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Dynamics of feedback controlled photorefractive beam coupling
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We investigate theoretically and experimentally the operation of a nonlinear system, feedback controlled
photorefractive beam coupling. It is shown that the feedback equations used earlier (6p/2 phase shift between
the diffracted and transmitted beam components! are satisfactory only during a relatively short initial stage of
development. We have generalized these equations by taking into account the inertia inherent in any real
feedback loop. The inertial feedback equations ensure the permanent operation of the nonlinear system and
lead to a variety of periodic and quasiperiodic regimes. We investigate the distinctive features of these regimes
and transitions between them for moderately thick crystals. Good qualitative agreement between theory and
experimental data is obtained for LiNbO3 crystals.
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I. INTRODUCTION

Several new exciting research areas, such as spatial
tons @1#, pattern formation@2#, subharmonic generation@3#,
feedback controlled beam coupling, arose in the field of p
torefractive nonlinear phenomena during the recent ye
The last of these topics stands separately in this list in
sense that it has, to our best knowledge, no direct ana
among the known nonlinear wave phenomena. This
greatly due to the distinctive feature of the photorefract
nonlinearity, namely, its relatively big inertia that allows
to send a controlling electronic signal from output to inp
without any big delay.

The history of the studies of the feedback controlled wa
coupling is rather short. Initially, in the beginning of th
nineties it was found empirically@4–6# that a certain elec-
tronic feedback loop between the output and input sig
beams, governing the input phasews , see Fig. 1, produce
remarkable changes in the dynamics of two-wave~2W! cou-
pling and in the diffractive properties of the recorded spa
refractive index grating. In particular, the grating could p
sist almost diffractive or transparent, whereas mechanica
stabilities, inherent in many photorefractive experimen
could be strongly suppressed. The interpretation of the
perimental results was initially based on the assumption
uniform spatial grating whose amplitude is constant acr
the crystal and whose fringes are not bent. Unfortunat
this simplifying assumption is not compatible with the ba
relations of photorefractive beam coupling.
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A general formulation of the feedback problem, includin
the equations governing beam coupling, boundary con
tions, and arbitrary distortions of the grating fringes, h
been achieved in 1997@7#. It has established the basis for th
subsequent development. Despite of their apparent simp
ity, the formulated equations occurred to be rather resis
against the application of analytical tools and methods
qualitative analysis. This is caused, in turn, by the peculia
of the situation in question, where the temporal developm
of a strongly nonlinear distributed system is governed
strongly nonlinear feedback conditions coupling the oppo
faces of the crystal.

The progress made after formulation of the nonline
problem was based greatly on numerical simulations@7#. It
was shown that, in accordance with experiment, the feedb

of
FIG. 1. Scheme of an experiment on feedback controlled p

torefractive two-beam coupling: PD is a photodiode, LAI denote
lock-in amplifier and integrator, PM is a piezomounted mirror a
justing the input phasews .
©2001 The American Physical Society05-1
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leads the system to a state withh51 or 0 (h is the diffrac-
tion efficiency of the grating! where the feedback signa
turns to zero. In other words, the formulated mathemat
problem remains correct only within a restricted time int
val. Further evolution of the system cannot be investiga
within the formulated feedback conditions that will be r
ferred to as the ideal feedback conditions.

An important study relevant to the subject has recen
been presented in@8#. It was shown that the introduction of
periodic fast modulation into the phase of the signal beamws
~with no feedback! is able to modify strongly the characte
istics of photorefractive 2W coupling. In particular, b
choosing first a proper value of the time average^exp(iws)&
and introducing then a small frequency detuning@linear
growth of ws(t)# it is possible to adjusth to 1 or 0. This
means that the role of the feedback consists in providing
proper fast-phase modulation of the signal beam.

In this paper we pretend to overcome the inherent def
of the previous theoretical approach, to demonstrate a va
of periodic and quasiperiodic regimes attainable at the de
oped stage of the nonlinear evolution~whenh is near 1 or 0!,
and to gain direct experimental evidence of the se
oscillation behavior.

In Sec. II we formulate the basic relations for th
feedback-controlled two-beam coupling, consider its exp
mental realization, and introduce modified feedback con
tions that incorporate~in contrast to the ideal ones! inertia of
the feedback loop. Experimental details are described in
III. In Sec. IV we analyze the initial stage of the nonline
development, including the effect of ideal and inertial fee
back conditions and the spatial characteristics of the gra
theoretically and experimentally. Section V represents an
tended introduction into various operation regimes of
feedback controlled two-beam coupling. Section VI summ
rizes the relevant original experimental data. Discussion
the obtained results is presented in Sec. VII and conclus
are drawn in Sec. VIII.

II. BASIC RELATIONS

A. Initial equations

We suppose that two coherent light beams, the refere
wave ~R! and the signal wave (S), are incident onto the
crystal as shown schematically in Fig. 1. These beams f
a dynamic grating of the refractive index and diffract fro
this grating. The set of equations for such a two-beam c
pling can be written in the standard dimensionless fo
@7,8#,

]jR5 iES, ~1!

]jS5 iE* R, ~2!

~eid]t11!E5eiuR S* . ~3!

Here j and t are the dimensionless coordinate and timeR
andS are the dimensionless complex amplitudes of the
erence and signal beams,E is the dimensionless comple
grating amplitude,u andd are the characteristic phases, a
05380
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the asterisk stands for complex conjugation. The coordin
j varies from 0 toj0 wherej0 is the dimensionless crysta
thickness.

The set~1!–~3! has a broad field of applicability becaus
it is valid for many particular microscopic models of th
photorefractive nonlinearity. The specification of the intr
duced dimensionless parameters for the simplest models
be found in@9#. The material properties in our equations a
characterized by the phasesu andd. The first of them,u, is
of prime importance. It characterizes the type of the pho
refractive response and ranges from 0 to 2p. For the so-
called nonlocal ~diffusion! response we haveu56p/2,
whereas for the local response we should setu50 or p. A
nonzero value of the phased means that the rate of relax
ation of the grating amplitude is a complex quantity; qu
often d is close to zero. In any case we haveudu,p/2.

