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ABSTRACT Considerable slowing down is observed for both the
temporal development of the coherent oscillation slightly above
the threshold and the refractive index grating decay slightly
below the threshold for a semilinear photorefractive oscillator
with two counter-propagating pump waves. It is shown that in
the vicinity of the threshold the reciprocal characteristic time
is a linear function of deviation from the threshold coupling
strength. This behaviour is similar to an empirical Curie–Weiss
law and points to the analogy of the oscillation threshold to
a second-order phase transition.

PACS 42.65.Hw; 42.65.Sf; 42.65.P

1 Introduction

The threshold of oscillation in photorefractive co-
herent oscillators features similarities to phase transitions
in solid-state physics and hydrodynamics [1–4]. Below the
threshold the sample illuminated with the pump beam ex-
hibits the light-induced scattering in a wide solid angle (beam
fanning). This scattering is a consequence of the pump-wave
diffraction from the arbitrarily oriented low-amplitude noisy
photorefractive gratings which self-develop in the sample.
Above the threshold a rapid growth of the amplitude occurs
for one of these gratings, which couples the pump wave to
the oscillation wave. The oscillation wave has a small diver-
gence and its intensity may be comparable to that of the pump
wave. Thus the system changes qualitatively: a new, highly
ordered state emerges from a completely disordered state. The
amplitude of the oscillation field normalized to the amplitude
of the pump field may be considered as the order parameter:
it is identically zero below the threshold (below the transition
point) and tends to unity at saturation far above the threshold.
The natural control parameter is the coupling strength, which
is proportional to light-induced change of the refractive index
times interaction length.

It should be noted that the similarity of the oscillation
threshold in the usual lasers to the phase transition has been
known since the classical work of Haken [5]. For free-running
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lasers the gain shows typical characteristics of a second-order
phase transition [6]. Surprisingly, the number of photorefrac-
tive coherent oscillators with different cavity configurations
and considerably different properties is much larger than the
number of known laser classes. Some of the photorefractive
oscillators exhibit the features of the second-order phase tran-
sition [2, 3] while the others show those of the first-order
phase transition [4]. A priori, it is not clear to what extent one
can extend conclusions formulated for any particular oscilla-
tor to all other possible oscillator geometries.

In this paper we describe the threshold behaviour of
a semilinear coherent oscillator with two counter-propagating
pump waves, using a BaTiO3 crystal as an amplifying
medium [7, 8]. Special attention is devoted to the study of
the oscillation dynamics above the threshold and the dynam-
ics of the photorefractive grating decay below the threshold:
the critical behaviour is revealed, with a characteristic time
going to infinity exactly at the threshold value of the coupling
strength. In such a way the manifestation of the Curie–Weiss
law is detected, for the first time to our knowledge, in a co-
herent optical oscillator. This observation confirms that within
the range of experimental parameters the second-order optical
phase transition is observed, as we expected from the calcu-
lated coupling strength dependence of the steady-state output
intensity. The detected critical slowing down (which follows
directly from the analogy of oscillation threshold and phase
transition) is important for correct evaluation of the oscillation
dynamics for conventional lasers that incorporate a semilinear
coherent oscillator as a part.

2 Experiment

2.1 Experimental procedure

The schematic representation of the experimental
arrangement is shown in Fig. 1. The beam of an Ar+ laser
(TEM00, 0.514 µm) is used to pump a 3.6 mm thick BaTiO3

sample (PRC); it impinges upon the sample at the angle of 45◦
in air. The transmitted pump beam is retroreflected by a beam
splitter BS to generate a counter-propagating pump wave. An-
other mirror M forms the semilinear cavity with the sample.
The cavity axis is tilted with respect to the sample normal at
25◦ in air so that the angle between the pump and oscillation
waves is 20◦ in air.
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FIGURE 1 Schematic representation of the experimental arrangement.
PRC is the photorefractive sample with ferroelectric axis in the plane of the
drawing, M is the mirror, BS is the beam splitter, Det is the photodetector, Sh
is the shutter. The inset shows typical temporal evolution of oscillation inten-
sity. Coupling strength for particular angles between the beams given in the
text is γ� � 2

The supplementary oblique light beam (seed) is used to
align the cavity; it serves also as a seeding beam to record
the grating below the oscillation threshold. Like the pump
beams this one is polarized parallel to the sample optical
axis (extraordinary wave). Another orthogonally polarized
light beam (ordinary wave) is used to control the coup-
ling strength, by varying its intensity. Partially transparent
mirror M (R = 0.96) extracts a part of the oscillation in-
tensity, measured with the detector Det placed behind this
mirror.

