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Threshold Behavior in Formation of Optical Hexagons
and First Order Optical Phase Transition
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The dynamics of optical hexagon excitation is studied experimentally in photorefractive barium
titanate. The hard mode of the oscillation onset is discovered as well as a pronounced hysteresis loop
in the dependence of the hexagon intensity on the crystal coupling strength. The analogy of excitation
threshold of optical hexagon and first order optical phase transition is confirmed.

PACS numbers: 42.65.Hw, 42.65.Pc, 42.65.Sf, 47.54.+r
Starting from publication of Haken [1] it has become
clear that the onset of oscillation in lasers can be
considered as a kind of nonequilibrium optical phase
transition. Below the threshold an active medium emits
spontaneous radiation with a rather broad spectrum; the
angular distribution of the emitted light is uniform in a 4p

steradian solid angle. Above the threshold considerable
narrowing is observed for both the temporal and the
spatial spectra of radiation.

The control parameter of phase transition in lasers is
the pump intensity; the normalized laser intensity may be
considered an order parameter. For a free-running solid
state laser the oscillation intensity is zero exactly at the
threshold, i.e., the order parameter changes continuously
from zero to finite value in the vicinity of transition. This
behavior is typical for the second order phase transition.

A critical slowing down of fluctuations has been
observed near the threshold, and critical indices (close to
unity) were evaluated, also pointing to the second order
phase transition [2]. At the same time a laser with the
bleachable dye in the cavity (Q switched) exhibits the
hard onset of oscillation, with a discontinuous jump of
intensity to a certain finite level at threshold; this behavior
is analogous to the first order transition.

Recently the analogy with phase transition was dis-
cussed also for coherent oscillators based on nonlinear
wave mixing in photorefractive crystals [3,4]. In pho-
torefractive coherent oscillators the temporal frequency of
radiation is nearly the same as the frequency of the pump
wave. The changes in the spatial distribution of radiation,
however, are as large as in usual lasers: A highly colli-
mated light beam is generated above the threshold, while
wide-angle light-induced scattering is observed below the
threshold. Above the threshold a single high-amplitude
3D refractive index grating replaces a multitude of small-
amplitude, arbitrarily oriented “noisy” gratings existing
below threshold.

For photorefractive oscillators the control parameter
is the coupling strength (coupling coefficient g times
interaction length �). With the order parameter, one can
choose either the diffraction efficiency of the developing
grating or the phase conjugate reflectivity (both quantities
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are zero below the threshold and saturate to unity for
lossless optimized cavity, with increasing g�).

A number of possible optical configurations of the
photorefractive coherent oscillators [5,6] are much larger
than that of usual lasers: Their optical cavities can
be open; the oscillation may occur without any cavity.
This results in a larger variety of physical properties of
oscillators which we discuss further.

Until now the threshold behavior of two coherent
photorefractive oscillators was considered from the point
of view of the similarity to phase transition: of the ring-
loop oscillator and the double phase conjugate mirror
(DPCM). It has been shown that the onset of oscillation
in these configurations of coherent oscillators has features
similar to the second order phase transitions [3,4].

The purpose of this paper is to show that some
photorefractive oscillators exhibit the threshold behavior
similar to the first order phase transitions in a natural
way, even without any Q switch inside the optical cavity.
This statement is proved with a particular example of
hard excitation of optical hexagons in a photorefractive
crystal [7]—a kind of mirrorless coherent oscillation with
frequency-degenerate backward wave four-wave mixing.

Three typical calculated dependences of the oscillation
intensity on coupling strength were reported for photore-
fractive oscillators [5,6,8]. The first one shown in Fig. 1a
is characteristic for the oscillators with closed cavities
(such as Fabry-Perot or ring cavity), for the ring-loop
oscillator and for the DPCM [5,6]. In these oscillators
the output intensity (and phase conjugate reflectivity) is
zero exactly at the threshold coupling strength g�th and it
gradually increases with increasing g�. In such a way
there is no discontinuity in the order parameter in the
vicinity of the threshold.

The second known solution for the output intensity is
shown in Fig. 1b; it is characteristic for the semilinear
oscillator and for the Feinberg’ Cat Conjugator [5,6]. The
dependence on coupling strength is double valued here
and it does not intersect the abscissa at any finite g�
value. These oscillators need a certain seeding radiation
to be switched on; usually the light-induced scattering is
sufficient to start the oscillation [9].
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FIG. 1. Calculated coupling strength dependence of oscilla-
tion intensity normalized to pump intensity for the (a) ring-loop
oscillator, (b) semilinear oscillator, and (c) ring-loop oscillator
with photorefractive amplifier inside the cavity.

The third type of solution (Fig. 1c) was first obtained
for the ring-loop oscillator with a photorefractive ampli-
fier inside the loop [8]. Here the exact value of threshold
g�th exists but the solution is double valued for a cer-
tain interval of g� below the threshold. The results of
recent calculation [10] indicate the same type of solution
also for the excitation of optical hexagons in photorefrac-
tive crystals. Similar solutions are also known for optical
hexagons in Kerr or resonant media [11–13].

