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We investigate theoretically and experimentally the operation of a nonlinear system, feedback controlled
photorefractive beam coupling. It is shown that the feedback equations used eati&® phase shift between
the diffracted and transmitted beam componkeats satisfactory only during a relatively short initial stage of
development. We have generalized these equations by taking into account the inertia inherent in any real
feedback loop. The inertial feedback equations ensure the permanent operation of the nonlinear system and
lead to a variety of periodic and quasiperiodic regimes. We investigate the distinctive features of these regimes
and transitions between them for moderately thick crystals. Good qualitative agreement between theory and
experimental data is obtained for LiNg@rystals.

DOI: 10.1103/PhysRevA.63.053805 PACS nuntber42.65.Hw, 42.65.Sf

[. INTRODUCTION A general formulation of the feedback problem, including
the equations governing beam coupling, boundary condi-
Several new exciting research areas, such as spatial sofions, and arbitrary distortions of the grating fringes, has
tons[1], pattern formatior2], subharmonic generatidi3], been achieved in 1997]. It has established the basis for the
feedback controlled beam coupling, arose in the field of phosubsequent development. Despite of their apparent simplic-
torefractive nonlinear phenomena during the recent yeardly. the formulated equations occurred to be rather resistant
The last of these topics stands separately in this list in th@gainst the application of analytical tools and methods of
sense that it has, to our best knowledge, no direct analogiualitative analysis. This is caused, in turn, by the peculiarity
among the known nonlinear wave phenomena. This iof the situation in question, where the temporal development
greatly due to the distinctive feature of the photorefractiveof @ strongly nonlinear distributed system is governed by
nonlinearity, namely, its relatively big inertia that allows us Strongly nonlinear feedback conditions coupling the opposite
to send a controlling electronic signal from output to inputfaces of the crystal.
without any big delay. The progress made after formulation of the nonlinear

The history of the studies of the feedback controlled waveProblem was based greatly on numerical simulatipfs It
coupling is rather short. Initially, in the beginning of the Was shown that, in accordance with experiment, the feedback

nineties it was found empiricallj4—6] that a certain elec-
/
X

tronic feedback loop between the output and input signal

beams, governing the input phageg, see Fig. 1, produces

remarkable changes in the dynamics of two-wé&\/) cou-

pling and in the diffractive properties of the recorded spatial R,
refractive index grating. In particular, the grating could per-

sist almost diffractive or transparent, whereas mechanical in-

stabilities, inherent in many photorefractive experiments,

could be strongly suppressed. The interpretation of the ex- S Qs
perimental results was initially based on the assumption of a o€
uniform spatial grating whose amplitude is constant across
the crystal and whose fringes are not bent. Unfortunately,
this simplifying assumption is not compatible with the basic PM 0
relations of photorefractive beam coupling. €o
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*Email address: sturman@iae.nsk.su
"Email address: odoulov@iop.kiev.ua FIG. 1. Scheme of an experiment on feedback controlled pho-
*Permanent address: Institute of Physics, National Academy oforefractive two-beam coupling: PD is a photodiode, LAl denotes a

Sciences, 252650 Kiev, Ukraine. lock-in amplifier and integrator, PM is a piezomounted mirror ad-
$Email address: ringhofe@uos.de justing the input phases.
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leads the system to a state with=1 or O (7 is the diffrac- the asterisk stands for complex conjugation. The coordinate
tion efficiency of the gratingwhere the feedback signal ¢ varies from 0 to&, where &, is the dimensionless crystal
turns to zero. In other words, the formulated mathematicathickness.
problem remains correct only within a restricted time inter- The set(1)—(3) has a broad field of applicability because
val. Further evolution of the system cannot be investigatedt is valid for many particular microscopic models of the
within the formulated feedback conditions that will be re- photorefractive nonlinearity. The specification of the intro-
ferred to as the ideal feedback conditions. duced dimensionless parameters for the simplest models can

An important study relevant to the subject has recentlybe found in[9]. The material properties in our equations are
been presented i8]. It was shown that the introduction of a characterized by the phasésand 8. The first of them 9, is
periodic fast modulation into the phase of the signal bgam of prime importance. It characterizes the type of the photo-
(with no feedbackis able to modify strongly the character- refractive response and ranges from 0 t@.Zor the so-
istics of photorefractive 2W coupling. In particular, by called nonlocal (diffusion) response we haved= = /2,
choosing first a proper value of the time averdgepie))  whereas for the local response we should&e0 or 7. A
and introducing then a small frequency detunifimear nonzero value of the phas® means that the rate of relax-
growth of ¢4(t)] it is possible to adjust; to 1 or 0. This  ation of the grating amplitude is a complex quantity; quite
means that the role of the feedback consists in providing theften § is close to zero. In any case we haw< /2.
proper fast-phase modulation of the signal beam. Equationq1) and(2) describe mutual Bragg diffraction of

In this paper we pretend to overcome the inherent defectthe reference and signal beams from the grating. The total
of the previous theoretical approach, to demonstrate a varietjght intensity remains constant during propagation. Without
of periodic and quasiperiodic regimes attainable at the develess of generality we suppose that the dimensionless total
oped stage of the nonlinear evolutiomhen s is near 1 or §,  intensity |R|?+|S|2=1. Equation(3) describes recording of
and to gain direct experimental evidence of the self-the grating by the light interference pattern. In the general
oscillation behavior. case, the grating fringes, as well as the interference fringes,

In Sec. Il we formulate the basic relations for the are bent. Moreover, they are changing in time and can move
feedback-controlled two-beam coupling, consider its experiguite freely. Analytical solutions to Eq$l)—(3) can be ob-
mental realization, and introduce modified feedback conditained only for a restricted amount of particular and limiting
tions that incorporatén contrast to the ideal ongmertia of  cased9].
the feedback loop. Experimental details are described in Sec. Most experiments relevant to the subject of our studies
[ll. In Sec. IV we analyze the initial stage of the nonlinear have been performed with LiNbOFe crystals. Because of
development, including the effect of ideal and inertial feed-the importance of this case, we provide the reader with the
back conditions and the spatial characteristics of the gratingelationships between the physical and dimensionless param-
theoretically and experimentally. Section V represents an exeters and with the relevant numerical estimates. In this ma-
tended introduction into various operation regimes of theterial the buildup of the grating is due to the photovoltaic
feedback controlled two-beam coupling. Section VI summa-charge transport and the linear electro-optic effect. We have
rizes the relevant original experimental data. Discussion ohere|d|,|§]<1, £&=gx, and r=t/ty, wherex andt are the
the obtained results is presented in Sec. VII and conclusiongal coordinate and time, respectively, is the dielectric

are drawn in Sec. VIII. relaxation timeg:wn3rEpv/)\, n the refractive index) the
wave lengthy the relevant electro-optic coefficient, akg,
Il. BASIC RELATIONS the photovoltaic field. Since the dielectric relaxation in

