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Abstract. The coherent oscillation, because of nearly degenehange (and therefore gain factor and diffraction efficiency)
erate four-wave mixing in photorefractive crystals with two because these two gratings areut of phase with each other.
types of movable charge carriers, occurs at two spectral lines Only one exception exists to our knowledge, which is the
symmetrically shifted with respect to the pump frequencysuccessful exploration of the so-called temperature-intensity
Consequently the output oscillation exhibits the high conresonance in semiconductors [11,12]. By working in an ex-
trast intensity modulation. The frequency separation of twdernal electric field in carefully selected conditions (photore-
oscillation modes (and modulation frequency of the outpufractive material with special parameters, well-adjusted tem-
intensity) depend on the incident light intensity and spatiaperature, intensity, polarization, and angle of incidence of the
frequency of the developing grating. A model is presentedecording waves, etc.) it becomes possible to change the mu-
explaining this type of oscillation by the two-maxima shapetual phase shift of the two gratings fromto less thant/2

of the gain spectrum in crystals with sufficiently different and ensure in such a way the constructive interference. The
relaxation times of two space-charge gratings, one formeddvantage of this technique is that it provides automatically
by movable electrons and the other one by movable holether/2 phase shift of the resulting phase grating with respect
The experimental data for coherent oscillator with tin hy-to the light fringes even in a moderate dc electric field. The
pothiodiphosphateSn:P,Ss) are in reasonable quantitative best published result is the enhancement of the gain factor in

agreement with the calculations. InP:Fecrystal up ta31 cnm ! in 10 KV/cm electric field [12].
In the present article we analyse a specific kind of
PACS: 42.65Yj; 42.65Sf; 42.65HwW electroryhole competition in photorefractive crystals, with

considerably different (several orders of magnitude) dielec-
tric relaxation times for electron and hole subsystems. It has

. ) ) been shown in our previous publications [13, 14] that differ-
Quite often a coherent light used for the recording of phogn four-wave mixing processes with nearly (but not exactly)
torefractive grating excites two types of movable carriersgegenerate frequencies of interacting waves can be at least
the holes and electrons, simultaneously. After the pioneelss effective as in the single-carrier case. Now we report on

ing work of E. Kratzig proving the possibility to switch from 4 ticular properties of the coherent oscillators (photorefrac-
the dominant electron photoconductivity to hole conductivity;je lasers) using these materials.

in iron-dopedLiNbO3 by the thermal treatment of the sam-

ple in oxygen atmosphere [1, 2] an abundance of publications

appeared, experimental (see, for example, [3—6]) as well ag Experiment
considering theoretically the consequences of ele¢hole

competition (see, for e>'<ample, [7-10]). AII _thgse and othefin hypothiodiphosphateSfuP,Ss, SPS) [13—16] is chosen
related works resulted in the rather pessimistic general conyg 4 typical crystal with two types of movable carriers. The
clusion that the formation of two gratings, one via the redisyistence of two gratings with strongly different decay times
tribution of the photoexcited electrons and the other via thef,om seconds to milliseconds for the fast grating and from
motion of the holes, inhibits the steady-state refractive i”dei—linute to several minutes for the slow one) was revealed both
S in the dynamics of the two-beam coupling [15] and diffrac-
*Like many other colleagues | benefited enormously during my visits totion efficiency [16]. The crystals are sensitive in the red and
Osnabruck from the stimulating, creative and friendly atmosphere createfagr-infrared region of the spectrum [17]; inthe present work

by Prof. Dr. Eckard Krétzig in his laboratory. Thanking him for his gracious : - . _
hospitality it is a great pleasure to wish him, one of the fathers and univerIhe He-Ne laser “ght is used to get the IargeSt pOSSIble phO

sally recognized leaders in the physics of photorefraction, a very happy 60fPrefractive response. All measurements are performed with
birthday. the sample K3 (type 1 [17]) of tin hypothiodiphosphate; the
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results with other samples exhibiting pronounced electron 9 T T T T
hole competition (type 1) are qualitatively similar.
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1.1 Amplification of coherent light waves

