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Abstract. The threshold behavior is studied for a ring-loop
coherent oscillator with a photorefractive strontium barium
niobate (SBN) sample. A soft onset of oscillation is revealed
and critical slowing down is observed in the temporal devel-
opment of light-induced scattering below the threshold, thus
pointing to a similarity with a second-order phase transition.

PACS: 42.65.Hw; 42.65.Sf; 42.65.P

The onset of oscillation in various photorefractive coherent
oscillators may be considered as the transition from a dis-
ordered phase (with an arbitrary orientation of scattering grat-
ings of small amplitude) to a phase with a perfect order
(only one dominant photorefractive grating with high am-
plitude) [1–3]. The similarity to phase transitions has been
studied in detail for two types of photorefractive coherent os-
cillators, for a double phase conjugate mirror (DPCM) [2] and
for a hexagon-type mirrorless oscillation with two counter-
propagating pump waves [3].

It has been shown that the onset of oscillation in a DPCM
occurs in a similar way as a second-order phase transition [2],
while the hexagon excitation is analogous to a first-order
phase transition [3].

From the observation of typical slowing down in the tem-
poral development of the oscillating wave near the threshold
of oscillation in a ring-loop phase conjugator, the conclusion
was made about the similarity to phase transitions, too [1].
The purpose of the present work is to study the dynamics and
steady-state characteristics of the oscillation wave and to con-
firm a second-order phase transition that might be expected
from calculations of the oscillation-wave intensity.

1 Ring-loop coherent oscillator

The geometry of a ring-loop coherent oscillator is depicted in
Fig. 1. The pump beam (2) transmitted through a photorefrac-
tive sample is reflected back into the sample (4) by the mirrors
M1 and M2 in such a way that it is overlapping with the beam
2. If the coupling strength of the crystal is sufficiently large
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Fig. 1. Schematic representation of a ring-loop coherent oscillator. PRC is
a photorefractive crystal, M1 and M2 are the cavity mirrors

the oscillation beam appears (waves 3 and 1), which is coun-
terpropagating with respect to the pump beam (waves 2 and
4). The oscillation beam arises because of diffraction of the
pump beam from the photorefractive grating developing in-
side the sample above the oscillation threshold.

The theory of nonlinear mixing of four counterpropagat-
ing plane waves with appropriate boundary conditions relates
the threshold coupling strengthγ�th necessary to start the os-
cillation with the cavity mirror reflectivityR = R1R2 [4, 5]:

γ�th = R+1

R−1
ln

R+1

2R
. (1)

The theory also allows the calculation of the phase conju-
gate reflectivity (output oscillation intensity normalized to
the intensity of the input pump wave)Rpc = I1(0)/I2(0) as
a function of the sample coupling strengthγ� and its threshold
value. The dependence ofRpc = Rpc(γ�, γ�th) can be found
from indirect relations [5]:

− 2RT

T(1− R)+√
(1− R)2+4Rpc

=

T(1+ R)+√
(1− R)2 +4Rpc

T(1− R)+√
(1− R)2 +4Rpc+2TRpc

, (2)

T = tanh

[
γ�

2

√
(1− R)2+4Rpc

1+ R

]
. (3)

Figure 2 represents phase conjugate reflectivity plots (2) and
(3) for several different values ofR. Two features of the dis-
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Fig. 2. Calculated coupling-strength dependences of phase conjugate reflec-
tivity for the effective reflectivity of cavity mirrors M = 1, 0.5 and 0.1
(curves 1, 2 and 3, respectively)

played dependences are of importance from the point of view
of the present study: (i) there is no discontinuity in the phase
conjugate reflectivity in the vicinity of the threshold and (ii)
the phase conjugate reflectivity is a single-valued function of
the coupling strength.

This dependence is similar to the dependence of the order
parameter versus reciprocal temperature (control parameter)
for a ferromagnetic second-order phase transition [6]: there
is no ordering at high temperatures (small control parame-
ter 1/T ), while starting from the transition temperature, 1/Tc,
the order parameter increases from the value zero until sat-
uration occurs. It approaches its ultimate value equal to 1 at
low temperatures, i.e., at high values of the control parameter
1/T .