LiNbO3:Fe is predominantly due to photoconductivity, the
time ty is inversely proportional to the total photon flux. In
We suppose that two coherent light beams, the referencexperimenty ranges from 1bto 10 s. If the light beams are
wave (R) and the signal waveS), are incident onto the extraordinary, we have a useful numerical estimate Nor
crystal as shown schematically in Fig. 1. These beams forn+514 nm, namelyg[cm '] =2E,, [kV/cm]. The photo-
a dynamic grating of the refractive index and diffract from voltaic field in LiNbO;:Fe ranges from a few tens to
this grating. The set of equations for such a two-beam cou=100 kV/cm. Therefore a crystal thicknesg in the order
pling can be written in the standard dimensionless formof 1 mm corresponds to a dimensionless thickn&ssgxg

A. Initial equations

[7,8], much greater than one. For ordinary light polarization the
) factorg is approximately three times less than for extraordi-
9;R=IES, @D nary.
9.S=IE*R, (2

B. Fundamental amplitudes

(€% +1)E=eR &. ©) It is important that Eqs(1) and (2) do not include the
time derivatives and that they are linear Rhand S This
Here ¢ and = are the dimensionless coordinate and tiiRe, allows us to come to general relations characterizing the es-
and S are the dimensionless complex amplitudes of the refsence of the diffraction process.
erence and signal beam, is the dimensionless complex Let us consider Egs.l) and (2) at an arbitrary timer,
grating amplitudep and é are the characteristic phases, andtaking into account that the grating amplituBds a certain
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single-valued function of the coordinate Then we can whereg,=arg(Ry) and¢s=arg(Sy) are the input phases of

claim that these linear differential equations possess the furthe beamsR and S. Then the initially introduced feedback

damental solutiolR=TR,(§), S=S,(&), meeting the bound- equations read

ary conditionsR,(0)=1, S,(0)=0. This solution corre-

sponds, obviously, to a testing of the spatial gratiagthe

momentr) by a single beam of unit amplitude incident in the

R direction, see Fig. 1. The amplitud&s (&) andS, (&) are

nothing else than the transmitted and diffracted parts of thi$n what follows we call them the ideal feedback conditions.

testing beam. They define the desired value &f;. A few simple relations

Analogously, we introduce another fundamental solutiorthat follow from Eq.(7) can be found if7].

of Egs. (1) and (2), R=R4(&), S=84(¢) that meets the As is clear from Eq(6), for any nonzero values &( o)

boundary conditionsR¢(0)=0, S¢(0)=1 and corresponds andsS; (&), i.e., for »(1—7)+#0, we can always fulfill the

to testing of the same grating by a singkebeam of unit ideal feedback conditions adjusting the input phase(or

amplitude. Correspondingly, the fundamental amplitudesp,). In experiment, the phasg; is used for adjustment. Ac-

Ry(€) and Sy(£) are the diffracted and transmitted parts of cordingly, we assume from now on that=const; without

this testingSbeam. Further, one can check from E@9.and  loss of generality this constant can be set equal to zero.

(2) the following important relations: In the casen(1— n) =0, when either the diffracted or the
transmitted component of the signal beam is zero at the out-

S(&,1)=Rf(&,7); R(&7)=—57(&7). (4)  put surface, the introduced ideal feedback conditions make
no sense. This circumstance is, as we shall see below, disas-
) ) trous for the ideal feedback.
We have retained here the argumernd underline that these To proceed, we need to touch the question of experimen-

relations are valid for any time moment. Equatidd$ ex- (4] implementation of the feedback. In practice, adjustment
press the physical equivalence of the bed@esdR in EQs.  of the phasep, is accomplished with the help of a modula-

(1) and(2). _ _ tion technique. An auxiliarysmall and fastoscillating com-
The diffractive properties of the grating are fully charac- ponent, 8¢.= iy sinwr With w~10° and yy<1, is intro-
terized by any of the above fundamental solutions. The quary,ced into the phase of the signal beam. This component
tity 7=|R(é0)|?=S;(&)|? is nothing else than the diffrac- goes not affect the grating amplitude and serves only for
tion efficiency of the grating at time. Furthermore we have jnitiation of the feedback loop. The introduced additional
IR (é0)[°=[Ss(é0)|*=1— 7. . phase modulation results in the replacement Syf by
Let now Ry=R(0,7) and Sy=S(0,7) be the input values g exp(y,sinwr) in Egs. (5). Correspondingly, the output
of the amplitudek andS. Then the solution of Eq¢1) and intensity | S(&,,7)|2 acquires a high-frequency components

D=7 @)

(2) is expressed by the fundamental amplitudes, oscillating as simwr and cos 7. The amplitudes of these
components are
R=RoRrt SRs:  S=RoSr+ 5% ® = 2|RoSol (1= 7)thg Sinbs, ®
These relations represeRiandS explicitly as sums of trans- I 2,=0.5RoS| \/7(1— 1) 13 cosds.

mitted and diffracted components. i ) . )

The dependence of the fundamental amplitudesraa ~ Using =15, as an error signal in an electronic feedback loop
governed by Eq(3). It is clear from this equation that the One can keegbs=/2 (or — /2, depending on the sign of
characteristic dimensionless time of recordibgildup time¢  the feedback: positive or negatjvell the product7(1— »)
is of the order of one. A much faster change of the input?€comes small. _ o
amplitudesR, and S, does not affect the fundamental am- In experiment, see also below, the error signal initiates a
plitudes. It can, however, strongly affect the output amp”_dlsplacement of a mirror. The essence of the feedback con-

tudes R(&O!T) and 8(5017-) because of Changing readout '[I‘O||ed m0ti0n of the mirI’OI’ iS that |tS Ve|OCity iS proportional
conditions in accordance with Eg&). to l,,. This leads to the following phenomenological rela-

Note once more that our approach sets no restrictions otion for the time derivativeps,
the spatial dependence of the grating amplitudes, i.e., on the

shape of the grating fringes. -1
P 9rating fing bs= 7~ [RoSo|m(1= )cos, (9)
C. Feedback equations where 7 is the response time of the feedback loop. The

