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Abstract
For some parametric interactions with identically zero exponential gain for
the signal wave the intensity of the idler wave can grow as a second power of
the propagation coordinate. Such an amplification is revealed for the
parametric mixing of four copropagating waves in BaTiO3; two of them are
ordinarily polarized and the two others are extraordinarily polarized. This
mixing is used to build up a coherent oscillator. A reasonable qualitative
agreement of the experimental results with the calculated data is
demonstrated.
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1. Introduction

Coherent light amplification with photorefractive crystals may
be a consequence of several frequency-degenerate (or nearly
degenerate) processes of nonlinear wave mixing: it appears
for two-beam coupling in crystals with diffusion-driven charge
transport [1] or transport via circular photovoltaic currents [2].
The parametric mixing [3] of three, four or more beams may
also result in signal beam amplification. In all these cases,
the refractive index gratings recorded in the crystal couple
the signal and the pump waves. This coupling results from
the pump wave diffraction on the index gratings such that the
signal wave gains an additional intensity.

The different types of nonlinear wave mixing are divided
into the two following classes: those that ensure a steady-state
exponential gain for the weak signal wave and others with an
imaginary gain factor, that provide only a transient gain for
the signal wave [3]. If for any process the steady state and the
transient gain can be achieved with certain configurations (e.g.
for different orientations of the signal wave) there always exist
values of parameters for which the exponential gain factor is
exactly equal to zero.

A zero gain factor does not mean that the signal wave
cannot be amplified at all. It may happen that the amplification

is achieved with no exponential but power law growth rate
in space. The aim of this paper is to show that some types
of nonlinear mixing that do not provide either a real or
an imaginary exponential gain factor can be used for light
amplification and coherent oscillation.

A special kind of frequency degenerate parametric wave
mixing is considered where the signal wave is writing a grating
with the pump wave but is not amplified itself. At the same
time the idler wave exists and is amplified at the expense
of the pump wave. The parametric mixing of superimposed
copropagating waves of type A:ee–eo in the sample [3] governs
this amplification process. This allows the design of an
amplifier–converter with an output wave that is (i) phase
conjugate, (ii) orthogonally polarized and (iii) considerably
amplified with respect to the signal wave.

We call this considered amplifier an amplifier–converter to
underline that it is not the signal wave itself but a new generated
idler wave that gains intensity and finally greatly surpasses
the intensity of the incident signal wave. With the correctly
introduced feedback such an amplifier–converter may become
a coherent oscillator. The parametric process mentioned above
is known to produce conical light-induced scattering of a single
extraordinary pump wave in BaTiO3 [4–6] and is thus called
anisotropic self-diffraction [7, 8], however, it has not yet been
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Figure 1. Wavevector diagram of the considered interaction. ke
p, ke

s ,
ko

i and ko
a are the wavevectors of the pump, signal, idler and

additional idler waves respectively, K is the grating vector.

analysed from the point of view of coherent light amplification.

2. Nonlinear wave mixing

The phase matching diagram is shown in figure 1. The pump
wave (with wavevector kp) is writing an index grating with the
signal wave (wavevector ks); both waves are propagating in the
plane normal to the crystal optical axis. The angle between the
signal and the pump wave is adjusted in such a way that the
phase matching condition is fulfilled:

2ke
p = ke

s + ko
i , (1)

where ki is the wavevector of the idler (i) wave; the superscripts
e and o denote, respectively, the extraordinary and ordinary
polarization. It follows from equation (1) that the recorded
photorefractive grating with the grating vector

K = ke
p − ke

s = ko
i − ke

p, (2)

couples the pump wave simultaneously to the signal wave and
to the idler wave, i.e. parametric mixing of three copropagating
waves occurs. For BaTiO3 the pump wave cannot be diffracted
from the recorded grating in the direction of the signal wave
because of the vanishing electrooptic coefficient r331. At
the same time the anisotropic diffraction (with the change
of polarization to the orthogonal one) into the idler wave is
very efficient because the largest electrooptic coefficient r131

is involved.
Let us consider first the experimental geometry with

two beams impinging upon the sample, the pump beam
with intensity Ip and the signal beam with intensity Is, both
polarized parallel to the crystal C-axis (extraordinary waves).
Following the description of the anisotropic diffraction
proposed in [8], one can obtain the expression for the output
intensity of the idler wave:

Ii(�) = Ip(0)

I 2
o [(γ �)2Ip(0)Is(0)]−1 + 1

, (3)

with the coupling constant γ given by

γ = [8π2n3r131kBT sin θ ]/eλ2 (4)

where Io is the total intensity, � is the interaction length, n is the
refractive index, kB is the Boltzmann constant, T is the absolute

temperature, λ is the laser wavelength, e is the electron charge
and 2θ is the angle between the pump and signal waves in air.