Equations~1! and~2! describe mutual Bragg diffraction o
the reference and signal beams from the grating. The t
light intensity remains constant during propagation. Witho
loss of generality we suppose that the dimensionless t
intensity uRu21uSu251. Equation~3! describes recording o
the grating by the light interference pattern. In the gene
case, the grating fringes, as well as the interference fring
are bent. Moreover, they are changing in time and can m
quite freely. Analytical solutions to Eqs.~1!–~3! can be ob-
tained only for a restricted amount of particular and limitin
cases@9#.

Most experiments relevant to the subject of our stud
have been performed with LiNbO3:Fe crystals. Because o
the importance of this case, we provide the reader with
relationships between the physical and dimensionless pa
eters and with the relevant numerical estimates. In this m
terial the buildup of the grating is due to the photovolta
charge transport and the linear electro-optic effect. We h
here uuu,udu!1, j5gx, andt.t/td , wherex and t are the
real coordinate and time, respectively,td is the dielectric
relaxation time,g.pn3rEpv /l, n the refractive index,l the
wave length,r the relevant electro-optic coefficient, andEpv
the photovoltaic field. Since the dielectric relaxation
LiNbO3:Fe is predominantly due to photoconductivity, th
time td is inversely proportional to the total photon flux. I
experimenttd ranges from 101 to 103 s. If the light beams are
extraordinary, we have a useful numerical estimate forl
5514 nm, namelyg@cm21# .2Epv @kV/cm#. The photo-
voltaic field in LiNbO3:Fe ranges from a few tens t
.100 kV/cm. Therefore a crystal thicknessx0 in the order
of 1 mm corresponds to a dimensionless thicknessj05gx0
much greater than one. For ordinary light polarization t
factor g is approximately three times less than for extraor
nary.

B. Fundamental amplitudes

It is important that Eqs.~1! and ~2! do not include the
time derivatives and that they are linear inR and S. This
allows us to come to general relations characterizing the
sence of the diffraction process.

Let us consider Eqs.~1! and ~2! at an arbitrary timet,
taking into account that the grating amplitudeE is a certain
5-2
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DYNAMICS OF FEEDBACK CONTROLLED . . . PHYSICAL REVIEW A63 053805
single-valued function of the coordinatej. Then we can
claim that these linear differential equations possess the
damental solutionR5Rr(j), S5Sr(j), meeting the bound-
ary conditionsRr(0)51, Sr(0)50. This solution corre-
sponds, obviously, to a testing of the spatial grating~at the
momentt) by a single beam of unit amplitude incident in th
R direction, see Fig. 1. The amplitudesRr(j) andSr(j) are
nothing else than the transmitted and diffracted parts of
testing beam.

Analogously, we introduce another fundamental solut
of Eqs. ~1! and ~2!, R5Rs(j), S5Ss(j) that meets the
boundary conditionsRs(0)50, Ss(0)51 and corresponds
to testing of the same grating by a singleS beam of unit
amplitude. Correspondingly, the fundamental amplitud
Rs(j) andSs(j) are the diffracted and transmitted parts
this testingSbeam. Further, one can check from Eqs.~1! and
~2! the following important relations:

Ss~j,t!5Rr* ~j,t!; Rs~j,t!52Sr* ~j,t!. ~4!

We have retained here the argumentt to underline that these
relations are valid for any time moment. Equations~4! ex-
press the physical equivalence of the beamsS andR in Eqs.
~1! and ~2!.

The diffractive properties of the grating are fully chara
terized by any of the above fundamental solutions. The qu
tity h5uRs(j0)u2[uSr(j0)u2 is nothing else than the diffrac
tion efficiency of the grating at timet. Furthermore we have
uRr(j0)u2[uSs(j0)u2512h.

Let now R05R(0,t) andS05S(0,t) be the input values
of the amplitudesR andS. Then the solution of Eqs.~1! and
~2! is expressed by the fundamental amplitudes,

R5R0Rr1S0Rs , S5R0Sr1S0Ss . ~5!

These relations representR andSexplicitly as sums of trans
mitted and diffracted components.

The dependence of the fundamental amplitudes ont is
governed by Eq.~3!. It is clear from this equation that th
characteristic dimensionless time of recording~buildup time!
is of the order of one. A much faster change of the inp
amplitudesR0 and S0 does not affect the fundamental am
plitudes. It can, however, strongly affect the output amp
tudes R(j0 ,t) and S(j0 ,t) because of changing reado
conditions in accordance with Eqs.~5!.

Note once more that our approach sets no restrictions
the spatial dependence of the grating amplitudes, i.e., on
shape of the grating fringes.

C. Feedback equations

To formulate the feedback equations, we introduce
phase differenceFs between the diffracted and transmitte
components of the signal beam at the output surface,j5j0.
According to Eqs.~5! we have

Fs5w r1arg@Sr~j0!#2ws2arg@Ss~j0!#, ~6!
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wherew r5arg(R0) andws5arg(S0) are the input phases o
the beamsR and S. Then the initially introduced feedbac
equations read

Fs56
p

2
. ~7!

In what follows we call them the ideal feedback condition
They define the desired value ofFs . A few simple relations
that follow from Eq.~7! can be found in@7#.

As is clear from Eq.~6!, for any nonzero values ofSs(j0)
andSr(j0), i.e., for h(12h)Þ0, we can always fulfill the
ideal feedback conditions adjusting the input phasews ~or
w r). In experiment, the phasews is used for adjustment. Ac
cordingly, we assume from now on thatw r5const; without
loss of generality this constant can be set equal to zero.

In the caseh(12h)50, when either the diffracted or th
transmitted component of the signal beam is zero at the
put surface, the introduced ideal feedback conditions m
no sense. This circumstance is, as we shall see below, d
trous for the ideal feedback.

To proceed, we need to touch the question of experim
tal implementation of the feedback. In practice, adjustm
of the phasews is accomplished with the help of a modula
tion technique. An auxiliary~small and fast! oscillating com-
ponent,dws5cd sinvt with v'103 and cd!1, is intro-
duced into the phase of the signal beam. This compon
does not affect the grating amplitude and serves only
initiation of the feedback loop. The introduced addition
phase modulation results in the replacement ofS0 by
S0 exp(icd sinvt) in Eqs. ~5!. Correspondingly, the outpu
intensity uS(j0 ,t)u2 acquires a high-frequency componen
oscillating as sinvt and cos 2vt. The amplitudes of these
components are

I v52uR0S0uAh~12h!cd sinFs , ~8!