To formulate the feedback equations, we introduce thdntroduced characteristic time incorporates the amplification
phase differenceb, between the diffracted and transmitted @nd the integration of the error signal, as well as the piezo-
components of the signal beam at the output surféeet,. driver characteristics. This time has to be very smghs1,

According to Egs(5) we have to make the feedback operative. Note that the faffRg6o|
entering Eq.(9) is half the contrast of the light interference
b.=¢,+ard S, (&) ]— es—ard Ss(&p) 1, (6)  pattern at the input.
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Let us assume that the value Qfy(1— %) is far from 180 7 —
zero and that the diffractive characteristics of the grating, ] (a)
namelyz and ar§S; (£0) Ss (£0)], vary slowly in the scale of 90 -]

7¢. Then, as follows from Eq.9), the phasep approaches

quickly (within a time period comparable witk) the value 'qc? 1
ps=ard S;(£,)SE (&)1 w/2 that guarantees tha = I T e L Ly
+ /2. In such a way, the signs in Eq. (9) correspond to NN % -,7\0
the feedback condition® = = /2. SIS BN et
In contrast to the ideal feedback conditio(3, the phe- ] 2\‘\ \w\ ! o
nomenological equation®) take the inertia of the feedback ] G \f\\ | 3
into account. This inertia becomes especially important when  ~1803 \\\ i R
the productyn(1l— n) approaches zero. The phageg loses S S N
here the abilty to follow the desired value i
ard S, (£0) Sk (&o) 1+ 7/2 and consequently the phadg can 1.0 ~ S
deflect strongly from its ideal value. According to HE), ] 1 /\ \ > " 3 \\ (b)
the maxima and minima of the input phagg take place 0.8 M “ \
when the product/»(1— n)cosdg becomes zero. ] / / \ \\
0.6 ] A “ ‘\
_ \ \ \
Ill. EXPERIMENTAL DETAILS = oa i / ‘\\ \ \‘ \‘

\

1
The main features of our experimental setup, which are ] / \ \ “
similar to those described [4-6], can be described with the 1 // \

help of Fig. 1. Two extraordinary polarized coherent light 0.2 . \ \\
beams impinge upon a sample of lithium niobate in the plane ] \ ‘\\\ \\ \
containing its optical axis. The feedback loop includes a 0.0 ¥ P e
standard lock-in amplifie(Stanford Research model SR 830 00 05 10 15 20 25 30 35 40
DSP, an integrator, and a piezo-drivéPhysik Instrumente Yt

model P840.1pwith the maximum displacement of 1am.
The piezomounted mirror, placed into one of two interferom-  FIG. 2. Feedback-controlled dependenegs) and ¢ (7). The

eter lags, introduces a small-amplitudé,&0.1 rad) fast solid curves correspond to the ideal feedback and the dashed ones
(w=5007 rad/s) sinusoidal phase modulation in the signalto the inertial feedback equations. The curves 1, 2, and 3 are plotted

beam. for the pairs of parameter§,=6.6, B=1; £,=6.6, 8=15; and
The signal from the photodetector PD is sent to the inpuo=4. 8=6; respectively. The arrows indicate the time of switch-
of the lock-in amplifier tuned to extract the error sighg).  ing from 7/2 to — /2 feedback conditions.

A nonzero error signal from the lock-in amplifier is accumu-
lated in the analog integrator feeding the piezomounted mir=2.2 um and to a diffusion field ofE,=650 V/cm. At
ror. This results in a mirror motion with a velocity propor- 633 nm the corresponding parameters &r@ um and
tional to I,, within a dynamic range from=10"% to =540 V/cm. In both cases the diffusion field is much
~10 Hz. The output of the integrator is automatically resetsmaller than the photovoltaic field.
(to zero/groungd when the driving voltage reaches a certain
limiting value defined by the piezodriver specifications. IV. INITIAL STAGE OF DEVELOPMENT
In our experiments we have used a 0.35-mm-thick sample
of LINbO;3:Fe. Its 4<5 mn? input/output faces are parallel ~ An exciting feature of the ideal feedbadk= 7/2 is that
to the optical axis. The crystal has a congruent compositiorit @lways tends to increase the diffractivity of the grating
contains 0.1 wt% of Fg)a and is grown in an Ox|d|z|ng durlng record|ng ThIS feature haS no ana|OgS among the
atmospherdair). This is why the photoconductivity of our photorefractlve schemes. If the crystal is thick enough,
sample is relatively low[10] and the photovoltaic field is > &', the diffraction efficiency(t) approaches its ultimate
very large,E,,~100 kV/cm atA=532 nm. value »=1 within a finite time. In the casé=0 and =0
The operat|0n of the feedback loop has been studied ahe threshold thlckneslﬁ)h is given by[7]
two recording wavelengths. Two lasers were used: A
100-mW frequency-doubled YAG:Nd (where YAG is th )
yttrium aluminum garnétlaser (. =532 nm) and a 50-mW §o=m+ _In"B, (10
He-Ne laser =633 nm). With the He-Ne laser we use
unexpanded light beams £/ intensity diameterd  whereB=|S;|%/|Ry|? is the input beam ratio.
=4 mm), while the YAG:Nd" laser beam was slightly Figure 2 shows typical examples of the feedback-
(d=5 mm) expanded. controlled behavior formy and ¢5. The initial solid sections
The angle between the incident light beams wak2°.  of the curves(up to the points marked by the arronare
At 532 nm this corresponds to a grating spacing ofobtained for the ideal feedbagk = 7/2 and the dashed ini-
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FIG. 3. Experimental dependenceét) and¢4(t) for =9 and
the 7/2 feedback.
tial sections are plotted for the corresponding inertial feed- 1.0F 00000 0 00 000 amee o .
back conditions given by Eq(9). For the characteristic = > (b)
phasesf and 5 we have chosen the values B.80 2 and 2 0.8f -
6.7x10 3, respectively, representative for LiNg@Fe crys- -g
tals. Foréy< ggh the efficiencyzn approaches its steady-state % 06} |
value =0.98 monotonously whereas the phaseends to a c ) o °
linear dependences= ()7, see the curves 3. These limiting .2 ¢
characteristics correspond to the steady-state solution of Eqgs & 0.4r i
(1)—(3) with the frequency detunin§)s maximizing » for &= °
chosené, and 8. This solution can easily be found analyti- O 0.2¢ ° o .
cally. SinceQ4# 0, the grating is moving in steady state. ¢
For §0> é::)h: the diffraction eﬂ:iciency approaCheS Unity OO FEPPPTPT BT BN EEPEPETT EEPEPPPITY BT
monotonously within a finite time, see the curves 1 and 2. 0.01 01 1 10 100