One of the arguments used to prove the analogy
between the oscillation onset in DPCM and second
order phase transition [4] is the similarity of equations
describing the two processes. The steady-state solution
for the DPCM phase conjugate reflectivity, jApc�Asj � a,
is [6]

a � tanh�ag��g�th� , (1)

where Apc and As are the complex amplitudes of the
phase conjugate (oscillation) wave and signal wave,
respectively. By substituting a ! M�M`, g� ! T21,
and g�th ! T21

c , one can obtain the equation describing
the ferromagnetic phase transition [14],

M�M` � tanh�MTc�M`T� , (2)

where M is the magnetization, M` is the ultimate magne-
tization when all spins are aligned, T is the temperature,
and TC is the Curie temperature.

Both Eqs. (1) and (2) describe the second order phase
transition with the continuous variation of the order
parameter (jApc�Asj and/or M�M`) near the critical point
(see Fig. 1a). It should be emphasized, however, that
for some other photorefractive oscillators (e.g., for the
semilinear oscillator) Eq. (1) is still valid for a certain
variable a, but this a is related to jApc�Asj in a much more
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complicated manner [5]. This results in quite a different
solution for oscillation intensity (Fig. 1b), resembling the
first order phase transition.

It is obvious that for the second and third types of so-
lution (Figs. 1b and 1c) a hard excitation of the oscilla-
tion occurs, i.e., the oscillation starts at the threshold from
a certain finite intensity. This behavior is similar to the
first order phase transition; at the threshold g�th, both the
derivative of the order parameter and the order parameter
itself undergo the discontinuous change.

The characteristic feature of first order phase transition
is the hysteresis effect. This can be easily seen, e.g., from
the calculated dependence of Fig. 1c: When increasing
the coupling strength one can switch on the oscillation
only at g�th, but for the decreasing coupling strength the
oscillation persists at g� , g�th.

Below we describe the first observation of new features
of optical hexagons in photorefractive BaTiO3:Co includ-
ing the well-developed hysteresis loops near the threshold
of excitation.

The hexagons appear when the focused light beam of
an Ar1 laser illuminates the 2-mm-thick Z-cut sample
and the highly reflecting flat mirror is placed just behind
the sample to produce the counterpropagating pump wave
[7]; see Fig. 2a. The distance L between the sample and
mirror M is about 1 mm, so that not only the pump
wave but also the generated sidebands of the hexagon
are reflected back into the interaction region of nearly
300 mm diam. (The angular separation of the sidebands
from the pump beam is about 1±.) The sample is tilted
roughly to 45± to pump waves to profit from the large
electro-optic constant r42 of BaTiO3 and to diminish the
losses for Fresnel reflection.

The excitation of hexagons as shown in Fig. 2b is ob-
served at all blue and green Ar1-laser wavelengths tested.
The interaction is strongly nonlinear: multiple high or-
ders (up to 3K� and

p
12 K�, where K� is the transverse

FIG. 2. Experimental setup (a) and 3D plot of the steady-
state far-field intensity distribution on a screen S (b). CL is a
converging lens, BS is a beam splitter, M is a mirror, and HL
is a halogen lamp.
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grating vector of the principal hexagon) are observed on
the screen in steady state apart from six main spots.

If the photoconductivity of photorefractive crystal is
higher than dark conductivity (which is usually the case)
the coupling strength g� is independent of the light
intensity. We introduce the intensity dependence of g�
artificially by illuminating the sample with the auxiliary
incoherent light from a halogen lamp (HL in Fig. 2). The
intensity of an additional illumination is chosen in such a
way as to ensure the comparable photoconductivities from
the laser light and from incoherent light. The intensity
dependence of g� is measured directly from the beam
coupling of two counterpropagating pump waves, with
the same experimental setup. No mechanical action is
necessary to change g� in this technique; this results
in better stability of optical setup and allows for easy
detection of the threshold behavior.

Figure 3 shows the coupling strength dependence
of one hexagon spot for the increasing (open squares)
and decreasing (filled dots) coupling strength for dif-
ferent spacing L between the sample and feedback
mirror.

One can see from Fig. 3 that (i) the oscillation starts
discontinuously, i.e., the intensity of the hexagon spot is
finite just above the threshold (hard mode of excitation);
(ii) the threshold value of the hexagon intensity is roughly
independent of L; (iii) the threshold coupling strength,
however, is obviously increasing with the spacing;
(iv) a distinct difference exists between the coupling
strength where the oscillation starts for the increasing
g� and where oscillation disappears for the decreasing

FIG. 3. Coupling strength dependence of hexagon intensity
normalized to the input wave intensity. L � 1.3, 1.8, and
2 mm for a, b, and c, respectively.
g� (optical bistability, hysteresis); (v) the hysteresis loop
becomes more narrow with increased spacing.