I 2v50.5uR0S0uAh~12h!cd
2 cosFs .

Using6I 2v as an error signal in an electronic feedback lo
one can keepFs.p/2 ~or 2p/2, depending on the sign o
the feedback: positive or negative! till the producth(12h)
becomes small.

In experiment, see also below, the error signal initiate
displacement of a mirror. The essence of the feedback c
trolled motion of the mirror is that its velocity is proportiona
to I 2v . This leads to the following phenomenological rel
tion for the time derivativeẇs ,

ẇs57
1

t f
uR0S0uAh~12h!cosFs , ~9!

where t f is the response time of the feedback loop. T
introduced characteristic time incorporates the amplificat
and the integration of the error signal, as well as the pie
driver characteristics. This time has to be very small,t f!1,
to make the feedback operative. Note that the factoruR0S0u
entering Eq.~9! is half the contrast of the light interferenc
pattern at the input.
5-3
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Let us assume that the value ofAh(12h) is far from
zero and that the diffractive characteristics of the grati
namelyh and arg@Sr(j0)Ss* (j0)#, vary slowly in the scale of
t f . Then, as follows from Eq.~9!, the phasews approaches
quickly ~within a time period comparable witht f) the value
ws5arg@Sr(j0)Ss* (j0)#7p/2 that guarantees thatFs.
6p/2. In such a way, the signs7 in Eq. ~9! correspond to
the feedback conditionsFs56p/2.

In contrast to the ideal feedback conditions~7!, the phe-
nomenological equations~9! take the inertia of the feedbac
into account. This inertia becomes especially important w
the producth(12h) approaches zero. The phasews loses
here the ability to follow the desired valu
arg@Sr(j0)Ss* (j0)#7p/2 and consequently the phaseFs can
deflect strongly from its ideal value. According to Eq.~9!,
the maxima and minima of the input phasews take place
when the productAh(12h)cosFs becomes zero.

III. EXPERIMENTAL DETAILS

The main features of our experimental setup, which
similar to those described in@4–6#, can be described with th
help of Fig. 1. Two extraordinary polarized coherent lig
beams impinge upon a sample of lithium niobate in the pl
containing its optical axis. The feedback loop includes
standard lock-in amplifier~Stanford Research model SR 83
DSP!, an integrator, and a piezo-driver~Physik Instrumente
model P840.10! with the maximum displacement of 15mm.
The piezomounted mirror, placed into one of two interfero
eter lags, introduces a small-amplitude (cd.0.1 rad) fast
(v.500p rad/s) sinusoidal phase modulation in the sig
beam.

The signal from the photodetector PD is sent to the in
of the lock-in amplifier tuned to extract the error signalI 2v .
A nonzero error signal from the lock-in amplifier is accum
lated in the analog integrator feeding the piezomounted m
ror. This results in a mirror motion with a velocity propo
tional to I 2v within a dynamic range from'1024 to
'10 Hz. The output of the integrator is automatically re
~to zero/ground! when the driving voltage reaches a certa
limiting value defined by the piezodriver specifications.

In our experiments we have used a 0.35-mm-thick sam
of LiNbO3:Fe. Its 435 mm2 input/output faces are paralle
to the optical axis. The crystal has a congruent composit
contains 0.1 wt % of Fe2O3 and is grown in an oxidizing
atmosphere~air!. This is why the photoconductivity of ou
sample is relatively low@10# and the photovoltaic field is
very large,Epv'100 kV/cm atl5532 nm.

The operation of the feedback loop has been studie
two recording wavelengths. Two lasers were used:
100-mW frequency-doubled YAG:Nd31 ~where YAG is
yttrium aluminum garnet! laser (l5532 nm) and a 50-mW
He-Ne laser (l5633 nm). With the He-Ne laser we us
unexpanded light beams (1/e2 intensity diameter d
.4 mm), while the YAG:Nd31 laser beam was slightly
(d.5 mm) expanded.

The angle between the incident light beams was.12 °.
At 532 nm this corresponds to a grating spacing
05380
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.2.2 mm and to a diffusion field ofED.650 V/cm. At
633 nm the corresponding parameters are.3 mm and
.540 V/cm. In both cases the diffusion field is muc
smaller than the photovoltaic field.

IV. INITIAL STAGE OF DEVELOPMENT

An exciting feature of the ideal feedbackFs5p/2 is that
it always tends to increase the diffractivity of the gratin
during recording. This feature has no analogs among
photorefractive schemes. If the crystal is thick enough,j0

.j0
th , the diffraction efficiencyh(t) approaches its ultimate

valueh51 within a finite time. In the cased50 andu50
the threshold thicknessj0

th is given by@7#

j0
th5p1

1

p
ln2b, ~10!

whereb5uS0u2/uR0u2 is the input beam ratio.
Figure 2 shows typical examples of the feedbac

controlled behavior forh andws . The initial solid sections
of the curves~up to the points marked by the arrows! are
obtained for the ideal feedbackFs5p/2 and the dashed ini

FIG. 2. Feedback-controlled dependencesh(t) andws(t). The
solid curves correspond to the ideal feedback and the dashed
to the inertial feedback equations. The curves 1, 2, and 3 are plo
for the pairs of parametersj056.6, b51; j056.6, b515; and
j054, b56; respectively. The arrows indicate the time of switc
ing from p/2 to 2p/2 feedback conditions.
5-4
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tial sections are plotted for the corresponding inertial fe
back conditions given by Eq.~9!. For the characteristic
phasesu and d we have chosen the values 6.831022 and
6.731023, respectively, representative for LiNbO3:Fe crys-
tals. Forj0,j0

th the efficiencyh approaches its steady-sta
value.0.98 monotonously whereas the phasews tends to a
linear dependence,ws5Vst, see the curves 3. These limitin
characteristics correspond to the steady-state solution of
~1!–~3! with the frequency detuningVs maximizing h for
chosenj0 andb. This solution can easily be found analyt
cally. SinceVsÞ0, the grating is moving in steady state.