The traditional two-beam coupling geometry (Fig. 1) was
used to study the amplification of a weak signal wave in the
presence of the strong pump wave. The output beam from
He-Nelaser 0.63um, TEMyo, linearly polarized in the plane
of drawing) is split into two beams recording a holographic O
grating in SPS sample. The signal-to-pump intensity ratio it ) . .
about 1:1000. When the pump wave is sent to the sample i 0 1 2 3 4
addition to the weak signal wave the intensity of the signa . .
wave increases rapidly reaching the maximum value which i. Grating Spacing A, pm
180 times higher than the initial one. With further illumina- Fig. 2. Grating-spacing dependence of the transient gain factor. Total light
tion the intensity of the amplified wave is decreasing slowly;ntensity in the sample i = 3 W/cm?
saturating at a value which is 45 times smaller than the peak
value. Qualitatively the dynamics of the two-beam coupling
atA = 0.63umis similar to that ak. = 1.06 um [16] for SPS  dependences for the characteristic relaxation time of the elec
samples of type 1 [17] thus proving the formation of twotron and hole gratings are shown in Fig. 3a,b, respectively.
out-of-phase space-charge gratings, one formed by movablde relaxation time constants are evaluated from the beam-
electrons and other formed by movable holes. coupling experiments with the overall intensity in the sample
Figure 2 shows the grating spacing dependence of thk = 3 W/cn?.
maximum transient gain factor. The data are corrected for From the comparison with the theory of space-charge
incomplete overlap of the finite-size recording beams withgrating formation [24] the conclusion follows that for the
Gaussian intensity distribution (see Appendix in [16]). Moreelectron (fast) grating the Debye screening length is larger
than7 cn! gain factor is reached for grating spacing close
to the Debye screening length ~ 1.5-2 um. For the sam-
ple thicknesg = 9 mmthe coupling strength i5¢ ~ 5.4, i.e.,

ain Factor I, cm’
(98]

-

is larger than the threshold coupling strength for nearly al 0,02 T ' ' a)
known photorefractive coherent oscillators (providing negli-
gible cavity losses). " =
The dynamics of the build-up of each of the two space "+
charge gratings is nearly exponential; the grating spaciné *
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Fig. 1. Schematic representation of the experimental setup for the study dfig. 3a,b. Grating-spacing dependence of characteristic relaxation time for
the two-beam coupling. M1-M3 are the mirrors, BS is the beam splitter, Stthe fast grating & and slow grating if) for the intensity of interacting
is the shutter, and PD is the photodetector waveslo = 3 W/cnm?
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than the diffusion length whereas the opposite relationshi 5
holds for the hole (slow) grating. The data of Figs. 2 and &

can be used also for evaluation of the characteristic transpc 5 4 ZNWVVWVWVW
lengths (Debye screening length, diffusion length) and effect <,

ive trap densities. z
3
=
L
=

1.2 Coherent oscillation in ring-loop geometry Té 2

Figure 4 represents schematically the experimental setup f«g 1

the study of the coherent oscillation. The pump wave trans
mitted through the sample is reflected back by the mirrors M@ 0 . .
and M5. In such a way the ring-loop oscillator [18] is built. 0 50 * 100 ' 150

200 250

The length of the loop is usually larger than the coherenc )
length of the lasers 15 cn) to exclude the possibility of the Timet, s

reflection gratings recording in SPS. Mirrors M3 and M5 canrig. 5. Temporal variations of the oscillation intensity for the incident pump
be repositioned in such a way that the angle of the loop neantensity I, = 3 W/cn¥ and grating spacingt = 0.9 um
the sample can vary fro® to 45°. The beam splitter M4
and the additional mirror M2 with the receiver PD and aper-
tures D1 and D2 are used to record the beat-frequency magample. The onset of oscillation occures with a certain time
for evaluation of the frequency shift. When shutter Sh cutglelay after the beginning of the exposure (a manifestation
the beam from mirror M2 the detector PD measures the outf the optical phase transition [19]), but in the time scale
put intensity of the coherent oscillator as is. When this shutteshown in Fig. 5 this delay is indistinguishable. The Fourier
is open a coherent reference wave (with the frequency of thgpectrum of the developed periodic modulation of the oscil-
pump wavew, local oscillator) is coming to the detector in lation intensity in the steady state is shown in Fig. 6a. The
addition to the oscillation wave and the frequency beat sigmost pronounced peak=(6.3+ 0.15 H2) corresponds to the
nature is registered. The variable beam attenuator, VBA, puhain modulation frequency, however the other well-defined
in the front of the laser allows for the intensity control of
the beam incident upon the sample. All the data are stored in
the memory of the computer; the processing of data (Fourie 0.2 T T
transform, etc.) is also done with the same computer. a)
Figure 5 shows the typical dynamics of the oscillation
intensity. Before the exposure is startéd<(0) all the pho-
torefractive gratings inside the sample are erased with th
incoherent illumination (the light of 400-W halogen lamp 01k
transported to the sample with the flexible bunch of wave .
guides). Att = 0 the pump beam starts to illuminate the «