2.2 Evaluation of characteristic times

With this arrangement, the self-oscillation occurs
when the seeding beam is stopped by a shutter Sh and when
the intensity of the erasing beam IE is below a certain thresh-
old value. Typical temporal development of the oscillation
intensity is shown in the inset of Fig. 1. It resembles the known
one for e.g. a double phase-conjugate mirror [2] and a ring-
loop oscillator [3]. For a comparatively long time the inten-
sity of the oscillation beam is very weak, but starting from
a certain delay time ∆tos the oscillation intensity grows non-
linearly and reaches the saturation level quickly. The time
delay ∆tos can be considered as a temporal threshold of os-
cillation. Below ∆tos the light scattered in the direction of the
future oscillation wave is gradually amplified but it remains
much smaller than the saturation value of the oscillation in-
tensity. The characteristic time ∆tos clearly divides the whole
dynamics into two parts, one with a well-developed oscilla-
tion and the other that resembles the superluminescence of the
amplifying media in the usual lasers.

Below the oscillation threshold, the light scattered in the
direction of the oscillator optical axis is also amplified and
the amplification process can be characterized by a relevant
time constant. When feedback is applied, this time constant
can vary with the coupling strength. The increase of the char-
acteristic time of the photorefractive scattering in the vicinity
of the oscillation threshold has already been reported for other
oscillator geometries [2, 3, 9].

In our experiment the characteristic time below the thresh-
old is evaluated in a different way, inspired by the early studies
on forced Rayleigh scattering [10]. In this technique the re-
laxation of an artificially ‘heated’ selected spatial mode is
studied instead of the relaxation of the spontaneous grating-
like fluctuation [11].

First, a photorefractive grating is recorded by the pump
beam and auxiliary coherent light beam, sent to the sample
exactly in the direction of the cavity optical axis (seed beam
in Fig. 1). Then the seeding beam is blocked with the shutter
Sh and the intensity of the wave diffracted from the photore-
fractive grating is measured with photodetector Det. Below
the threshold the grating which has been recorded by the pump
and seed beams is not self-supported; it decays and the inten-
sity of the diffracted wave drops.

The characteristic decay curve is shown in Fig. 2a. For
comparison, Fig. 2b shows the decay curve recorded with
no feedback (mirror M tilted) and counter-propagating pump
wave blocked (the wave reflected from the beam splitter BS
is stopped). A substantial slowing-down of the relaxation pro-

FIGURE 2 Temporal dependence of grating decay below the oscillation
threshold. a decay with counter-propagating pump wave present, b decay
with the beam splitter BS blocked
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cess can be seen in Fig. 2a. The relaxation time is evaluated
from the initial linear slope of the decay curve. It is the time
when the signal drops to (1/e) of its initial intensity. This time
is two times smaller than the relaxation time of the refractive
index because the diffracted intensity is proportional to the
square of the refractive-index change ∆n.

2.3 Experimental results

Further, we measure the oscillation intensity and
the characteristic delay time as a function of the coupling
strength. As a rule, the coupling strength in photorefractive
crystals is independent of the pump intensity. To control the
coupling strength an additional light beam is sent to the sam-
ple, which partially erases the recorded grating to the level
that depends on the intensity ratio of the recording beam
I0 and the erasing beam IE. The erasing beam is ordinar-
ily polarized to avoid recording of additional photorefractive
gratings by a supplementary extraordinarily polarized beam.
The coupling strength of the crystal is therefore