For j0.j0
th , the diffraction efficiency approaches uni

monotonously within a finite time, see the curves 1 and
The characteristic dimensionless time of this stage is gre
than or comparable with 1. The smaller the distancej0

2j0
th , the longer is this time. The phasews demonstrates a

regular behavior and approaches a certain limiting va
when h tends to 1. The difference between the solid a
dashed curves is not large forws and nearly nondistinguish
able for h at the initial stage. This difference increases,
expected, whenh approaches 1. The shorter the characte
tic time t f , the smaller the difference between the solid a
dashed curves.

The sections of the solid and dashed curves 1, 2, and
Fig. 2 that start from the time moment indicated by the
rows show what happens when we switch from thep/2 to
the 2p/2 feedback conditions. One sees that the diffract
efficiency reaches zero within a finite time. For the ide
feedback, the phasews experiences a 180° jump at the m
ment of switching whereas it changes continuously for
inertial feedback conditions. The difference between the
fects of the ideal and inertial feedback is clearly seen at
stage. The longer the time spent in the close vicinity ofh
51, the stronger this difference.

Figure 3 gives a representative example of the experim
tal dependences ofh(t) and ws(t) for the initial stage and
the p/2 feedback condition. The photorefractive respon
time is here about 200 s and the pump ratiob59. One sees
that in agreement with theory the diffraction efficien
monotinously approaches 1 whereas the input phasews
gradually increases. The initial stage ends up att'350 s
when the phasews first experiences a jump; the value ofh is

FIG. 3. Experimental dependencesh(t) andws(t) for b59 and
the p/2 feedback.
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almost saturated at this time. Figure 4 shows the depend
of the saturated value ofh on b for red (l5633 nm) and
green ~532 nm! light, which corresponds to two differen
values of the effective crystal thicknessj0. It is clearly seen
that the saturated valueh.1 can be obtained only within a
restricted interval ofb. The largerj0, the wider is this inter-
val. This feature is also in full agreement with theoretic
predictions.

Figure 5 demonstrates the spatial characteristics of
grating and of the light interference pattern at the time m
ments indicated by the arrows in Fig. 2. Ideal and iner
feedback give here essentially the same result. We see
the grating and light fringes are generally bent and they
not follow each other. The absolute value of the grating a
plitude changes considerably across the crystal. A ne
complete energy exchange between the light beams occu
the output forbÞ1. We can conclude from these data th
the language of plain~uniform! gratings~very useful for in-
tuitive and qualitative considerations! cannot generally be
applied to the analysis of feedback controlled beam coupl
This circumstance creates a serious problem for the un
standing of this phenomenon.

We know only one case, charcterized byd50, u50, and
b51, without an effect of the spatial nonuniformity. He

FIG. 4. The saturated experimental value ofh versus pump ratio
at 633 nm~a! and 532 nm~b!.
5-5
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one can check directly that the set~1!–~3! exhibits the fol-
lowing spatio-temporal solution:

R5
1

A2
ei @wr ~0!1uEuj#, S5

1

A2
ei @ws~0!1uEuj#,

E5
1

2
~12e2t!ei ~wr2ws!. ~11!

Correspondingly, we have

Ss5cos~ uEuj!, Sr5 iei ~wr2ws!sin~ uEuj! ~12!

for the fundamental solutions and

h5sin2@~12e2t!j0/2# ~13!

for the diffraction efficiency.
It is easy to see that in the regions where sin@(12e2t)j0#

.0 we haveFs5p/2 whereas in the regions where sin@(1
2e2t)j0#,0 one obtainsFs52p/2. Equations~11! show
no energy exchange between the light beams, no input p

FIG. 5. Spatial characteristics of the feedback-controlled tw
beam coupling:~a! The form of the grating fringes,~b! the spatial
dependence of the absolute value of the grating amplitude,~c! the
spatial dependence of the phase difference argE2arg(RS* ) be-
tween the grating and light fringes. The graphs 1, 2, and 3 co
spond here to the solid curves 1, 2, and 3 in Fig. 2.
05380
se

changes,ws(t)5ws(0), w r(t)5w r(0), no bending and tilt-
ing of the grating fringes, only some time-dependent tilt
the light interference fringes.

Let the thicknessj0 be smaller thanj th(b51)5p. Then
for t.0 when the idealp/2 feedback conditions are fulfilled
and the efficiencyh(t) increases monotonously from 0 to i
limiting valueh(`)5sin2(j0/2),1. If j0.p, the efficiency
approaches unity within a finite time remaining under t
control of thep/2 feedback. This behavior is in full agree
ment with the above numerical results, see Fig. 2. At ti
moment whenh(t) turns to 1 the ideal feedback conditio
Fs5p/2 fails and it cannot define the further temporal d
velopment of the system.

Now we suppose thatj0.p and sin@(12e2t )j0#,0,
which corresponds to the ideal2p/2 feedback. Here we
have a monotonous decrease ofh. If additionally j0.2j0

th

52p, this decrease ends up withh50 where the ideal feed
back conditionFs52p/2 also ceases to define the furth
development. In such a way, our analytical example confir
once more that the ideal1p/2 and2p/2 feedbacks increas
and decreaseh without any inertia and that they can contr
the system only during restricted time intervals.

Generalization of the above analytical result forbÞ1
runs into considerable problems because of the nonun
mity of the spatial grating. Our confidence that the inequa
ḣ>0 for Fs5p/2 and the inequalityḣ<0 for Fs52p/2
are always fulfilled is based mostly on the large amount
our numerical calculations.

V. WHAT IS BEYOND hÄ1?

A. General remarks

We conclude from the results of the previous section t
the idealp/2 feedback leads to a state withh51 where the
feedback conditionFs5p/2 fails. Hence the correspondin
mathematical model remains correct only within a restric
time interval and we cannot describe the system beyond
Physically, this means that the ideal feedback conditio
should be modified to overcome their inherent defect.

One of the simplest modifications is as follows. We defi
ws(t) from the ideal feedback conditionFs5p/2 only for
h,hc , wherehc is a certain critical value, such that 0,1
2hc!1. As soon ash becomes larger thanhc , we keep the
phasews equal to its last feedback controlled value. As so
ash becomes~after some evolution! less or equal thanhc ,
the feedbackFs5p/2 starts to operate again. This modifie
model is mathematically correct. It allows us to describe
whole evolution of the system and to understand the prop
ties of the ideal feedback better. Actually, it accounts for
possibility that the accuracy of the control ofws goes down
when h approaches 1 and the error signal can finally
superimposed by noise. The region whereh.hc is here pas-
sive for the ideal feedback so that we shall refer to this mo
as the passive-region model.