For relatively weak intensities of the signal and idler waves
at the output face of the sample in comparison with the pump
wave intensity (undepleted pump approximation) equation (3)
may be simplified:

Ii(�) ≈ Is(0)(γ �)2 (5)

so that the output intensity depends linearly on the signal
intensity and increases quadratically with the coupling strength
γ �. This last property is distinct from the majority of the
other amplification processes in photorefractive crystals with
π/2-shifted index gratings, that lead usually to an exponential
growth of the amplified signal with a coupling strength such
that Is(�) ∝ exp(2γ �).

The grating with grating vector K (equation (2)) also
couples the signal wave to an additional idler wave (with
wavevector ka, see figure 1). The calculated coupling strength
dependences for the output pump wave, signal wave and
additional wave are [8]

Ip(�) = Ip(0)

1 + (γ �)2Ip(0)Is(0)I−2
o

, (6)

Is(�) = Is(0)

1 + (γ �)2Ip(0)Is(0)I−2
o

, (7)

Ia(�) = Is(0)

I 2
o [(γ �)2Ip(0)Is(0)]−1 + 1

. (8)

For strong coupling (large γ �) the intensity of the additional
wave grows at the expense of the signal wave intensity.

It should be noted that for a pump beam with a plane
wavefront the transverse components of the idler wave phase
are conjugate to that of the signal wave. This was shown
theoretically and proved experimentally in [8], by observing a
converging idler wave with a diverging signal wave and vice
versa.

3. Coherent oscillator

For a coherent oscillator, the intensity of the input (signal)
wave is a part of the output intensity of the idler wave:

Is(0) = Ii(�)R (9)

where R is the generalized reflectivity that takes into account
all the losses in the feedback loop. By combining equations (9)
and (5) we obtain the threshold condition of self-oscillation:

(γ �)th =
√

1/R. (10)

To obtain an oscillation in a lossless cavity (R = 1) it is
necessary to ensure (γ �) � (γ �)th = 1.

With the boundary condition given by equation (9) we
obtain from equation (3) the intensity of the oscillation wave
as a function of the coupling strength γ �:

Ii(�) = [Ip(0)/2R]
[
(γ �)

√
(γ �)2 + 4(1 + R) − (γ �)2 − 2

]
.

(11)
One can see that for R = 1 the oscillation starts with zero
intensity at γ � = 1 and that the oscillation intensity saturates
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Figure 2. Calculated coupling strength γ � dependences of the idler
wave (1) and signal wave (2) for the coherent oscillator with R = 1.

at Ip(0) for large γ � (figure 2). It should be noted, however,
that for R = 1 the oscillation wave does not leave the cavity
in the direction of the idler wave. At the same time, after one
round trip in the feedback loop it is released in part from the
cavity as a signal wave s. The output intensity of the signal
wave can be calculated from equations (7), (9) and (11):

Is(�)

Ip(0)
=

[
Ii(�)

Ip(0)
−

(
Ii(�)

Ip(0)

)2
]

R. (12)

Curve 2 in figure 2 represents the coupling strength
dependence of Is(�). The intensity Is(�) increases at first with
γ � and then reaches a maximum and starts to decrease. This
depletion for large γ � values is related to the intensity growth
of the additional wave, Ia(�); this wave can also be used as an
output wave of the oscillator.

4. Experiment

The schematic representation of the experimental arrangement
is shown in figure 3(a). A nominally undoped sample of
BaTiO3 (measuring 3.6 × 6.1 × 6.0 mm3 with the optical axis
normal to the interaction plane) is exposed to the pump wave
p and the signal wave s making an angle 2θ ≈ 12◦. The phase
matching condition (equation (1)) imposes a rather narrow
acceptance angle window for the signal wave, of the order of a
few minutes of arc (roughly defined by the angular selectivity
of the recorded grating). This is why a fine adjustment is
needed, which is performed by a crystal rotation by a small
angle to maximize the steady-state intensity of the idler wave.
An unexpanded light beam from an Ar+ laser (0.515 µm, single
mode, single frequency) is divided into two parts to form the
signal and pump waves. By introducing the feedback as shown
in figure 3(b) this amplifier can be transformed into a coherent
oscillator.

With the experimental arrangement described above
(figure 3(a)), we study the conversion of the signal wave into
the idler wave with amplification. The intensity of the idler
wave gradually increases until the saturation value is reached
(figure 4). By decreasing the intensity of the signal wave
with an additional phase retarder and a polarizer (not shown in
figure 3(a)) we check at first that the saturated intensity of the
idler wave linearly depends on the input intensity.