The characteristic dimensionless time of this stage is greater

than or comparable with 1. The smaller the distardge

— &', the longer is this time. The phage demonstrates & {ig. 4. The saturated experimental valuezofersus pump ratio

regular behavior and approaches a certain limiting valugt 633 nm(a) and 532 nmb).

when 7 tends to 1. The difference between the solid and

dashed curves is not large feg and nearly nondistinguish- almost saturated at this time. Figure 4 shows the dependence

able for » at the initial stage. This difference increases, asof the saturated value af on 8 for red (\ =633 nm) and

expected, whem approaches 1. The shorter the characterisgreen (532 nnj light, which corresponds to two different

tic time ¢, the smaller the difference between the solid andvalues of the effective crystal thicknegg It is clearly seen

dashed curves. that the saturated valug=1 can be obtained only within a
The sections of the solid and dashed curves 1, 2, and 3, irestricted interval of3. The largeré,, the wider is this inter-

Fig. 2 that start from the time moment indicated by the ar-val. This feature is also in full agreement with theoretical

rows show what happens when we switch from #& to  predictions.

the — /2 feedback conditions. One sees that the diffraction Figure 5 demonstrates the spatial characteristics of the

efficiency reaches zero within a finite time. For the idealgrating and of the light interference pattern at the time mo-

feedback, the phasgs experiences a 180° jump at the mo- ments indicated by the arrows in Fig. 2. Ideal and inertial

ment of switching whereas it changes continuously for thefeedback give here essentially the same result. We see that

inertial feedback conditions. The difference between the efthe grating and light fringes are generally bent and they do

fects of the ideal and inertial feedback is clearly seen at thisiot follow each other. The absolute value of the grating am-

stage. The longer the time spent in the close vicinitypof plitude changes considerably across the crystal. A nearly

=1, the stronger this difference. complete energy exchange between the light beams occurs at
Figure 3 gives a representative example of the experimerthe output for8+# 1. We can conclude from these data that

tal dependences ofi(t) and ¢4(t) for the initial stage and the language of plaifuniform) gratings(very useful for in-

the 7/2 feedback condition. The photorefractive responsduitive and qualitative considerationsannot generally be

time is here about 200 s and the pump raie 9. One sees applied to the analysis of feedback controlled beam coupling.

that in agreement with theory the diffraction efficiency This circumstance creates a serious problem for the under-

monotinously approaches 1 whereas the input phase standing of this phenomenon.

gradually increases. The initial stage ends ug=aB50 s We know only one case, charcterized &y 0, 6=0, and

when the phase; first experiences a jump; the value gfis ~ 8=1, without an effect of the spatial nonuniformity. Here

Beams ratio, B
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changesps(t) = ¢4(0), ¢,(t)=¢,(0), nobending and tilt-
ing of the grating fringes, only some time-dependent tilt of
the light interference fringes.

Let the thicknesg, be smaller thag,,(B=1)==. Then
for 7>0 when the ideair/2 feedback conditions are fulfilled
and the efficiencyy(7) increases monotonously from 0 to its
limiting value 7() =sir’(&/2)<1. If &>, the efficiency
approaches unity within a finite time remaining under the
control of thew/2 feedback. This behavior is in full agree-
ment with the above numerical results, see Fig. 2. At time
moment whenzy(7) turns to 1 the ideal feedback condition
&= /2 fails and it cannot define the further temporal de-
velopment of the system.

Now we suppose that,>w and sif(l—e 7)&]<0,
which corresponds to the ideat 77/2 feedback. Here we
have a monotonous decreasepfIf additionally &> 25{{‘
=21, this decrease ends up wiih=0 where the ideal feed-
back conditiond = — /2 also ceases to define the further
development. In such a way, our analytical example confirms
once more that the ideat /2 and— /2 feedbacks increase
and decrease without any inertia and that they can control
the system only during restricted time intervals.

Generalization of the above analytical result {61
runs into considerable problems because of the nonunifor-
mity of the spatial grating. Our confidence that the inequality
7=0 for ®¢==/2 and the inequalityy<0 for ®¢=— 7/2
are always fulfilled is based mostly on the large amount of
our numerical calculations.

FIG. 5. Spatial characteristics of the feedback-controlled two-

beam coupling{a) The form of the grating fringegb) the spatial

dependence of the absolute value of the grating amplit(@iehe
spatial dependence of the phase differenceEargrg(RS") be-

tween the grating and light fringes. The graphs 1, 2, and 3 corre-

spond here to the solid curves 1, 2, and 3 in Fig. 2.

one can check directly that the 98)—(3) exhibits the fol-
lowing spatio-temporal solution:

R= iei[%(OHIEIé], S= iei[¢s(0)+|E|§],

V2
Ezg(l—e*f)eiwr*w (11
Correspondingly, we have
Se=cod|E|¢), S =ielereIsinE[E) (12
for the fundamental solutions and
n=sif[(1-e™ ") &/2] (13

for the diffraction efficiency.

It is easy to see that in the regions wherd @irne )&
>0 we have® = 7/2 whereas in the regions where [¢ih
—e N&]<0 one obtainsbs= — 7/2. Equations(11) show

V. WHAT IS BEYOND =17
A. General remarks

We conclude from the results of the previous section that
the idealw/2 feedback leads to a state wit=1 where the
feedback conditionb = 77/2 fails. Hence the corresponding
mathematical model remains correct only within a restricted
time interval and we cannot describe the system beyond it.
Physically, this means that the ideal feedback conditions
should be modified to overcome their inherent defect.

One of the simplest modifications is as follows. We define
¢4(t) from the ideal feedback conditio®,= /2 only for
n<mn., wherey. is a certain critical value, such that
—7n.<1. As soon a3y becomes larger than., we keep the
phasepg equal to its last feedback controlled value. As soon
as n becomegafter some evolutionless or equal tham,,
the feedbackb = /2 starts to operate again. This modified
model is mathematically correct. It allows us to describe the
whole evolution of the system and to understand the proper-
ties of the ideal feedback better. Actually, it accounts for the
possibility that the accuracy of the control @f goes down
when » approaches 1 and the error signal can finally be
superimposed by noise. The region where 7. is here pas-
sive for the ideal feedback so that we shall refer to this model
as the passive-region model.