The inertial feedback equations~9! promise to overcome
the inherent defect of the ideal feedback in a more reali
way. As long ash is sufficiently far from 1, there is no
much difference from the ideal feedback. At the same tim

-
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DYNAMICS OF FEEDBACK CONTROLLED . . . PHYSICAL REVIEW A63 053805
in the vicinity for h(12h)5 the real features of any exper
mental setup are reflected. One will expect that the iner
feedback can operate permanently.

In the following subsections we present the results
tained numerically for the passive-region model and for
inertial feedback. Our main concerns are: What is the beh
ior of the input phasews in the long-time scale? What hap
pens with the phase differenceFs between the diffracted an
transmitted components of the signal beam? How small
the distance 12h become at the final state? What are t
main requirements on the characteristics of the feedb
loop? And, finally, what kind of predictions can be made
experiment?

An element of our consideration will be the representat
of the fundamental amplitudes by trajectories in the comp
plane. This representation is similar to those used to desc
nonlinear dynamic systems@11,12#. It gives a great deal o
additional information on the behavior of our system as co
pared with the data forh(t) and ws(t). In the subsequen
calculations we use again the values of the character
phases representative for LiNbO3, u56.831022 and
d56.731023.

B. The passive-region model

Figure 6 shows a trajectorySs(j0 ,t) for the input beam
ratio b51 and the crystal thicknessj056.6. For the critical
value of the diffraction efficiency we have taken herehc
50.99. The dashed curve marks the boundary of the pas
region that is inside a circle of radiusuSs(j0)u[A12hc
50.1 ~note the very different scales of the coordinate axe!.
One sees that the trajectory enters the passive region al
horizontally in accordance with the analytical express
~12! for Ss . Further events occur indeed inside this region
small fraction of the time spent outside is due to our discr
zation procedure. A decrease of the time step results
reduction of this fraction. Thus the ideal feedback shows
inertia: as soon as it is on, it pushes the trajectory back
the passive region so that the system develops freely alm
all the time. After several ‘‘reflections’’ from the boundar
the trajectory approaches a limit cycle~attractor!. The further
behavior ofSs(j0 ,t) is nearly periodic with a period consid

FIG. 6. Trajectory ofSs(j0 ,t) in the complex plane forj0

56.6, b51, and 0.6<t<5.
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erably less than 1. This fast periodic motion ofSs(j0 ,t) in
the passive region is accompanied by a slow motion of
amplitudeSr(j0 ,t) ~superimposed by small and fast oscill
tions! near the the unit circleuSr u51.

Figure 7 shows the dependencesws(t) and h(t) for the
limit cycle. The reflections of the trajectory from the left an
right sides of the boundary are accompanied by jumps of
input phase of almostp. These jumps are indeed due to th
fact that the feedback finds the right value of the phasews as
soon as the trajectory crosses the boundary of the pas
region. It is interesting that the times necessary to cross
region back and forth are quite different and also that
periodic phase dependence is accompagnied by a small n
tive slope, i.e., the functionws(t) includes also a linear com
ponentVst with Vs,0. It is known that such a componen
is necessary to maintainh.1 in the presence of fast phas
modulation@8#. In the caseb51 this component is due to
the nonzero value ofu. When the trajectory in Fig. 6 enter
the passive region, the maximum diffraction efficiency is
ready very close to unity and this same maximum value
curs each time half-way when crossing the passive regio

This character of the feedback operation persists when
beam ratiob ranges from 1 to.22. The main quantitative
changes are a gradual shift of the position of the attrac
towards the right-upper part of the passive region, a cer
increase of the oscillation period, and a noticeable incre
of the average slope~an increase ofuVsu).

FIG. 7. Dependencesws(t) and h(t) for j056.6, b51, and
2.26<t<3.12.
5-7
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A qualitative feature in the behavior of the system appe
when the beam ratio approaches its threshold value f
below, which isb th.23.5 for the given crystal parameter
The phase portrait forb523 is shown in Fig. 8. The trajec
tory enters the passive region nearly horizontally and not
from the real axis and becomes then nearly closed. The c
acteristic feature of this quasiattractor is that it lies ess
tially outside the passive region. This part does not disapp
with decreasing time steps. In other words, the ideal fe
back demonstrates in this limit some noticeable inertia.

Figure 9 gives the corresponding dependences ofh and
ws . One sees that the system spends a considerable pa
the time outside the passive region. The phasews experi-
ences now only a small jump when the trajectory goes o
wards that is not sufficient to push the trajectory back i
the passive region. The presence of a considerable ave
slope~a largeuVsu) is also clearly indicated in Fig. 9.

Starting from 1, a decrease ofb shifts the attractor nearly
symmetrically towards the left-lower section of the pass
region. The sign of the average slope is changing from ne
tive to positive.

On the basis of the results presented above it is not d
cult to anticipate what happens with the system if, instead
the introduction of a critical value ofh, we add a small noise
component to the error signal. Until the distance 12h is
sufficiently small, the effect of noise is not very importa
and the trajectorySs(j0 ,t) will approach zero. As soon as
is near enough to zero, the noise governs the trajectory a
walks randomly inside an effective passive region. When
random trajectory withdraws too far away from zero the
ror signal pushes it back into the passive region. Note fin
that in our experiments we did not see any sign of the
havior predicted by the passive-region model.

C. Regimes of the inertial feedback model

As our simulations show, the inertial equations~9! allow
the feedback to operate permanently. The feedba
controlled system exhibits here a great variety of regim
mostly due to the occurrence of the second character
time, t f . What is presented below is an attempt to outli
the most prominent features of the nonlinear behavior of

FIG. 8. Trajectory ofSs(j0 ,t) for b523, j056.6, and 5<t
<10.
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system for moderately thick crystals, whose dimensionl
thicknessj0 is not much greater than the threshold thickne
j0

th .
It is useful to start with the case of an intermediate be

ratio b „between 1 andb th.exp@Ap(j0
th2p)#, see Eq.