To prove the similarity of the onset of coherent oscillation
in a DPCM with a second-order phase transition, the authors
of the paper [2] pointed to the formal coincidence of the equa-
tion describing the temperature dependence of the normalized
magnetization M/M∞ (order parameter) [6]:

M/M∞ = tanh [MTc/M∞T ] , (4)

where M∞ is the ultimate magnetization when all spins
are aligned, T is the temperature and Tc is the Curie tem-
perature. The equation describing the coupling-strength
dependence of the amplitude phase conjugate reflectivity
a = |A1(0)/A2(0)| = √

Rpc for a symmetric DPCM reads [7]:

a = tanh [aγ�/γ�th] . (5)

At first sight there is no direct correspondence of (1)–(3)
to (4). It is possible to show, however, that for a lossless cavity
(R = 1) the coupling-strength dependence of the phase conju-
gate reflectivity given by (2) and (3) is exactly the same as (5)
(taking into account that the threshold value of the coupling
strength for R = 1 is γ�th = −1), i.e.,

√
Rpc = tanh

[√
Rpcγ�/γ�th

]
. (6)

Thus we conclude that the same arguments as presented in [2]
apply for the case of a ring-loop cavity, too, i.e., the cal-
culated coupling-strength dependence of

√
Rpc is similar to

a standard temperature dependence of the order parameter for
a second-order phase transition [6].

In Sect. 2 the results of direct measurements of the os-
cillation intensity as a function of γ�/γ�th are presented that
confirm the soft mode of self-excitation, i.e., with an oscil-
lation intensity developing continuously from the noise to
a saturation level. Additional arguments in favor of the sim-
ilarity to a second-order phase transition come from the study
of the oscillation dynamics, also described in Sect. 2.

2 Experiments

A ring-loop coherent oscillator with a photorefractive stron-
tium barium niobate (SBN) crystal is studied (Fig. 3). The
unexpanded beam of a single-mode multifrequency Ar+-
laser is used as input wave 2, with a total power up to
60 mW and a Gaussian beam waist of 1.5 mm. The co-
herence length of the pump wave (� 50 mm) is much
smaller than the loop-cavity length (� 0.6 m), to avoid
the recording of reflection gratings by counterpropagat-
ing waves [8]. The full angle in air between the beams
1 and 4 (2 and 3) is 2θrec � 25◦. The sample is slightly
tilted to avoid the reflection of wave 4 from the rear face
of the sample in the direction of the wave 2 (and reflec-
tion of the wave 1 in the direction of the wave 3), i.e.,
2θinc � 20◦.

With the help of a beam splitter BS a part of the phase
conjugate (oscillation) wave 1 is sent to the photodetector
PD. The signal from the photodetector is stored and pro-
cessed with the PC, allowing for reconstruction of the os-
cillation dynamics. The same computer governs the beam
shutter Sh cutting the light beams inside the cavity. When
the shutter stops the beams inside the cavity, the incident
pump beam 2 erases the photorefractive grating. In such
a way the sample becomes ready for the next recording
process.

A Sr0.61Ba0.39Nb2O6:Rh sample (2000 ppm Rh in the
melt) grown in the Physics Department of the Univer-
sity of Osnabrück is cut along the crystallographic axes
(X, Y , Z) with the dimensions 6 × 6× 7 mm, respectively.
With a loop angle of about 25◦ the estimated γ is about
20 cm−1, i.e., the coupling strength γ� is about 12. There-
fore one can expect a rather-well-developed coherent os-
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Fig. 3. Experimental set-up. SBN is a strontium barium niobate sample, the
arrow with C shows the direction of the ferroelectric axis of the sample, M1
and M2 are the cavity mirrors, ND is a neutral density filter, Sh is a shutter,
BS is a beam splitter, PD is a photodiode, PC is a computer



189

cillation with γ� one order of magnitude exceeding the
threshold value for the lossless cavity. In fact, the experi-
mental threshold coupling strength is much higher because
of the thermal lens developing inside the sample. The
sample heated by the incident light wave acts as a con-
verging lens with the focal length comparable to the cav-
ity length; therefore the Gaussian waists of the beams
2 and 4 are not matched, and this affects the threshold
value of the coupling strength and the output intensity.
Thus the geometry of the ring-loop oscillator was not opti-
mized in our experiment (the estimated normalized coupling
strength of the sample was γ�/γ�th � 1.35 and the largest
phase conjugate reflectivity was slightly below 0.02); this
was, nevertheless, sufficient for the study of the threshold
behavior.

Two techniques are used to change γ�/γ�th. By putting
neutral density filters (ND) inside the loop cavity it is pos-
sible to affect the threshold coupling strength γ�th (see (1)
where the effective mirror reflectivity is changing). The
coupling strength provided by the sample remains con-
stant in this case. The second technique is to diminish the
sample coupling strength keeping the cavity losses (and
therefore γ�th) constant. This can be done by rotating the
polarization of the input pump wave to a certain angle
φ with the help of the λ/2-phase retarder (see, e.g., [2]).
Providing the difference in the photoconductivity for the
ordinary and the extraordinary waves is negligible the
polarization-angle dependence of the coupling strength is
as follows:

γ� = γ�0 cos2 φ, (7)

with γ�0 standing for the initial coupling strength for the ex-
traordinarily polarized pump beam.