The theory [10] predicts the hard mode of excitation
with the explosion-type development of the hexagon
structure. The calculated threshold g�th is increasing
with the increasing L (see branch 1 in Fig. 3 of [10]). In
our experiment this increase of g�th can have one more
reason: the larger the L, the smaller the spatial overlap of
the reflected side lobes with the pumped area becomes,
i.e., the losses become larger.

The computer simulation for the initial intensity of the
hexagon spot at the threshold, normalized to the for-
ward pump intensity, gives 0.06–0.05 for the experi-
mental interval of L variation. The measured values are
5–6 times smaller; the discrepancy can be explained in
part by different losses not taken into account in the cal-
culation (due to crystal absorption, Fresnel reflection from
the sample faces, etc.). At the same time, the simula-
tion predicts relatively weak dependence of the thresh-
old hexagon intensity on L, in good qualitative agreement
with the experiment.

The hard excitation of optical hexagons in photorefrac-
tive crystal should have a particular temporal development
as follows from the calculations of Ref. [10]: After the
beginning of exposure of a virgin sample (with all previ-
ously recorded photorefractive gratings erased) at first a
pronounced conical light-induced scattering appears (ring
on the screen). Within the linear stability analysis this
corresponds to the growth of intensity of a large number
of oblique beams. The intensity distribution in the ring
is arbitrary and depends on fluctuations of the seeding
radiation.

For well-developed scattering the interaction between
particular components of scattered light becomes impor-
tant. If, by chance, three components are present with the
transverse wave vectors K�j , making the angles p�3 to
each other, the evolution of the field amplitude Aj for ev-
ery component is governed by the equation [10]

≠Aj�≠t � nAj 1 UA2
j , (3)

where n is an increment (growth rate of the linear
instability) and U is the matrix element for the interaction
of three hexagon side bands. For finite amplitude of the
initial seed Aj�t � 0� � Aj0, the solution of Eq. (3) is

Aj � Aj0n���n 1 UAj0� exp�2nt� 2 UAj0� , (4)

i.e., for a certain tcr . 0 the explosion-type growth of
intensity to infinite value is predicted.

This solution is obtained in undepleted pump approxi-
mation; the ultimate intensity of all hexagon spots cannot
become larger than the input pump intensity. In fact, the
intensity of the hexagon spots saturates at much smaller
values because of the development of high orders, which
stabilize, according to [10], the hexagon intensity. In a
formal way the additional terms, with higher powers of
Aj , appear in Eq. (3) which results in the modification of
the solution.
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FIG. 4. Temporal dynamics of light intensity scattered along
the conical surface where hexagon self-develops. Patterns a,
b, c, and d correspond to particular exposure times shown by
arrows.

Figure 4 represents the temporal development of the
light intensity scattered along the cone with the apex
angle equal to the largest angular separation of two
hexagon spots. The pictures show the far-field intensity
distribution for several characteristic exposure times.

It is quite obvious that details of the described calcula-
tion are confirmed by the experimental observations. Let
us emphasize the two most important: �i� The character-
istic time intervals, one with nearly uniform ring-shaped
light-induced scattering and the other with pronounced
hexagonal patterns are well separated from each other by
the steplike change in intensity (hard excitation); �ii� the
steady-state far-field intensity distribution contains more
than 36 well-detectable spots (higher orders stabilize the
hexagon intensity).

All experimental results presented in this Letter show
that the optical hexagon emerges from the noise at thresh-
old with certain finite intensity. Thus, the regular refrac-
tive index gratings which couple the hexagon side bands
to the pump waves appear at threshold also with nonzero
diffraction efficiency, i.e., discontinuously. Together with
the detected optical bistability in the coupling strength de-
pendence of hexagon intensity, this proves unambiguously
the observation of first order optical phase transition.

The subcritical bifurcation seems to be a universal fea-
ture of hexagon formations wherever they are observed
[15], in fluid mechanics as well as in optics. It should be
emphasized, however, that the origin of optical hexagons
in our experiment is quite different from that considered
in [11–13]. Usually the diffraction inside the slice of
nonlinear medium is neglected and diffusion is supposed
to wash out the gratings formed by counterpropagating
waves [16]. In the considered experiment just the reflec-
tion gratings couple the hexagon side lobes to counter-
propagating pump waves because of the special choice of
interaction geometry. Furthermore, the transverse inten-
sity variation (in a plane normal to the pump waves) does
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not affect the refractive index in Z-cut BaTiO3, as distinct
from media with Kerr-type nonlinearity and saturation
nonlinearity, where hysteresis was previously considered
and observed. Thus the first experimental observation of
the subcritical behavior of photorefractive hexagons re-
ported in this Letter confirms that this type of bifurcation
diagram is intrinsic to all hexagonal patterns. In the main
context of our work it points to first order phase transition
for this specific photorefractive oscillator.

Less pronounced hysteresis was detected for the Fein-
berg’ Cat Conjugator [17] and for the semilinear coherent
oscillator [18], indicating that these oscillators are also op-
tical analogies of first order phase transition.
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