The inertial feedback equatiori8) promise to overcome
the inherent defect of the ideal feedback in a more realistic
way. As long asy is sufficiently far from 1, there is not

no energy exchange between the light beams, no input phaseuch difference from the ideal feedback. At the same time,

053805-6



DYNAMICS OF FEEDBACK CONTROLLED. .. PHYSICAL REVIEW A63 053805

Moy s en | ] : :
0.0016 g:;f;:ffj 180 . | B=1,£=6.6 |.i|
0.0012 135 ) r r r
T S ]
Q‘ 0.0008 \\ 8 0 ]
ﬁ & 454
0.0004 / ]
\ 0
0.0000 — T T : . 4 (a)
-0.10 -0.05 0.00 0.05 0.10 -45 T T T T T T T T T T T T T
Re(S,) 23 24 25 28 27 28 29 30 3.1
1.000
FIG. 6. Trajectory ofSs(&y,7) in the complex plane fog, . \ “ ” ”
=6.6, B=1, and 0.& 7<5. ]
in the vicinity for »(1— n) = the real features of any experi-
mental setup are reflected. One will expect that the inertial 0.995
feedback can operate permanently. =
In the following subsections we present the results ob-
tained numerically for the passive-region model and for the
inertial feedback. Our main concerns are: What is the behav- 0.990 ]
ior of the input phasep in the long-time scale? What hap- )
pens with the phase differende, between the diffracted and 1 : (b)
transmitted components of the signal beam? How small can 03 24 285 28 27 28 29 30 34
the distance * n become at the final state? What are the Y

main requirements on the characteristics of the feedback
loop? And, finally, what kind of predictions can be made for
experiment? FIG. 7. Dependencegy(7) and n(r) for £,=6.6, B=1, and
An element of our consideration will be the representationz'26S 7=3.12.
of the fundamental amplitudes by trajectories in the complex . . . :
plane. This representation is similar to those used to describt ably Iess than_ 1. _Th|s fast per!ogl%motlc;ngﬂtgoi_r) mf h
nonlinear dynamic systemd1,17. It gives a great deal of € passive region Is accompanied by a slow motion ot the
additional information on the behavior of our system as com@MmPlitudes;(éo,7) (superimposed by small and fast oscilla-

: tions) near the the unit circlgS,|=1.
h th f . In th r
pared with the data for(t) and ¢«(1). In the subsequent Figure 7 shows the dependencegt) and 7(t) for the

calculations we use again the values of the characteristic ; ;
phases representative for LiNGO 6=6.8<10"2 and I|'m|t cycle. The reflections of the trajectory from the left and
5=6.7X10" 3. right sides of the boundary are accompanied by jumps of the
input phase of almost. These jumps are indeed due to the
fact that the feedback finds the right value of the phasas
soon as the trajectory crosses the boundary of the passive

Figure 6 shows a trajectoi§s(&y,7) for the input beam region. It is interesting that the times necessary to cross this
ratio =1 and the crystal thickness=16.6. For the critical region back and forth are quite different and also that the
value of the diffraction efficiency we have taken hejg  periodic phase dependence is accompagnied by a small nega-
=0.99. The dashed curve marks the boundary of the passiuerse slope, i.e., the functiopg(t) includes also a linear com-
region that is inside a circle of radiusy(&))|=v1—7n. ponentQgr with Q4<0. It is known that such a component
=0.1 (note the very different scales of the coordinate axes is necessary to maintain=1 in the presence of fast phase
One sees that the trajectory enters the passive region almasodulation[8]. In the caseB3=1 this component is due to
horizontally in accordance with the analytical expressionthe nonzero value of. When the trajectory in Fig. 6 enters
(12) for S5. Further events occur indeed inside this region. Athe passive region, the maximum diffraction efficiency is al-
small fraction of the time spent outside is due to our discretiteady very close to unity and this same maximum value oc-
zation procedure. A decrease of the time step results in aurs each time half-way when crossing the passive region.
reduction of this fraction. Thus the ideal feedback shows no This character of the feedback operation persists when the
inertia: as soon as it is on, it pushes the trajectory back intbbeam ratiog ranges from 1 to=22. The main quantitative
the passive region so that the system develops freely almoshanges are a gradual shift of the position of the attractor
all the time. After several “reflections” from the boundary towards the right-upper part of the passive region, a certain
the trajectory approaches a limit cyckgtractoj. The further  increase of the oscillation period, and a noticeable increase
behavior ofSy(&,,7) is nearly periodic with a period consid- of the average slopén increase of()|).

B. The passive-region model
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FIG. 8. Trajectory ofSy(&y,7) for B=23, £,=6.6, and 57 ] (b)
=<10. ] \
A qualitative feature in the behavior of the system appears 0-9905
when the beam ratio approaches its threshold value from <
below, which isg!"=23.5 for the given crystal parameters.
The phase portrait foB8=23 is shown in Fig. 8. The trajec-
tory enters the passive region nearly horizontally and not far
from the real axis and becomes then nearly closed. The char- 0.9900 —— .
acteristic feature of this quasiattractor is that it lies essen-
tially outside the passive region. This part does not disappear e e e e e
with decreasing time steps. In other words, the ideal feed- 6.4 6.6 6.8 7.0 7.2 7.4 7.6

back demonstrates in this limit some noticeable inertia. t/t
Figure 9 gives the corresponding dependenceg aind

¢s. One sees that the system spends a considerable part of FIG. 9. Dependenceg (r) and 5(7) for £,=6.6, 8=23, and

the time outside the passive region. The phageexperi- 6.4<7<7.6.

ences now only a small jump when the trajectory goes out-

wards that is not sufficient to push the trajectory back intosystem for moderately thick crystals, whose dimensionless
the passive region. The presence of a considerable averagficknesss, is not much greater than the threshold thickness
slope(a large|Q|) is also clearly indicated in Fig. 9. th
Starting from 1, a decrease gfshifts the attractor nearl o i i i
g ’ y It is useful to start with the case of an intermediate beam

symmetrically towards the left-lower section of the passiveratio B (between 1 andB"=ex m] see Eq

region. The sign of the average slope is changing from nega(-lo))_ Figure 10 shows the time dependencessof 7, and

tive to positive. —10-3 ¢ — — i
On the basis of the results presented above it is not diﬁ‘ifbs for 7=10 *, £=6.6, ands=4. After a relatively short

cult to anticipate what happens with the system if, instead o*‘mt'al stage, O<r= 1.’ the phaseas shoyvs a quite regular put ,
. X . . non periodic behavior. It is characterized by almost periodic
the introduction of a critical value af, we add a small noise