Figure 3. Schematic representation of the experimental
arrangement to study the amplification (a) and the coherent
oscillation (b). PRC is a photorefractive crystal, M is a mirror, BS is
a beam-splitter, λ/2 is a half-wave plate, P is a polarizer, Sh is a
shutter, D is a photodetector and E is the erasing beam; o and e
denote ordinary and extraordinary polarizations of the light waves.

Figure 4. Measurement of the temporal dynamics for the idler
wave. The output intensity of the idler wave is normalized to the
intensity of the signal wave transmitted through the sample with no
pump beam.

An additional erasing light beam that is ordinarily
polarized is sent to the sample (beam E in figure 3(a)). By
changing its intensity with the half-wave plate and the polarizer
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Figure 5. Coupling strength γ � dependence of the idler wave
intensity for Is/Ip ≈ 10−4. The open circles represent the
experimental values while the solid curve shows the best fit to a
power-two dependence.

(see figure 3(a)) the coupling strength γ � is controlled since

γ � = (γ �)o

[Ierαo cos2(2β)/Ioαe] + 1
, (13)

where (γ �)o is the coupling strength with no erasing beam, Ier

is the initial intensity of the erasing beam and β is the phase
retarder angle with respect to the sample C-axis direction.
The absorption coefficients αo,e for different light polarization
appear in equation (13) to take into account the difference in
photoconductivity for an ordinary or an extraordinary wave.
Figure 5 shows the dependence of the idler wave intensity on
the coupling strength γ �. The solid curve represents the fit to
the power-two dependence.

Two mirrors are used to build a feedback loop for the
coherent oscillator (figure 3(b)). A fraction of the intensity of
the idler wave is reflected by these mirrors back to the input
face of the sample in the direction of the signal wave. As the
idler wave is an ordinary wave and the signal wave should be
an extraordinary one, a phase retarder (half-wave plate) is put
inside the feedback loop. A shutter Sh cuts the signal wave,
which is used only for cavity adjustment. Like several other
configurations of photorefractive oscillators (semilinear, ring
loop, two interaction regions [9]) this one has an unclosed
cavity: the oscillation wave is leaving the cavity after one
round trip but together with the pump wave it maintains a
certain constant diffraction efficiency of the photorefractive
grating. The anisotropic diffraction of the pump wave from this
grating permanently supplies new photons to the oscillation
wave.

The dynamics of the oscillation wave intensity is shown
in figure 6. The striking difference in the temporal behaviour
of the amplified wave (figure 4) and of the oscillation wave
is evident: the intensity of the idler wave increases gradually
from the very beginning of the exposure and then saturates
while the onset of the oscillation is obviously delayed by a
certain time called tos. No regular time variation in saturated
oscillation intensity is observed; this proves the absence of
a frequency shift of the oscillation wave with respect to the
pump wave. Random fluctuations of the output intensity may
be caused by technical factors (such as insufficient mechanical
stability or air convection). It might be expected that, because
of its adaptive nature, this oscillator with a phase conjugate

Figure 6. Measured dynamics of the oscillation wave.

Figure 7. Oscillation intensity (a) and oscillation switch-on time (b)
versus effective reflectivity. The symbols give the measured values
and the solid curves show the theoretical fit.

element inside the cavity should be less sensitive to arbitrary
phase distortions. This is true however only for relatively slow
phase variations with a characteristic time exceeding that of
the photorefractive response time.

Furthermore we measure the dependence of the saturated
oscillation intensity and oscillation switch-on time tos on cavity
losses (figure 7). The losses are introduced by a rotation of the
phase retarder in the feedback loop to a certain angle β. This
rotation decreases the intensity of the feedback component
with the necessary polarization (ordinary wave), i.e. it is
equivalent to the decrease of the cavity mirror reflectivity as

Reff = Ro cos2(2β) (14)

where Ro stands for the equivalent initial cavity mirror
reflectivity.
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Figure 7(a) clearly shows that the oscillation exists only
for Reff exceeding a well defined threshold value. The
output oscillation intensity increases at first with the effective
reflectivity Reff but it obviously falls off for large values of
Reff . The oscillation switch-on time, in contrast, is decreasing
with Reff ; it goes to infinity exactly at the threshold (see
figure 7(b)).

