror. This results in a
mirror displacement which changes the phase of
the input signal beam until the error signal turns
to zero. In such a way, I, is minimized in the
negative feedback loop to ensure the self-stabilized
recording. The output of the integrator is auto-
matically reset to zero when driving voltage of the
piezoelectric-supported mirror reaches a certain
limiting value defined by the piezo-driver specifi-
cations.

To verify the fact that the described electronic
feedback meets the inertial condition (6), we have
measured the transmission factor of the integrator
K,y (output voltage/input voltage) as a function of
the frequency @' of an input harmonic signal. It
was found that K, o (') within a wide fre-
quency range o <10% s7!~ 10%;", where 74 ~
180 s is the crystal response time at the specified
intensity. Therefore the Fourier component of
the mirror displacement x, o ()" and the
Fourier component of the mirror velocity, —iw'x,y,
does not depend on the signal frequency. This
proves the validity of the linear relation (6) be-
tween ¢ and the error signal under the condition
that the characteristic time of the intensity changes
exceeds 1073 s. This condition is fulfilled in ex-
periment with a great safety margin. The value of
the dimensionless response time of our feedback
loop can be estimated as 7 ~ 1074

Now we turn to the description of the experi-
mental results. For sufficiently large and small
beam ratios, = 50 and < 0.03, we did not ob-
serve any auto-oscillations. The diffraction effi-
ciency remained here noticeably < 1.

Within the interval 0.03 < < 50 we have ob-
served a variety of well recognizable oscillatory
regimes with permanently working feedback and
diffraction efficiency very close to 1. We have de-
tected all the regimes presented above. Fig. 6a
shows a typical fragment of the feedback con-
trolled dependence ¢,(¢) for f = 10 in the real time
scale. A large average slope and quasi-periodic
phase steps are clearly seen in this plot. These el-
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Fig. 6. Fragments of experimental dependences ¢ (¢) for
B =10, 6.6, and 1.

ements are similar to those presented in Fig. 2a.
The time distance between the subsequent steps
~0.2t3 ~ 36 s. Fig. 6b corresponds to ff = 6.6. It
shows a considerably smaller slope and clearly
pronounced quasi-periodic phase oscillations. The
period of the oscillations is estimated here as
~0.3¢y. These features are similar to the presented
in Fig. 4a. Fig. 6¢c shows a representative depen-
dence ¢(¢) for § = 1, it corresponds to the period
tripling, compare with Fig. 3a. The full period,
~(0.82t4, is approximately 3 times larger than it is
in the previous case.

The dependences of Fig. 6 illustrate experi-
mental observation of the attractors. We cannot
expect indeed an exact coincidence between the
experiment and numerical simulations because of
mechanical perturbations, air convection, and
other factors affecting the experimental results and
also because of some uncertainity in the values of
the relevant material parameters. Nevertheless a
good quantitative agreement is evident.

5. Summary

The results presented give an insight into the
physics of a novel strongly nonlinear optical sys-
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tem, the feedback controlled photorefractive beam
coupling. We have formulated the governing
equations for this nonlinear system that incorpo-
rate the essence of the feedback operation. For
typical values of experimental parameters our
numerical simulations have demonstrated a variety
of qualitatively different periodic regimes (attrac-
tors) and nontrivial transitions between them. The
theoretical results are in a good agreement with
our experimental data for LINbO;:Fe crystals.
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