()
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Fig. 4. Schematic representation of the photorefractive ring-loop coheren.
oscillator. M1-M5 are the mirrors, M4 is the beam splitter, PD is the pho-Fig. 6a,b. Fourier spectra.&) Temporal variations of the oscillation inten-
todetector, Sh is the shutter, D1, D2 are the apertures, VBA is the variablsity. (b) Beat frequency mark (oscillation wave plus a part of the pump
beam splitter wave)
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frequencies are present, too, for example, second harmor 10 — ————— T
of the principal frequency® 12.6+ 0.5 Hz). Figure 6b re-
presents the spectrum of the beat frequency when both t
oscillation and reference waves are coming to the detector.
is easy to note the appearance of the additional pedki+
0.1 Hz) with high amplitude and roughly half frequency-
detuning as compared to the main peak in the oscillation spea ¢ | J
trum. The two-times difference between the frequency of thi .,
beat-frequency mark and frequency of output intensity mod &
ulation was observed for all spatial frequencies of the gratini S
self-developing in the sample. This proves that the oscilla g 0
tion consists of two modes symmetrically shifted in frequencyE 0O
with respect to the frequency of the pump wave.
The modulation frequency in the oscillation spectrum is 2 e
a function of the input intensity (Fig. 7). This might be ex- 1,0 1,3 2,0
peg:ted as the characteristic time o'f 'photorefractive gratin Grating Spacing A, um
Egc\?e\lljgr ?hegtel??ss nO(;][ ghtﬁfl?;lo l?r?;;:rt“ég)eladsgr?éj(ladp?:wg?jﬁ&lg 8. Spatial frequency dependence of the oscillation frequency
observed for other coherent oscillators with shifted frequen-
cies (see, for example, [20]). detuning frequency becomes approximately doubled when
For high intensities of the pump wave a pronounced selfthe grating spacing is increasing from 12am.
focusing has been observed in the investigated sample. The The oscillation with shifted frequency has been already
intensity of the pump beam reflected into the sample bybserved in different oscillator geometries [20, 21] but the
the cavity mirrors was drastically increasing leading to thestable two-mode steady-state operation is reported, to our
superlinear growth of the measured modulation frequencyknowledge, for the first time. It will be clear from the follow-
That is why, to measure the intensity dependence of the fréng sections that two modes are related here to excitation of
quency detuning (Fig. 7), a short cavityg 6 cm) was used the transmission grating with exactly the same grating vector
with the intensity of the pump wave belo@W/cn?. As  K; this is not a consequence of competition of gratings in dif-
the focal length of the nonlinear (thermal) lens inside theferent partially overlapping sample area [22] or gratings with
sample is much longer than the cavity length the reflectedifferent structures (differer{-vectors) [23].
beam size remains roughly the same when the intensity of
the incident beam is decreasing. This means that the total
!ntens!ty inside the sample is linearly re!ated to the input2 Calculations
intensity which makes easy the comparison with the the-

ory. The recording of the reflection gratings mentioned above ) i )
reduces the efficiency of oscillation but in zero approxi-T0 describe the coherent oscillator based on nonlinear wave

mation does not affect the shape of the gain spectrum iixing one should know how the complex amplitude of the
self, therefore a qualitative comparison with calculation isSignal wave after single pass through the crystal changes, i.e.,
possible. to what extent a weak signal is amplified and how large is
By modifying the angle of the loop it is possible to changethe nonlinear phase shift of the amphﬂed.wave. These valges
the frequency separation between the oscillation modede usually calculated by solving the nonlinear wave equation

(Fig. 8). These changes are, however, relatively small: Thecoupled-wave analysis) with the complex coupling constant
extracted from the solution of the material equations (see, for

example, [24]).