γ� = (γ�)0

1 + (IE/I0)
, (1)

where (γ�)0 is the initial coupling strength for IE = 0. (We
neglect the anisotropy of photoconductivity when writing (1)
in this form.) Figure 3a shows the coupling strength depen-
dence of the saturated oscillation intensity. It is easily seen
that the oscillation intensity is increasing gradually for two
orders of magnitude above the threshold value of the coup-
ling strength γ� ≥ (γ�)th . No discontinuity is observed ex-
actly at the threshold. This points to the soft mode of the
oscillation onset from the noise level. Qualitatively this de-
pendence corresponds to the increase of the oscillation in-
tensity above the threshold, which can be calculated within
the approach developed in [12] with the appropriate boundary
conditions [13].

Figure 3b gives the plot of the reciprocal characteristic
time below and above the threshold, measured as explained
above. The experimental points can be fitted with a linear
dependence

1

τ
∝ |γ�− (γ�)th|, (2)

separately for the downward and upward slopes. These
two fits give, within a few per cent, the same value for
(γ�)th � 0.89(γ�)0, which agrees well with that measured
from the coupling strength dependence of the oscillation in-
tensity (Fig. 3a).

As described above, we use principally different tech-
niques to measure the characteristic build-up and decay
times above and below the threshold. The time measured
below the threshold is close to τ∆n/2, i.e. to one-half the
time of the refractive index grating decay with feedback ap-
plied. It is linearly proportional to the dielectric relaxation
time of the sample for a given light intensity, but it also
contains the factor depending on the overthreshold coupling
strength (γ�−γ�th).

The characteristic time of the oscillation onset above the
threshold also depends linearly on the dielectric relaxation
time and is a function of (γ�−γ�th). In addition it depends

a

b

FIGURE 3 Coupling strength dependence of the oscillation intensity (a)
and the inverse characteristic time (b)

strongly on the initial level of scattered light which is seed-
ing the oscillation. The results of numerical simulation for
a double phase-conjugate mirror [14] and a semilinear phase-
conjugate mirror [15], which are close relatives of the con-
sidered semilinear oscillator with two pump waves, show that
the delay time of the oscillation onset may vary by orders
of magnitude when the initial seed amplitude is changing
considerably.

The dependence in Fig. 3b therefore represents the values
proportional to a “real” relaxation time but with the propor-
tionality factors that are different for two branches, below
and above the threshold. This is why one can make conclu-
sions from this figure about the linear dependence of 1/τ on
(γ�−γ�th) and about particular values of γ� where 1/τ di-
verges, but it is impossible to compare the absolute values
of the relaxation time itself and of the slopes of the two
branches.

3 Discussion

The oscillation onset in the coherent oscillator con-
sidered is similar to the second-order phase transition. Both
the results of calculation [13] and the experimental data
(Fig. 3a) show the soft mode of oscillation onset: the inten-
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sity of the oscillation wave is zero exactly at threshold and is
increasing gradually till the saturation level is reached with
the increasing coupling strength. Similarly to the usual lasers
the oscillation intensity is increasing linearly with the over-
threshold pumping, i.e. Iosc ∝ (γ�− γ�th). This means that
the amplitude of the oscillation field Eosc ∝ √

γ�−γ�th and
therefore the derivative dEosc/d(γ�) becomes infinite exactly
at γ� = γ�th. This justifies the choice of normalized ampli-
tude Eosc/Epump as an order parameter for this system. An-
other option would be to consider the normalized amplitude of
the self-developing refractive-index grating which couples the
pump and oscillation waves, ∆n/∆nmax, as an order param-
eter. Here ∆nmax is the ultimate refractive-index change that
can be achieved at a given experimental condition (limited
by the diffusion field, applied external field or inherent pho-
tovoltaic field of the sample). In fact, both possible order
parameters are not independent because the amplitude of the
diffracted beam is directly proportional to the amplitude of the
refractive-index grating. We choose the normalized amplitude
of the oscillation wave as an order parameter because it can be
experimentally measured.