~10!…. Figure 10 shows the time dependences ofws , h, and
Fs for t f51023, j056.6, andb54. After a relatively short
initial stage, 0,t&1, the phasews shows a quite regular bu
non periodic behavior. It is characterized by almost perio
steps upwards, each of them as large as.340°. The time
distance between the time steps is.0.35. These steps pro
duce a considerable positive average slope of the depend
ws(t).

The input phase steps are accompanied by apparently
riodic oscillations of the diffraction efficiency in the vicinity
of 1 with a clear fine structure. The period of these oscil
tions (.0.35) is apparently the same as the distance betw
the phase steps. The phaseFs , responsible for the erro
signal, remains only during the initial stage close top/2; its
further behavior is characterized by strongly quasiperio
and strongly nonharmonic oscillations. This has nothing
do with the behavior prescribed by the ideal feedback c
ditions. A further increase oft makes the phase steps ofws
and the periodic oscillations ofh and Fs even more ideal.
Note that the sharp peaks and dips ofFs(t) do not strongly
affect the variablesws and h which show a rather smooth
temporal behavior.

FIG. 9. Dependencesws(t) andh(t) for j056.6, b523, and
6.4<t<7.6.
5-8
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DYNAMICS OF FEEDBACK CONTROLLED . . . PHYSICAL REVIEW A63 053805
The solid closed curve in Fig. 11~a! exhibits the trajectory
Ss(j0 ,t) for 6<t<8. During that time about seven revolu
tions of this trajectory occur. This shows clearly that t
point ReSs(j0 ,t), ImSs(j0 ,t) moves along a limit cycle
~an attractor!. This motion is clockwise and strictly periodi
in time, its period,T.0.354, corresponds to the period
h(t) andFs(t) and to the the duration of one step ofws(t),
see Fig. 10. The origin,Ss50, lies inside the limit cycle but
very close to it. This is why the peaks and dips ofFs(t) in
Fig. 10 are so sharp. Some tilt of the attractor is due t
nonzero value of the characteristic phaseu. The dashed
curve in Fig. 11~a! is the trajectory for 1<t<3; it shows the
character of the transient process. WhileSs(j0 ,t) moves
along the attractor,Sr(j0 ,t) moves with small and constan
angular velocity along the unit circle,uSr u.1. This motion is
superimposed by fast periodic oscillations of the above
riod T.

At this point it is reasonable to ask oneself how it
possible to combine the periodic behavior ofSs and cos(Fs)
with the nonperiodic behavior ofSr andws , keeping in mind
that all these variables enter the feedback equation~9!. To
clarify this important point, we representws andSr as

ws5ws
p1Vst, Sr5S r

pexp~2 iV rt!, ~14!

wherews
p andS r

p areT-periodic variables with average valu
0, Vs is the frequency detuning for the signal beam, andV r

FIG. 10. Dependencesws(t), h(t), andFs(t) for j056.6, b
54, and 0<t<3.3.
05380
a

-is the average angular velocity for the amplitudeSr . Then
the only possibility to meet Eq.~9! is to assume that

~Vs1V r !T52pN, ~15!

where N50,61,62, . . . . ThenumberN depends on the
attractor topology and may be called ‘‘effective charge.’’ F
the above attractorN51.

The frequency detuningVs @the average slope ofws(t)#
is an important observable characteristic of the feedback c
pling. As follows from Eq.~9!, it obeys the relation

FIG. 11. ~a! The orbit of Ss(j0 ,t) for j056.6 andb54; the
solid part corresponds to 6<t<8 and the dashed one to 1<t<3.
~b! The orbit of Ss(j0 ,t) for j056.6 andb56. ~c! The orbit of
Ss(j0 ,t) for j056.6 andb51.
5-9
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E. V. PODIVILOV et al. PHYSICAL REVIEW A 63 053805
V52t f
21uR0S0u^Ah~12h!cosFs&, ~16!

where the angular bracket means the average over a pe
In such a way, we have expressedVs by t f and by the
characteristics of the fast oscillations. Note thatVs is not
directly concected with the rotation rate for the amplitu
Ss . Our numerical calculations have proven the correctn
of Eq. ~16!.

We see that our representation has revealed nontrivial
tures of the periodic and transient behavior of our system
the same time we should be aware that this representatio
not complete because it does not touch on the coordinat~z!
dependences of the amplitudes.

A surprising feature is the relatively long period of th
oscillations,T.0.354. Caused by the inertial feedback, th
period is not much shorter than the photorefractive respo
time ~unity in our dimensionless notation! and much longer
than the feedback response time,t f51023. To investigate
the dependenceT(t f), we have performed the following nu
merical experiment: Starting fromt512 ~when the periodic
state withb54 is already achieved! we decreasedt f from
1023 to 431025 with a very small rate~during the time
interval 120! causing very slow~adiabatic! changes of the
characteristics of the periodic solution. During this proc
dure, the attractor decreased in size preserving approxima
the same bagel-like form as in Fig. 11~a!. The period of the
fast oscillations,T, also decreased with decreasingt f as
shown by the dashed line in Fig. 12~a!. Another interesting
question that can be answered within our adiabatic proce
is how the averagê12h& over a period ofT depends ont f .
The corresponding dependence is shown by the dashed
in Fig. 12~b!.

With good accuracy, both the dependences,T(t f) and
^12h&(t f), can be approximated by the relations

T5CTAt f /uR0S0u, ^12h&5Cht f /uS0R0u, ~17!

with CT.7 andCh.3.3. These dependences are fully co
patible with the structure of Eq.~9!. They show, in particu-
lar, that the fast oscillations of the input phasews remain
strong~comparable with 2p) even whent f→0. The propor-
tionality constantsCT and Ch vary for different attractors
and depend on the beam ratiob, which is demonstrated in
Fig. 12.

As our simulations show, the replacementb54 by b
51/4 results, roughly speaking, in the inversion of the or
about the origin. Correspondingly, this changes the sign
the general slope ofws(t) and the sign of the ‘‘effective
charge’’ N.