. : . . steps upwards, each of them as large=a340°. The time
corrllp.onent to the error signal. U.nt” .the dlstancg 3 1s distance between the time steps=9).35. These steps pro-
sufﬂmently_small, the effec_t of noise is not very |mporta_nt duce a considerable positive average slope of the dependence
and the trajectoryg(&y, ) will approach zero. As soon as it

is near enough to zero, the noise governs the trajectory and (ﬁS(.F?]' , h ied b |
walks randomly inside an effective passive region. When this. . € Input phase steps are accompanied by apparently pe-
random traiectory withdraws too far away from zéro the er_r|od|c oscillations of the diffraction efficiency in the vicinity

) . Y . way 1ro . of 1 with a clear fine structure. The period of these oscilla-
ror signal pushes it back into the passive region. Note finall

that in our experiments we did not see any sign of the be%lons (=0.35) is apparently the same as the distance between

. ) o the phase steps. The pha$e, responsible for the error
havior predicted by the passive-region model. signal, remains only during the initial stage closertf2; its

further behavior is characterized by strongly quasiperiodic
and strongly nonharmonic oscillations. This has nothing to

As our simulations show, the inertial equatidi$s allow  do with the behavior prescribed by the ideal feedback con-
the feedback to operate permanently. The feedbackditions. A further increase of makes the phase steps @f
controlled system exhibits here a great variety of regimesand the periodic oscillations of and ®¢ even more ideal.
mostly due to the occurrence of the second characteristiblote that the sharp peaks and dipsdaf(7) do not strongly
time, 7:. What is presented below is an attempt to outlineaffect the variablesps and » which show a rather smooth
the most prominent features of the nonlinear behavior of theemporal behavior.

C. Regimes of the inertial feedback model
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:4, and G=7=<3.3. 18 <t < 20

0.10

The solid closed curve in Fig. 1d) exhibits the trajectory
Ss(&o,7) for 6=<7=<8. During that time about seven revolu-
tions of this trajectory occur. This shows clearly that the

0.05
point ReSy(&p,7), ImSs(éq,7) moves along a limit cycle ?7<
(an attractor. This motion is clockwise and strictly periodic 000

\_/

Im(S)

in time, its period, T=0.354, corresponds to the period of )

n(7) andd4(7) and to the the duration of one step@f(t),

see Fig. 10. The originSs=0, lies inside the limit cycle but -0.05

very close to it. This is why the peaks and dipsdaf(7) in 08 o0z o R;"S) o1 02 08

Fig. 10 are so sharp. Some tilt of the attractor is due to a
nonzero value of the characteristic phage The dashed FIG. 11. (8 The orbit of Sy(&y,7) for £, =6.6 andB=4; the

curve in Fig. 11a) is the trajectory for & 7=<3; it shows the  gyjig part corresponds to67<8 and the dashed one tostr<3.
character of the transient process. Whilg(o,7) moves () The orbit of Sy(&,,7) for &=6.6 andB=6. (c) The orbit of
along the attractors; (£o,7) moves with small and constant s g, 7) for £,=6.6 andg=1.

angular velocity along the unit circlgS;|=1. This motion is

superimposed by fast periodic oscillations of the above pe-. . .
riod T. Is the average angular velocity for the amplitule Then

At this point it is reasonable to ask oneself how it isthe only possibility to meet Eq9) is to assume that

possible to combine the periodic behavior&fand cospy)

with the nonperiodic behavior &, andes, keeping in mind (Qs+ Q) T=27N, (15
that all these variables enter the feedback equa@®nTo
clarify this important point, we represegt andS, as whereN=0,+1,+2, ... . ThenumberN depends on the

attractor topology and may be called “effective charge.” For
the above attractoX=1.

The frequency detunin@ [the average slope @fy(7)]
whereg? andSP areT-periodic variables with average value is an important observable characteristic of the feedback cou-
0, O, is the frequency detuning for the signal beam, &nd  pling. As follows from Eq.(9), it obeys the relation

0=+ Qgr, S=SPexp —iQ,7), (14
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Q= — 77 |RoSol(\/7(1— m)cosdy), (16) 033

where the angular bracket means the average over a period ] p=5.5 4.0
In such a way, we have express€x by 7; and by the ] / -
characteristics of the fast oscillations. Note tléag is not > -
directly concected with the rotation rate for the amplitude %% 0.1
Ss. Our numerical calculations have proven the correctness = ] /
of Eq. (16). 01 ] AZ

We see that our representation has revealed nontrivial fea-tZ = /’
tures of the periodic and transient behavior of our system. At ] /
the same time we should be aware that this representation it ]
not complete because it does not touch on the coordiaate 0.0 ] . ' ' . ' —
dependences of the amplitudes. 00 05 10 15 20 25 30 35

A surprising feature is the relatively long period of the 100 "
oscillations, T=0.354. Caused by the inertial feedback, this f
period is not much shorter than the photorefractive response ~ 1° ]
time (unity in our dimensionless notatipand much longer 4 (b) /
than the feedback response time=10 3. To investigate 1 B=4.0 ’/
the dependencé&( ), we have performed the following nu- 1 755
merical experiment: Starting from= 12 (when the periodic
state withB=4 is already achievedve decreased; from .
10 2 to 4x10 ° with a very small rate(during the time /
interval 120 causing very slow(adiabati¢ changes of the

01—

/

112
|

0.2

\
\
\
\

I,

characteristics of the periodic solution. During this proce- |
dure, the attractor decreased in size preserving approximately ™ 1 /
the same bagel-like form as in Fig. (BL The period of the o ] #

fast oscillations,T, also decreased with decreasing as T ool . . . . . .
shown by the dashed line in Fig. (B2 Another interesting 00 05 10 15 20 25 30 35 40 45
guestion that can be answered within our adiabatic procedure 10* <

is how the averagél — ») over a period off depends on; . f

The corresponding dependence is shown by the dashed line g5 15 Dependence(y/7;) and(1— 7)(r;) for adiabatically