In photorefractive materials the refractive index changes
' ' ' because of the formation of the space-charge: the electric field
of this space-charge affects the refractive index via the linear
. electrooptic effect. For the scalar nonlinear mixing (all waves
have identical polarization) the coupling constant is

N
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&

S

S
~

wheren is the refractive index,y is the effective electrooptic
constanty is the light wavelengthm is the recording fringe
contrast, ancEg. is the space charge field; it is a complex
value which takes into account possible spatial shift of the
index grating with respect to the recording light fringes.
0.0 05 1.0 15 20 In Sect. 2.1 the solution of the material equations for
’ ’ o 3 ’ the complex coupling strength is presented. In Sect. 2.2 the
Pump Intensity, W/cm threshold conditions of oscillation are discussed using the

Fig. 7. Pump-intensity dependence of the oscillation frequency; grating@nalysis of the gain spectrum and phase COUp_"ng. constant
spacingA = 1.7 um spectrum for nearly degenerate in frequency oscillation.

Frequency ©/2n, Hz
L
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2.1 Gain factor and phase coupling coefficient whereeeg is the dielectric constant and, is the density of
optically inactive acceptors which are compensatingNér
Suppose two waves, andN,.

. . The material equations (4)—(7) have been solved in [14]
Er= A exp(=iki-r+iot), and the space-charge distributig. was calculated. In [14]
Ex= Az exp(—ikz - r+i(w+ ) , (2)  we were interested in calculation of temporal development of
the gain factor’, i.e., the real part of the coupling constant,
9 =2 Ry} to describe the measured dynamics of nearly de-
generate two-beam coupling [13]. In the present paper we are
I = lo[14+m expiKx+it)]. (3) interested in steady-state values/ofand also of the imagi-
nary part? = Im{y} of the coupling constant

impinge upon a photorefractive sample, forming a runnin
fringe pattern

Herek, » are the wavevectors of the recordingzwa\zesa,ng

(w+ £2) are their temporal frequencieg,=| A1 |+ | Az | . 3

is the total intensity inside the crystal, the fringe contrast i/ = Im {(mn rEﬁESC)/m’\}’ (8)

m=| 2A1 A2 | /lo, andK is the spatial frequency of the fringe

pattern. The contrast of the fringes is taken to be small, i.ewhich defines the nonlinear phase shift of the wave diffracted

m < 1. The self-diffraction from the recorded grating is neg-from the moving grating.

lected, i.e.m is assumed to be independent of propagation The results presented below are obtained with the follow-

coordinatez inside the sample. Therefore only the materialing restrictions, well justified for SPS crystals [15, 16]: (i) the

equations are considered. relaxation time for the fast grating is considered to be much
Two types of the impurity centers are assumed to b@maller than that of the slow grating; (ii) the carriers involved

present, one with the energy level close to the conductiofh formation of the slow grating are assumed to be thermally

band and total densiti{; and the other close to the valence generated whereas the formation of the fast grating is the pho-

band with total densityN,. The first level is populated by tostimulated process; and the saturation regime is considered.

electrons while the second is populated by holes. Both lewithin these approximations

els are partially ionizedN; and N}, being the densities of

the empty electron and hole levels, respectively. The electrons

from level 1 can be excited to the conduction band thermally~ _ _ 2™TetEp [ 1+15,K? }
(with the probabilitys,) or because of phototransition (with A (1412, K2)2 4 (gh2)2(1+13, K?)2
the probabilitys,|). Similarly, the holes can be released from 9
> o 9
level 2 to the valence band by thermal transition (probability 1412 K2
Bp) or by phototransition (probabilits, ). « [l— Sp }
The rate equations for ionized electron traps and hole (1+|§pK2)2+(T%Q)2(1+|2DDK2)2 ’

traps are as follows [20]
i

oN ) )
—L = (Bo+s)(Ny — N}) — ynNin,

a?\tllz _ _ v - n3r et Ep [ 1+13 K? } (10)
= =~ Bot DN +1p(N2—No) . @ 77 A [AHIZKD + (h)2(1+13,K?)2
n 2 2
wheren andp are the densities angl , are the recombination x [29%(1Jr 150K
constants for free electrons and free holes, respectively. 1+13, K2
Continuity equations for electrons and holes are 1412 K2
_ N 15
on_ N 1 9in (1+1Z,K2)7+ (thD2(1+12,K?)2
E?E) agNiz elagjp 5 29rr%(1+|§,p|<2)}
v et 5 TR
ot at e dx ®) 1+15,K

and current equations are
whereEp = K(kgT)/eis the diffusion lengthkg is Bolzmann

jn=eunnE+ qua_” constantg is the electron charge, aridis the absolute tem-
X perature. The characteristic transport lengths are