Next we focus our attention on the caseb56 keeping the
other parameters the same. Figure 11~b! shows the corre-
sponding attractor. It consists of two loops and the traject
moves around zero in counter clockwise direction. The s
of this attractor is considerably smaller than that of the
tractor in Fig. 11~a!. The origin is here in the central part o
the orbit. Again the trajectory performs again only one rev
lution around the origin during the periodT. It is remarkable
that the trajectory comes close to the limit cycle only fort
'20, which is much longer than for the caseb54. An adia-
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batic decrease oft f results in a gradual decrease of the s
of the attractor without any remarkable change of its for
The ‘‘effective charge’’ of this attractor is zero that mea
that Vs52V r in Eq. ~15!.

Figure 13 gives the corresponding time dependences ows
andh for 0<t<10. The average slope of the phase is n
negative, it corresponds toVs.20.924 that is much less
than for the caseb54, compare Fig. 10. This feature i
favorable for experiment because it requires less resets o
piezodriver. The fine structure~oscillations! on the graph for
ws is strongly different from the steplike behavior in Fig. 1
It is remarkable that a quite regular phase behavior~a nearly
constant slope and nearly periodic oscillations! appears as
soon ash passes its first maximum in spite of the fact th
the behavior of the trajectory is apparently irregular at t
stage. Further development results in a rather quick regu
ization of the oscillations ofws , and h. The period of the
oscillations, T.0.33, and the dependences ofT and ^1
2h& on t f are not much different from the caseb54. The
transformationb→b21 gives qualitatively the same result a
in the previous case.

Now we consider the case of equal input intensities,b
51. Here the temporal development ofSs ends up by attrac-
tion to the limit cycle shown in Fig. 11~c!. The full period
corresponds here to three revolutions around zero. This le
to a period tripling ofws(t), h(t), and other variables, se

FIG. 12. DependencesT(At f) and^12h&(t f) for adiabatically
decreasingt f , j056.6, and three different values ofb.
5-10



a

th

h

y
-
ity

pl
n

e
re
d

-
an

o

s
fe

nt
s
wn
-
for

on
so-

e
s

es

der
os-
ith-
he
nce

re-

DYNAMICS OF FEEDBACK CONTROLLED . . . PHYSICAL REVIEW A63 053805
also below. The size of the attractor is noticeably larger th
earlier; this gives larger oscillations ofh in the vicinity of
unity. The obvious asymmetry of this attractor is due to
nonzero value of the characteristic phaseu. Since this value
is very small, we should expect a strong sensitivity of t
form of the attractor to various perturbations forb51. In
particular, the adiabatic decrease oft f changes considerabl
its form in contrast to the casesb54 and 6. The large tran
sient time,t'30, can also be ascribed to the high sensitiv
of the system. The ‘‘effective charge’’ of this attractorN
53.

Figure 14 shows the dependencesws(t), h(t), and
uR(j0 ,t)u2 within the time interval 18<t<20 when the
transient process is all over. Here the periodT.0.97, it is
approximately three times larger than before. This com
cates indeed the behavior of the above variables withi
period. The average slope ofws(t) is positive and large,
Vs.19.3, the maximum distance (12h)max.0.07, and the
output intensityuR(j0 ,t)u2 shows strong eruptions above th
average value.0.76. As we have mentioned, the structu
of the attractor changes noticeably during an adiabatic
crease of the feedback response timet f . Correspondingly,
the behavior ofws(t) looks sometimes irregular. The ele
ments of fine structure, such as the presence of tripling
the period of oscillations, remain, however, quite robust.

The question arises about what happens if we cho
other values of the beam ratiob and what kind of transitions
can take place between different attractors. To give at lea
partial answer to these questions, we have performed a

FIG. 13. Dependencesws(t) andh(t) for j056.6 andb56.
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additional numerical experiments. First, we increasedb
slowly ~with the rate 0.02! from 1 to 24, starting from the
periodic state that corresponds to Fig. 11~c!. Initially, in-
creasingb results in a gradual convergence of the differe
loops of the attractor. Atb.2 the three-loop structure ha
already transformed into one loop similar to the one sho
in Fig. 11~a!. Correspondingly, the period tripling disap
pears. An apparent disappearance of the period tripling
ws(t) andh(t) occurs even earlier. The described transiti
is similar to the second-order phase transition or to the
called soft excitation of oscillations@12,13#. It is not accom-
panied by a change of the average slopeVs , but the ‘‘effec-
tive charge’’N53 transforms intoN51.

Further increasing ofb, we find gradual changes of th
form of the bagel. Withb approaching.6.8 these change
accelerate and within the interval 6.8&b&7.3 ~which t
changing byDt'15) the behavior of the trajectory becom
apparently irregular. Then, forb.7.4, a two-loop attractor
corresponding to the ‘‘effective charge’’N50 is formed, see
Fig. 15. This transition has some analogy with the first-or
phase transitions or with the so-called hard excitation of
cillations because it cannot be performed continuously w
out a sharp bend of the trajectory. It is important that t
above transition is very pronounced for the time depende
ws(t), see Fig. 16. The change of the average slope ofVs
and of the shape~but not the period! of the oscillations is
very clear despite a rather irregular behavior of the cor
sponding trajectories.

FIG. 14. Dependencesws(t), h(t), and uR(t)u for j056.6, b
51, and 18<t<20.
5-11
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An increase ofb from .7.5 to.19 is accompanied by a
gradual decrease of the size of the two-loop attractor, a
duction of its lower loop, and by a drift of its weight cent
to the left, see Fig. 17 and compare with Fig. 15. Atb.19
the attractor crosses the zero point and acquires a one-
shape that, however, shows a kind of spike. This transitio
not accompanied by a change of the slopeVs . Further in-
creasingb, the attractor becomes smoother and its s
smaller. Finally, our adiabatic procedure fails because of
approach of the threshold valueb th and the corresponding
critical slowing down@13#.

With b decreasing slowly from 22 to 1 the character
the changes remains initially nearly reversed to the one
scribed. However, the situation changes for sufficiently sm
values ofb. The transition from the two-loop to the one-loo
structure occurs only forb.4.37, i.e., some hysteresis tak
place within the interval 4.37&b&6.95. Further decrease o
b does not result in a transformation of the ‘‘bagel’’ into th
three-loop structure shown in Fig. 11~c!. The bagel-like
shape of the attractor survives up tob51.