The analogy to the control parameter which is quite often
the temperature for structural order–disorder phase transitions
is in our case the inverse coupling strength, 1/γ�. We take the
reciprocal value of the coupling strength to obtain the transi-
tion into the ordered state for the decreasing control parameter
(similarly to the transition into the ordered state for decreasing
temperature).

The following conclusions from the analysis of steady-
state oscillation confirm the second-order phase transition: (i)
no discontinuity is observed in the evolution of the oscilla-
tion intensity from zero value to saturation, (ii) just above
the threshold the oscillation intensity depends linearly on the
overcritical coupling strength, i.e. the derivative of the order
parameter exactly at the threshold is infinite. Several addi-
tional arguments supporting the analogy to the second-order
phase transition will be deduced from the analysis of oscilla-
tion dynamics.

We found experimentally a power-law dependence of the
reciprocal relaxation times below and above the threshold,
1/τ ∝ |γ�− γ�th|ζ , with critical exponent ζ equal to unity.
Such dependence is typical for the second-order phase tran-
sitions for which different parameters increase with the tem-
perature as |T − Tc|ζ , with ζ standing for the critical exponent
and Tc being a transition temperature (Curie temperature).
For example, for a ferromagnetic phase transition the tem-
perature dependence of the magnetic susceptibility χ is de-
scribed by the Curie–Weiss law [16], i.e. χ is proportional to
|T − T0|−1, with T0 standing for the Curie–Weiss temperature.
The Curie–Weiss law is valid also for some ferroelectric crys-
tals, for temperature dependence of the dielectric constant ε,
piezoelectric and elasto-optic properties, etc. above the tran-
sition temperature (see e.g. [17]). Thus, the observed coupling
strength dependence of τ−1 can be considered as an optical
analogy of the Curie–Weiss law.

It should be underlined that the Curie–Weiss temperature
coincides with the transition temperature for the second-order
phase transitions, while for the first-order phase transitions
it is different from the transition temperature [15]. The coin-
cidence of the coupling strength value at which the recipro-

cal characteristic times diverge with the threshold coupling
strength also points to the second-order phase transition.

In the vicinity of the threshold the critical exponent ap-
proaches 1, for both the temporal development of the scatter-
ing below the transition and the development of the oscilla-
tion above the transition. A critical slowing down below the
threshold of mirror-less oscillation has been reported for pho-
torefractive BSO (Bi12SiO20) crystals [9] and BaTiO3 crys-
tals [2]. A critical exponent equal to unity has been measured
for BSO. For the temporal dynamics of some other optical
processes, like e.g. switching in optically bistable étalons [18,
19], the critical exponent can be 1/2, i.e. significantly differ-
ent from 1.

Summarizing, additional arguments in favour of the
second-order phase transition which could be extracted from
the study of oscillation dynamics are as follows: (iii) a power-
law dependence of relaxation times near the threshold, (iv) the
same critical value of the control parameter at which 1/τ di-
verges for both branches, below and above the threshold, (v)
coincidence of the “Curie–Weiss” temperature and the tran-
sition temperature extracted from the measurements of the
order parameter.

We believe that all the arguments given above prove that
the threshold of oscillation in a semilinear cavity with two
counter-propagating waves can be considered as a second-
order phase transition within the investigated range of param-
eters. At the same time one can ask how far this analogy can
go. The fundamental question is what are the formal analogies
in optical systems with phase transitions to thermodynamic
functions and to susceptibility. Another question under dis-
cussion is in what way the fluctuations could affect the optical
phase transition. Additional studies are necessary, both the-
oretical and experimental, to obtain clear answers to these
questions.

It should be underlined that apart from fundamental inter-
est the discussed analogy of the oscillation threshold to the
phase transition leads to important practical consequences,
for example for hybrid lasers [20, 21] which possess the self-
pumped phase-conjugate mirrors or semilinear coherent os-
cillators as their inherent parts. The described critical slowing
down near the oscillation threshold will affect strongly the dy-
namics of oscillation onset of such hybrid lasers. To design
a hybrid laser with a realistically short onset time one should
be aware of the dependence of the characteristic time on the
coupling strength given by the empirically established Curie–
Weiss law.
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