. a
jo = eitpPE €Dy, ©®)

wherepun p are the mobilities andy, p = (ke T/€) unp are the
diffusivities for electrons and holes, respectively, whilg,
are the electron and hole currents. ceoksg T )

The Poisson equation completes the set of material equbsn = /-5~ Debye screening length for electrons
tions for calculation of the space charge field eff

ke T
JE e C lsp = [<2® . Deb ing |
o~ (p— — N — p= , ye screening length for holes
X eco (P—n+N;—N; — Na), (7) NP,

I%n = Dptn, the electron diffusion length, (12)
13, = Dp1p. the hole diffusion length,
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The standard characteristic times are

€€Q . . . .
" = —— the dielectric relaxation time for electrons,

m on _.E
= @, the dielectric relaxation time for holes, °
[of
1 5
1w = ——, the moving electron lifetime, (12) *g
nN1 .
£
1, = —————, the moving hole lifetime =
Yo(Nz — Np) ©
on andop are the electron and hole conductivities, respec 0 ’ ' '
tively, D and D, are the electron and hole diffusivities, re- T T .
spectively,N; and N, are the spatially uniform densities of g b)
the ionized centers 1 and 2, respectivél§, andNS, arethe S 2t 7
effective trap densities for electrons and holes, respectively. >
Equations (9) and (10) can be rewritten in a differentway §
more easy for the analysis: ‘g
8 0F 4
IN'=s ———\Ii— , 13 5
1+ 17822 < ! 1+r52.{22> (13) “2
1 Ists82 S
= S——— (nme-—2), (14 =21 '
2 1417822 147202 2
< i 1 1
=
with the partial gain factors A 220 -10 0 10 20
2713 ot Eip Frequency Q/2n, Hz
It = W: (15) Fig. 9a,b. Calculated spectra of the gain fact@) phase transfer constant
1+ Sn ) (b). horizontal dots in4) show the threshold level for coherent oscillation
2n3r et Ep in the ring-loop cavity

S

T A+ KDL+ B KD

for the fast (subscript f) and slow (subscript s) gratings anc
the characteristic decay times

%=1 ingnKzz a6 5
+05.K =

e

Sp o

Note, that the amplitudes of the fast and slow grating are nc 5"

independent in the case of SPS:

It = T+ (3K, (17)

-1

and for the small spatial fregienciés ~ I=.

The plots of (13) and (14) with the parameters of the
particular sample ofSnpP,Sg (176 =5.8; I'sl = 4.3; 11 =
0.0155 s =259 are shown in Fig. 9. Figure 10 represents
the same spectra in logarithmic plot to show more clearly th
behavior near the gain maximum. As the log plot represent
a part of the spectrum fa2 > 0 only one of two peaks of the
gain spectrum is visible in Fig. 10 a and only one (negative
spike appears in Fig. 10b roughly @y 2z ~ 0.005 Hz

Two symmetric maxima in the gain spectrum are well dis-
tinguished. It follows from (13) that the maximum gain is
reached at

Is 1 1 1
=4 | = —— ~ 4+ [ —

Phase Transfer Constant y, cm

(18)

It wts T2 TfTs

N
T

2k

PRSIV

0,01

0,1

1

Frequency Q/2n, Hz

10

100

a)

b)

Fig. 10a,b.Detailed structure of gain spectrum) (@nd phase transfer con-
stant spectrumhl) for SpP,S in the vicinity of zero detuning
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Only one of the two relaxation times in (18) is intensity de-  In the considered case of the coherent oscillator with SPS
pendent, as the electron conductivity in (12) consists of therystal the oscillation occurs at shifted frequency $2. This

dark and photoconductivity: means that strictly speackings # kpump. The detuning fre-
quency is nevertheless so small & 10-13-10-w) that for
on = ond+«lo, (19)  typical loop lengthl0-100 cmthe resulting phase difference