Figure 4 shows typical examples of the oscillation dynam-
ics recorded for different cavity losses. The estimated normal-
ized values of the coupling strength are γ�/γ�th � 1.35, 1.26
and 1.17 for the curves 1, 2 and 3, respectively. Qualita-
tively, the temporal variations resemble the coupling-strength
dependence of the oscillation intensity (see Fig. 2). During
a relatively long time the radiation intensity of the cavity
modes remains rather small, until the fast nonlinear growth
of intensity occurs. A well-pronounced time delay of the
rapid growth of oscillation intensity can be considered as
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Fig. 4. Dynamics of phase conjugate reflectivity for a coherent oscillator
with γ�/γ�th � 1.35, 1.26 and 1.17 for the curves 1, 2 and 3, respectively

a characteristic time of the oscillation onset; it can be meas-
ured as a function of the cavity losses or sample coupling
strength. The other characteristic to be evaluated from the
temporal dependences shown in Fig. 3 is the saturated in-
tensity of the oscillation wave, which is also a function of
γ�/γ�th.

2.1 Steady-state characteristics

We first measure the output intensity of the radiation ver-
sus polarization angle of the incident pump wave. Figure 5a
shows the oscillation intensity as a function of ε = (γ�−
γ�th)/γ�th (see, e.g., [9].) Open dots show the intensity of
the light-induced scattering below the oscillation thresh-
old, while filled dots represent the oscillation-wave in-
tensity. As the angular aperture of the detector is larger
than the angular divergence of the oscillating beam, the
detector collects the scattered light not only in the oscil-
lating modes but also in adjacent non-oscillating modes.
It means that the intensity of scattered light shown in
Fig. 5a is overestimated. In fact, the difference between
the saturated intensity of oscillation and the intensity of
light scattered in oscillation modes is larger than the value
of 2×103 which can be deduced from the figure. Thus
we observe a very sharp threshold behavior typical for
phase transitions.

It should also be emphasized that it is possible to ob-
tain a more than 250-times decrease of oscillation inten-
sity when approaching the threshold with the mechan-
ics available in our experiments for polarization control.
One can see that the oscillation intensity is gradually ap-

Fig. 5a,b. Steady-state intensity (a) and characteristic time (b) versus nor-
malized coupling strength ε (see text). The data for light-induced scattering
below the threshold are shown by open dots and the data for oscillation are
shown by filled dots
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proaching the noise level. We did not observe any dif-
ference in the measured dependence for increasing and
decreasing γ�.

2.2 Dynamics of oscillation and light-induced scattering

Figure 5b shows the dependence of the characteristic time on
the same normalized deviation from the threshold coupling
strength as in Fig. 5a, i.e., on ε. In this experiment, however,
the cavity losses are controlled by the insertion of neutral
density filters with a transparency varying from 0.7 to 0.2. To
get more data in the close vicinity of the threshold, filters are
used with a difference in the transmittance of 0.01.

Above the threshold, for ε > 0, the delay time of oscilla-
tion onset is presented by the filled dots. Below the threshold,
for ε < 0, we show by open dots the characteristic time of
light-induced scattering, i.e., the time necessary to reach 0.9
of the saturated scattering intensity. Note that we try to meas-
ure mainly the scattering into the oscillation modes; a small
aperture is put in front of the detector to reduce the contribu-
tion from the adjacent non-oscillating modes.

Both processes become obviously slower in the vicinity
of the transition. The characteristic time of the light-induced
scattering varies from a few seconds (comparable to the di-
electric relaxation time) to a few hours. It is important to
underline that the dramatic growth of both branches occurs at
the same coupling strength equal to the threshold value, γ�th.

3 Discussion

Both the steady-state characteristics and the dynamics of os-
cillation point to a similarity of the oscillation onset in the
considered geometry and a second-order phase transition:

the soft mode of oscillation onset predicted from calcula-
tions [4] is confirmed in our experiments with a SBN coher-
ent ring-loop oscillator. No hysteresis behavior is revealed
in the coupling-strength dependence of the steady-state os-
cillation intensity, as one could expect for a second-order
phase transition. A considerable slowing down is observed in
the development of light-induced scattering near the transi-
tion point, analogous to the critical slowing down of fluctu-
ations above an order–disorder phase transition. And, finally,
the discontinuity in the characteristic time of light-induced
scattering is detected exactly at the same threshold coupling
strength where the characteristic delay time of self-oscillation
diverges.
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