5. Discussion

Let us now compare the experimental results with the
calculated ones. For a small input signal (Is ≈ 10−4Ip) the
intensity Ii of the idler wave generated in this interaction
increases proportionally to the input intensity Is, in agreement
with equation (5). It is amplified as the second power
of the coupling strength (figure 5), also in agreement with
equation (5). The ultimate amplification Ii(�)/Is(0) close to
50 leads to an evaluation of the ultimate coupling strength:
γ � ≈ 7. This value is only 25% smaller than the theoretical
estimate deduced from equation (4), with r51 = 1200 pm V−1,
n ≈ 2.5, λ = 0.515 µm and at the ambient temperature.
The small difference stems from the fact that the space-charge
screening is not taken into account in the theoretical expression
given by equation (4).

With the value γ � ≈ 7 one can expect to obtain the self-
oscillation in the cavity shown in figure 3(b) for a mirror
reflectivity as small as R = (1/γ 2�2) ≈ 0.02. In fact
the threshold reflectivity of the cavity mirror is much larger,
R ≈ 0.24 (see figure 7). This is explained, in part, by other
losses such as the Fresnel reflections from the sample faces,
the linear absorption of the crystal, the imperfect reflectivity
of the feedback loop mirrors and the diffraction losses, but
the most important contribution to the losses originates from
the high angular selectivity of the background parametric
process.

Equations (11) and (12) give the output oscillation
intensity as a function of the cavity mirror reflectivity R. It
should be underlined, however, that the way the losses are
introduced in our experiment differs from the simple use of
the semi-transparent mirrors to form a cavity. The half-wave
plate does reduce the feedback as described by equation (14)
but in the zeroth approximation it does not change the total
fluence in the sample, Io = Ip(0) + Ii(�) (we neglect the small
difference in the absorption coefficients for ordinary wave and
extraordinary wave here). Keeping this in mind we obtain from
equations (11) and (12) the oscillation intensity:

Ii(�)

Ip(0)
= − 1

R
− (γ �)2

2R
+

√
(γ �)4 + 4(γ �)2/(1 + R), (15)

Is(�)

Ip(0)
= Ii(�)

Ip(0)
−

[
Ii(�)

Ip(0)

]2

R. (16)

The first term in equation (16) does not contain R because
both the extraordinary wave with intensity proportional to R,
and the ordinary wave with intensity proportional to (1 − R),
are transmitted in the same direction, that gives in total a term
independent of R. The second term keeps R because only
an extraordinary component of the incident signal wave (with
intensity proportional to R) is diffracted from the grating; the

ordinary component in the incident signal wave is not Bragg
matched to the grating.

Note that the squared coupling strength and the reflectivity
enter equations (15) and (16) only as a product; this results
in a self-similarity of the dependences Ii,s(�) = f (R) and
Ii,s(�) = f (γ 2�2). On the other hand it allows us to
renormalize γ 2�2 in such a way that it is reduced to include
all cavity losses except those introduced by a half-wave
plate. The solid curve in figure 7(a) represents the fit of the
experimental data according to equation (16) with Reff given
by equation (14). Qualitatively the calculated dependence
corresponds quite well to the experimental one except in the
vicinity of the threshold, where the measured dependence is
more abrupt. The value of the efficient coupling strength
(including losses) extracted from this fit is (γ �)eff ≈ 2.4,
i.e. less than half γ � ≈ 7, measured from the idler wave
amplification.

The oscillation switch-on time increases dramatically near
the threshold of oscillation (figure 7(b)). This behaviour is
typical for all coherent oscillators and reveals the similarity of
the oscillation threshold with a phase transition temperature
in solid-state physics [10–12]. The solid curve in figure 7(b)
represents the data fit to the dependence 1/(R − Rth) with
Rth standing for the threshold value of the effective mirror
reflectivity. The value extracted from the fit, Rth ≈ 2.4, is
the same as that measured directly from the dependence of the
oscillation intensity versus Reff .

To conclude, it has been shown that the parametric mixing
with no exponential gain for the signal wave (the real part of
the coupling constant is identically zero) may provide idler
wave amplification. In spite of the fact that this amplification
is less efficient since the process obeys a law (γ �)2 instead
of exp(γ �), it can be used successfully to build up different
coherent oscillators.

While a power law amplification is rather unusual for
photorefractive crystals with nonlocal nonlinear response
(index grating π/2-shifted with respect to the light fringes)
it seems to be standard for frequency-degenerate nonlinear
interactions in media with local response, for example in
χ(3)-media. One can easily find descriptions of numerous
experiments on backward-wave four-wave mixing in different
χ(3)-materials where the intensity of the phase conjugate wave
is measured to increase as tan2(γ �), i.e. (γ �)2 for small-
signal amplification. Papers reporting on coherent oscillation
with χ(3)-media are much less frequent (see for a review,
e.g., [13]).
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