1-<n>)IR S |
\

et

in Fig. 12b). decreasingr, £,=6.6, and three different values gf
With good accuracy, both the dependencEér;) and .
(1—75)(7f), can be approximated by the relations batic decrease of; results in a gradual decrease of the size

of the attractor without any remarkable change of its form.
T=CyVri/|ReSo|, (1—7)=C,7/|SoRo|, (17)  The “effective charge” of this attractor is zero that means
that Q= —Q, in Eq. (15).
with Cy=7 andC,=3.3. These dependences are fully com-  Figure 13 gives the corresponding time dependences of
patible with the structure of Eq9). They show, in particu- and » for 0= r<10. The average slope of the phase is now
lar, that the fast oscillations of the input phage remain  negative, it corresponds t9 =—0.924 that is much less
strong(comparable with zr) even whenr;— 0. The propor- than for the case3=4, compare Fig. 10. This feature is
tionality constantsCy and C,, vary for different attractors favorable for experiment because it requires less resets of the
and depend on the beam rajy which is demonstrated in piezodriver. The fine structur@scillations on the graph for
Fig. 12. @5 Is strongly different from the steplike behavior in Fig. 10.
As our simulations show, the replacemedt4 by B It is remarkable that a quite regular phase behataanearly
=1/4 results, roughly speaking, in the inversion of the orbitconstant slope and nearly periodic oscillatipappears as
about the origin. Correspondingly, this changes the sign ofoon asy passes its first maximum in spite of the fact that
the general slope obg(t) and the sign of the “effective the behavior of the trajectory is apparently irregular at this
charge” N. stage. Further development results in a rather quick regular-
Next we focus our attention on the cg8e 6 keeping the ization of the oscillations ofp;, and 7. The period of the
other parameters the same. Figurgh)lIshows the corre- oscillations, T=0.33, and the dependences &fand (1
sponding attractor. It consists of two loops and the trajectory- ) on 7; are not much different from the cagbe=4. The
moves around zero in counter clockwise direction. The sizeransformatiord— 8! gives qualitatively the same result as
of this attractor is considerably smaller than that of the atin the previous case.
tractor in Fig. 11a). The origin is here in the central part of Now we consider the case of equal input intensitiés,
the orbit. Again the trajectory performs again only one revo-=1. Here the temporal development&fends up by attrac-
lution around the origin during the peridd It is remarkable tion to the limit cycle shown in Fig. 1&). The full period
that the trajectory comes close to the limit cycle only for corresponds here to three revolutions around zero. This leads
~20, which is much longer than for the cag8e-4. An adia-  to a period tripling ofe¢(7), 7(7), and other variables, see
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also below. The size of the attractor is noticeably larger than
earlier; this gives larger oscillations of in the vicinity of  additional numerical experiments. First, we increased
unity. The obvious asymmetry of this attractor is due to theslowly (with the rate 0.02from 1 to 24, starting from the
nonzero value of the characteristic phaseSince this value periodic state that corresponds to Fig.(d1 Initially, in-
is very small, we should expect a strong sensitivity of thecreasinggB results in a gradual convergence of the different
form of the attractor to various perturbations {8-=1. In  loops of the attractor. AB=2 the three-loop structure has
particular, the adiabatic decreasemgfchanges considerably already transformed into one loop similar to the one shown
its form in contrast to the casgs=4 and 6. The large tran- in Fig. 11(a). Correspondingly, the period tripling disap-
sient time,7~ 30, can also be ascribed to the high sensitivitypears. An apparent disappearance of the period tripling for
of the system. The “effective charge” of this attractbr  ¢4(7) andn(7) occurs even earlier. The described transition
=3. is similar to the second-order phase transition or to the so-

Figure 14 shows the dependences(r), 7(7), and called soft excitation of oscillationfd2,13. It is not accom-
|R(&y,7)|? within the time interval 1&7<20 when the panied by a change of the average sléhe but the “effec-
transient process is all over. Here the peribeé0.97, it is  tive charge”N=3 transforms intdN=1.
approximately three times larger than before. This compli- Further increasing of3, we find gradual changes of the
cates indeed the behavior of the above variables within &rm of the bagel. With3 approaching=6.8 these changes
period. The average slope afy(7) is positive and large, accelerate and within the interval &8=<7.3 (which
0=19.3, the maximum distance {17),a,=0.07, and the changing byA 7=~ 15) the behavior of the trajectory becomes
output intensity R(£,, 7)|? shows strong eruptions above the apparently irregular. Then, fg8=7.4, a two-loop attractor
average value=0.76. As we have mentioned, the structurecorresponding to the “effective chargeN=0 is formed, see
of the attractor changes noticeably during an adiabatic de~ig. 15. This transition has some analogy with the first-order
crease of the feedback response time Correspondingly, phase transitions or with the so-called hard excitation of os-
the behavior ofe(7) looks sometimes irregular. The ele- cillations because it cannot be performed continuously with-
ments of fine structure, such as the presence of tripling andut a sharp bend of the trajectory. It is important that the
the period of oscillations, remain, however, quite robust. above transition is very pronounced for the time dependence

The question arises about what happens if we chooses(7), see Fig. 16. The change of the average slop& of
other values of the beam ratiand what kind of transitions and of the shapébut not the periogl of the oscillations is
can take place between different attractors. To give at least\eery clear despite a rather irregular behavior of the corre-
partial answer to these questions, we have performed a fegponding trajectories.
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FIG. 15. TrajectorySy(7) for B(7) increasing adiabatically FIG. 17. Transformation of the form of the attractor 6rin-

from 6.6 to 8. Initially, the trajectory has a bagel-like form. Then, creasing adiabatically from 7.5 to 22.

after an apparently irregular behavior, it attains a two-loop struc-

ture. not found any bagel-like orbits. Here the attractor consists
typically of two loops. For a sufficiently small beam rajo

An increase ofg from =7.5 to=19 is accompanied by a it corresponds to period doubling amé=2. For 3=2 and
gradual decrease of the size of the two-loop attractor, a redith £ decreasing adiabatically from 6.6 to 3.5 we have
duction of its lower loop, and by a drift of its weight center Observed a pronounced one-leefwo-loop transition simi-
to the left, see Fig. 17 and compare with Fig. 15.x¢19 lar to the one shown in Fig. 15. It take place fy~4.6.
the attractor crosses the zero point and acquires a one-loop An adiabatic increase af, from 6.6 to 15 has not shown
shape that, however, shows a kind of spike. This transition i§ny Sign of an onset of chaos that could be expected from
not accompanied by a change of the sldpe. Further in-  general consideratiorid1,12. At =1, within the region
creasing 8, the attractor becomes smoother and its siz&d=<¢&0=9.5, we have seen a smooth transition to a two-loop
smaller. Finally, our adiabatic procedure fails because of thattractor withN=2. Increasing, from 9.5 to 15 has given
approach of the threshold valyg" and the corresponding only some gradual growth of the size of this two-loop struc-

critical slowing down[13]. ture and of the period of oscillatioh.
With B decreasing slowly from 22 to 1 the character of
the changes remains initially nearly reversed to the one de- VI. EXPERIMENTAL RESULTS

scribed. However, the situation changes for sufficiently small - .
values of8. The transition from the two-loop to the one-loop _ O sufficiently large and small beam ratigg=50 and
structure occurs only foB=4.37, i.e., some hysteresis takes #=0-03, we did not observe any self-oscillatory regimes

place within the interval 4.3% 8=<6.95. Further decrease of with ou_rdsangﬁ)le ah=>532 nm. In ster?dy sta:(e we had hgre
3 does not result in a transformation of the “bagel” into the & considerable energy transfer to the weakest pump beam

three-loop structure shown in Fig. (L The bagel-like and the input phaseys linearly changing in time. The dif-
shape of the attractor survives upfie=1. fraction efficiency remained less than 1. These features are in