) B o _ is negligibly small. More important is the other possible dan-
« being the specific photoconductivity. The hole conductiv-ger: ysually the frequency detuning results in appearence of
ity op in (12) is entirely defined by the thermally activated the |ocal component in the nonlinear response and this leads
charge motion [16] and is independent of the light intensity. to the nonlinear phase shift of the diffracted wave and to the
Therefore we obtain from (18) rather unusuglf) intensity  pending of the interference fringes inside the sample (see,
dependence for the frequency separation of the gain maximgyr example, [24]). As the angles of incidence of the pump
On the other hand, botly and zs are the functions of the \wave and oscillation wave to the sample are interchanging
grating spatial frequency (16); that is why the frequency sepafter passing the cavity (see Fig. 4) the fringes from the waves
aration will also depend oK. 2,3 and 1, 4 become bent in diffferent directions. This results
in dephasing (violation of phase matching) and reduces the
efficiency of the four-wave mixing.
Fortunately, for nondegenerate interaction in the crystal
with w-out-of-phase gratings such as SPS, the contribution to

As for any other oscillator, to get the oscillation in a pho- h p h hiftin the vicinity of d ing f
torefractive coherent oscillator two conditions should be fultN€ nonlinear phase shiftin the vicinity of zero detuning from

filed [25, 26]. Theamplitude condition of oscillatiois the ~ ©N€ grating will be opposite in sign with respect to the con-
requirement that in one cavity round trip the gain shouldfPution from the other one. At a certain detuning frequency
overcome the losses of all kinds. Thease condition of os- +<?max these two contributions cancel each other exactly and
cillation is, in fact, the condition of positive feedback: the € nonlinear phase shift becomes zero. This means that the

phase of the oscillation wave should remain the same afté&PUPIing constant is real for these detuning frequencies, the
one round trip of the cavity. Our aim is to find those detuning//iNges are not bent and the exact phase matching is restored.
frequencies? for which both the amplitude and phase con-, It happens that the discussed detuning frequenci@gax
ditions of self-oscillation are fulfilled simultaneously and thelUSt correspond to the maxima of the gain factor (see Fig. 10).
differencel(£2)¢ — (I')r is maximized. This is not accidental; it has been shown recently [29] for

The theory of the coherent oscillator with the unclosegseveral nonlinear effects that the real and imaginary nonlinear

ring-loop cavity and ordinary photorefractive crystal IOOSSess(_)pt|cal coefficients obey Kramers—Kronig relations in a simi-

; ; : : lar way to the linear ones, ande”.
ing one dominant type of charge carriers [27] gives the am- ' .
plitude condition of oscillation as follows: Thus we can conclude that$2,« are the frequencies of

two eigenmodes of this photorefractive oscillator. Still there is

2.2 Threshold conditions of oscillation

2R+1) R+1 a third eigenmode witli2 = 0 but it has nearly no chances to
FOm=—— | SR (20)  oscillate because of the much smaller gain factor for strictly
degenerate interaction.
wheret is the sample thickness afds the product of reflec- Note, that the frequenciess2 depend on the total light
tivity of all cavity mirrors. intensity inside the sampli and on the spatial frequency

This condition is valid for a photorefractive crystal with of the recorded gratingl (see (16), (18)). The comparison
purely nonlocal nonlinear response, i.e. for th& shifted of the experimental and calculated results is presented in the
dynamic gratings. The nonlinear phase shift for the wavéollowing section.
diffracted from ther/2 shifted grating is identically zero [24]

(or 7 for the wave that is depleted in two-beam coupling con-

figuration which is not of interest here). The absence of ang piscussion

dephasing in the diffracted wave ensures the phase condition

of oscillation for the ring-loop configuration automatically.
Two gratings, one recorded by the pump wave 2 (see Fig.
with the diffracted wave 3 and the other one recorded by th
counterpropagating waves 1 and 4 are exactly in phase insi
the photorefractive sample thus enhancing each other. Th
can be easily understood taking into account that waves 1 a
4 are in fact the waves 3 and 2 after passing the loop cavit

he theory of the ring-loop coherent oscillator [27] predicts
e threshold coupling strengtii?), = 2 for a lossless cav-
(with R=1). Taking into account that the thickness of
e SPS sample used in our experimeritis0.9 cmone can
duce from the gain spectrum (Figs. 9 and 10) that the am-