Finally, we touch on the effect of the crystal thicknessj0
on the behavior of our nonlinear system. Forj054 we have

FIG. 15. TrajectorySs(t) for b(t) increasing adiabatically
from 6.6 to 8. Initially, the trajectory has a bagel-like form. The
after an apparently irregular behavior, it attains a two-loop str
ture.

FIG. 16. Dependencesws(t) for b(t) increasing adiabatically
from 6.8 to 7.2.
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not found any bagel-like orbits. Here the attractor cons
typically of two loops. For a sufficiently small beam ratiob
it corresponds to period doubling andN52. For b52 and
with j0 decreasing adiabatically from 6.6 to 3.5 we ha
observed a pronounced one-loop→two-loop transition simi-
lar to the one shown in Fig. 15. It take place forj0'4.6.

An adiabatic increase ofj0 from 6.6 to 15 has not shown
any sign of an onset of chaos that could be expected f
general considerations@11,12#. At b51, within the region
9&j0&9.5, we have seen a smooth transition to a two-lo
attractor withN52. Increasingj0 from 9.5 to 15 has given
only some gradual growth of the size of this two-loop stru
ture and of the period of oscillationT.

VI. EXPERIMENTAL RESULTS

For sufficiently large and small beam ratios,b*50 and
b&0.03, we did not observe any self-oscillatory regim
with our sample atl5532 nm. In steady state we had he
a considerable energy transfer to the weakest pump b
and the input phasews linearly changing in time. The dif-
fraction efficiency remained less than 1. These features a
good agreement with our theory if we take into account t
the estimated dimensionless thickness of our sample at
nm is j0'8. Some asymmetry of the above interval of t
beam ratio can be referred to the influence of the diffus
charge transport.

Within the interval 0.03,b,50 we have observed a va
riety of well recognizable oscillatory regimes at 532 nm w
permanently working feedback and diffraction efficien
very close to 1. We believe that we have detected all
regimes described in the previous subsection.

Figure 18~a! shows a typical fragment of the feedbac
controlled dependencews(t) for b510. A large constant av-
erage slope and quasiperiodic phase steps are clearly se
this plot. These elements are qualitatively the same as th
presented in Fig. 10~a!. The time distance between subs
quent steps can be estimated to be'0.2td . The dielectric
relaxation timetd is about 200 s for our experimental cond
tions. Next, Fig. 18~b! corresponds tob56.6. It shows a
considerably smaller average slope and clearly pronoun
quasiperiodic phase oscillations. The period of the osci

FIG. 17. Transformation of the form of the attractor forb in-
creasing adiabatically from 7.5 to 22.
-
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DYNAMICS OF FEEDBACK CONTROLLED . . . PHYSICAL REVIEW A63 053805
tions can be estimated as'0.3td . These features are simila
to those presented in Fig. 13~a!.

Figure 18~c! shows a representative dependencews(t) for
b51 that corresponds to period tripling, compare with F
14~a!. The full period, '0.82td , is approximately three
times larger than it is in the previous case. Lastly, Fig. 18~d!
exhibits a fragment of the time dependence that shows
intermittent behavior of the phase typical of the transi
stage forb51. Sometimes, instead of a step up, the phasews
makes a step down. A similar peculiarity has been obser
in our numerical simulations forb'1.

At l5633 nm, the system also exhibits self-oscillation
However, the permissable interval of the beam ratio,
&b&0.4, is much narrower here as compared to the c
l5532 nm. This interval corresponds to the dimensionl
crystal thicknessj0'4. The main reason for this decrease
a smaller value of the photovoltaic fieldEpv at 633 nm@10#.

VII. DISCUSSION

Several particular issues of our study are worth disc
sion. One of our important findings is that the initially intro

FIG. 18. Fragments of experimentally obtained feedba
controlled phase dependencesws(t) at l5532 nm.~a! corresponds
to b510, ~b! corresponds tob56.6, and both~c! and ~d! corre-
spond tob51.
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duced ideal feedback conditions are incapable of describ
the whole nonlinear evolution. We have found that taki
into account the inertia of the feedback loop, characteri
by a small characteristic relaxation timet f , is the natural
way to modify the ideal conditions and to ensure a perm
nent operation of the system. The value oft f is found to be
determined by the the electronic components in the feedb
loop.

During the initial stage of development, when the diffra
tion efficiency of the spatial grating,h, is not near its ulti-
mate value, 1 or 0, the modified~inertial! feedback equations
are not much different from the ideal feedback conditions.
the developed stage, the inertia of the feedback leads t
entirely-different behavior of the governing phaseFs: strong
anharmonic oscillations.

The inertial feedback leads to a behavior of the inp
phase ws(t) that is easily recognizable in experimen
namely, to fine oscillations superimposed on an aver
slope. In a periodic state, the oscillation periodT is found to
be proportional toAt f and the average valuê12h(t)& to
be proportional tot f . These results give clear predictions f
experiment and rather weak restrictions on the freque
characteristics of the feedback amplifier.

An important theoretical and experimental finding is t
occurrence of various periodic regimes with characteris
strongly dependent on the experimentally controlled para
eters, such as input beam ratio and coupling strength
particular, different regimes manifest themselves in differ
average slopes of the input phasews(t) and in different
shapes of the oscillations.

The representation of the fundamental amplitudes by
jectories in the complex plane gives a powerful tool for t
analysis of the nonlinear regimes. It allows us to classify
different attractors and to make certain judgements ab
transitions between them. In many respects, the corres
dence between different regimes is similar to the corresp
dence between the high- and low-symmetry phases in
phase-transition theory.

VIII. CONCLUSIONS

Above we have given an extended introduction into t
theory and experiment of a strongly nonlinear optical syste
the feedback controlled photorefractive beam coupling. B
ing implemented experimentally several years ago, it op
ated till recently like a black box providing experimentato
and theorists with unusual and exciting observed data.
have formulated a general theory of this nonlinear syst
that is free of unnecessary model assumptions but inco
rates the essence of the feedback operation. For typical
ues of material and experimental parameters our nume
simulations have demonstrated the occurrence of a variet
qualitatively different periodic regimes~attractors! and non-
trivial transitions between them. The theoretical results ar
good qualitative agreement with our original experimen
data for LiNbO3 crystals.
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