Finally, we touch on the effect of the crystal thicknégs good agreement with our theory If we take into account that
on the behavior of our nonlinear system. g4 we have the gsumated dimensionless thickness of our sample at 532
nm is £&g=~8. Some asymmetry of the above interval of the

,rs beam ratio can be referred to the influence of the diffusion

] charge transport.
214 :—/\/\VA A Within the interval 0.03 3<50 we have observed a va-
. {_/ VV\N\ﬁN\/\/\/\AA riety of well recognizable oscillatory regimes at 532 nm with
218 / permanently working feedback and diffraction efficiency
o1z [ very close to 1. We believe that we have detected all the
& IJ regimes described in the previous subsection.
EE Figure 18a) shows a typical fragment of the feedback-
1 /‘/ controlled dependencgg(t) for 8=10. A large constant av-
21°_ /./ erage slope and quasiperiodic phase steps are clearly seen on
200 £=6.6,7=1000 | | this plot. These elements are qualitatively the same as those
] =114, presented in Fig. 1@). The time distance between subse-
208 f —— guent steps can be estimated to 46.2,. The dielectric
6.8 6.9 7.0 71 7.2 . . . . .
B relaxation timet is about 200 s for our experimental condi-

tions. Next, Fig. 1&) corresponds tg3=6.6. It shows a

FIG. 16. Dependences(7) for B(7) increasing adiabatically considerably smaller average slope and clearly pronounced
from 6.8 to 7.2. quasiperiodic phase oscillations. The period of the oscilla-
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10 @) gN/" duced ideal fegdback cond!tions are incapable of descriping
8] [~ the whole nonlinear evolution. We have found that taking
. into account the inertia of the feedback loop, characterized
6] /.\_/ : by a small characteristic relaxation time, is the natural
T way to modify the ideal conditions and to ensure a perma-
2T B nent operation of the system. The valuerpfis found to be
1700 1750 1800 1850 1900 1950 2000 determined by the the electronic components in the feedback
T ® loop. |
R ] During the initial stage of development, when the diffrac-
ﬂ 1 \/\/\/WAV%AV tion efficiency of the spatia_l _gr_atin_gy, is not near its glti-
e . /v\/\/ mate value, 1 or 0, the modifidthertial) feedback equations
© 0 ,/\'\/V"‘ are not much different from the ideal feedback conditions. In
2 — T the developed stage, the inertia of the feedback leads to an
s 600 800 1000 1200 1400 1600 entirely-different behavior of the governing phabg strong
= 123 ©) Ve anharmpmc_oscﬂlatlons. _ _
= ] : : / The inertial feedback leads to a behavior of the input
= 84 { A phase ¢4(7) that is easily recognizable in experiment,
] /‘j namely, to fine oscillations superimposed on an average
4 ] slope. In a periodic state, the oscillation peribdés found to
T — — T T be proportional toy7; and the average valud — 5(7)) to
1100 1200 1300 1400 be proportional tar; . These results give clear predictions for
g experiment and rather weak restrictions on the frequency
E characteristics of the feedback amplifier.
] An important theoretical and experimental finding is the
4] occurrence of various periodic regimes with characteristics
] strongly dependent on the experimentally controlled param-
0 5 ' eters, such as input beam ratio and coupling strength. In

particular, different regimes manifest themselves in different
average slopes of the input phagg(7) and in different
shapes of the oscillations.

FIG. 18. Fragments of experimentally obtained feedback- The representation of the fundamental amplitudes by tra-
controlled phase dependenaggt) ath =532 nm.(a) corresponds  jectories in the complex plane gives a powerful tool for the
to 5=10, (b) corresponds tg8=6.6, and both(c) and (d) corre-  5nq\ysis of the nonlinear regimes. It allows us to classify the
spond top=1. different attractors and to make certain judgements about

.. transitions between them. In many respects, the correspon-
These features are similar yonce petween different regimes is similar to the correspon-
dence between the high- and low-symmetry phases in the
phase-transition theory.

tions can be estimated as0.3t,.
to those presented in Fig. (3.
Figure 18c) shows a representative dependeagg) for
B=1 that corresponds to period tripling, compare with Fig.
14(a). The full period, ~0.824, is approximately three
times larger than it is in the previous case. Lastly, Figd18
exhibits a fragment of the time dependence that shows the
intermittent behavior of the phase typical of the transient Above we have given an extended introduction into the
stage forB=1. Sometimes, instead of a step up, the phase theory and experiment of a strongly nonlinear optical system,
makes a step down. A similar peculiarity has been observethe feedback controlled photorefractive beam coupling. Be-
in our numerical simulations fo8~1. ing implemented experimentally several years ago, it oper-
At A\=633 nm, the system also exhibits self-oscillations.ated till recently like a black box providing experimentators
However, the permissable interval of the beam ratio, 0.2nd theorists with unusual and exciting observed data. We
=<pB=0.4, is much narrower here as compared to the caskave formulated a general theory of this nonlinear system
A=532 nm. This interval corresponds to the dimensionlesghat is free of unnecessary model assumptions but incorpo-
crystal thicknesg,~4. The main reason for this decrease isrates the essence of the feedback operation. For typical val-
a smaller value of the photovoltaic fiefg},, at 633 nm[10]. ues of material and experimental parameters our numerical
simulations have demonstrated the occurrence of a variety of
qualitatively different periodic regime@ttractor$ and non-
VI DISCUSSION trivial transitions between them. The theoretical results are in
Several particular issues of our study are worth discusgood qualitative agreement with our original experimental
sion. One of our important findings is that the initially intro- data for LiNbG; crystals.

VIIl. CONCLUSIONS
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