itude condition of oscillation is fulfilled in a wide region

f frequency detuning. At the same time the phase condi-

once, i.e.,

tion of oscillation is met only for2 =0 and 2 = + Tlrs
$1 =3+ KoslL, (21)  for the cavity with no non-reciprocity and for zero electric
ba = ¢2+ Koumpl, (22) field (applied or internal). Thus our model predicts the coher-

ent oscillation at two frequencies shifted symmetrically with
with k standing for wavenumber of the oscillaton (subscriptrespect to the pump wave frequency, in complete agreement
“0s”) and pump (subscript “pump”) waves ahdor the loop  with the experimental observation.
length. With no non-reciprocity in the loop [26, 28] the phase  For high intensity of the pump wave (ensuring the pho-
differencep; — ¢4 at the sample face facing the loop is exactlytoconductivity much larger than the dark conductivity for
the same ag3; — ¢, at the same face. carriers forming the “fast” grating) the frequency detuning of
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the oscillation modes is proportional to the square root of theonstant allow for good qualitative explanation of the experi-
pump intensity ((12), (16), (18), (19)). The solid line in Fig. 7 mental results.
is the best fit of the experimental dependence to the square Tin hypothiodiphosphate crystal is chosen for the experi-
root of intensity. An excellent qualitative agreement is quitemental study as a typical material with the strong electron—
evident. The quantitative discrepancy with the data calculateldole competition. A similar behavior can be observed, how-
from known values ots, 1, I's, I} is less than two times. ever, in many other crystals with the pronounced space-
The characteristic decay times of two space-charge gratharge compensation effects, such as, for example, recently
ings are strongly dependent on spatial frequencies (Fig. 3#fescribe®isTizO12 [5]. The slow grating, which is believed
the time constant for the fast grating is decreasing with grato build up inSnP,Ss because of moving holes, can appear
ing spacing while that for the slow grating grows with thealso because of ionic motion (in crystals with thermal fixing
grating spacing. As a result the calculated/Xsts is nearly  effect). A rather complete list of references for relevant mate-
independent of the grating spacing. The slight increase of theals is given in [5].
frequency detuning with the grating spacing observed in the
experiment may result from variation of the light intensity in- AcknowledgementsVe thank Dr. K. Shcherbin for helpful discussions, Dr.
side the sample: for a smaller angle between two beams thefly Grabar and Dr. I. Stoyka for SPS samples, and our reviewers for helpful

overlap is better and the cross section of the beam inside tlgsju
sample is smaller. One should also take into account possibigj
contribution to the discussed dependence of grating-spacing
dependences far; and s (see (18)).

The onset of coherent oscillation here can be consid-

way to that described in [19, 30]. The infinite number of the 3.

“noisy” space-charge gratings with relatively small ampli-

tudes self-develop in the sample below the threshold of os-4

cillation, giving rise to the random light-induced scattering in

ings with the identical grating vectors appear, which couple 7.
all four interacting waves (incident pump wave, reflected by 8.
cavity mirrors pump wave, oscillation wave inside the cav-

ity, and phase conjugate wave). The similarity to the “order—
disorder” phase transition is quite obvious. Note, however,

that for the considered optical oscillator the gratings that ap-11.
pear above the threshold are moving in the opposite directioA2.
with the same velocity. This results in the regular temporal®3:

variation of the amplitude of the space-charge grating and,,
therefore in high contrast intensity modulation of the output

oscillation. It is difficult to find a direct analogy for this kind ~ 15.

of optical phase transition in solid-state physics: The periodic
structures of atoms or molecules that appear there below th
temperature of melting are stable in time.

18.

4 Conclusions

20.

_ . . . . . _ 21
A new stea(_dy state oscillation que consisting of S|_mul 2. R, Eason, M. Gower: Opt. Commis9, 77 (1986)
taneous oscillation in two frequencies shifted symmetrically 55

with respect to the pump frequency is revealed in SPS, phoza.

torefractive crystal with strong electrgmole competition.

When the coupling strength(£2)¢ becomes larger than its 25

threshold value given by (20) two space-charge gratings ap-

pear in the sample, moving in opposite directions with the,g

velocities££2/K. As a result the output of the oscillator has

the high-contrast regular-intensity modulation. The modula-27.

tion frequency, 2., can be controlled by the intensity of

the incident pump wave and by the spatial frequency of th
space-charge grating (i.e., by the feedback loop angle near the
sample). The calculations of the gain factor and phase transfeso

17.

19.

28.
©9.
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