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Nearly degenerate two-beam coupling in
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Two-beam intensity coupling is calculated for photorefractive crystals with two types of movable charge carrier
in the undepleted-pump approximation. The analytical expressions are derived for the temporal evolution of
the space-charge field; for weak coupling they are used for calculation of the transmitted beam intensities.
The results of the calculation are compared with the experimental observations in photorefractive tin hy-
pothiodiphosphate (Sn2P2S6). All experimental data are in reasonable quantitative agreement with the cal-
culations. © 1998 Optical Society of America [S0740-3224(98)03007-0]
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1. INTRODUCTION
The manifestation of the simultaneous presence of two
species of movable carrier, electrons and holes, was re-
ported for photorefractive interactions by many
authors.1–4 Nearly always the bipolar transport leads to
partial mutual compensation of the space-charge gratings
formed by carriers of opposite signs. If the characteristic
buildup times for two gratings are quite different the tem-
poral development of the amplified (depleted) wave exhib-
its typical transient behavior: A relatively fast rise (de-
crease) of the output intensity is followed by much slower
decay (increase) until a steady-state value is reached.

As was shown in Ref. 5, a slight frequency detuning be-
tween two recording waves can destroy the grating with
slow response time while leaving the amplitude of the fast
grating unaffected. The result is considerable improve-
ment of the steady-state gain factor, which may reach the
value of the transient peak.

Our purpose in this paper is to calculate the dynamics
of two-beam coupling for nearly degenerate in frequency
recording waves. The calculations follow the approach of
Zhivkova and Miteva.6 Only the material equations are
considered (i.e., the effect of the beam coupling on the con-
trast of the recording fringes in the bulk of the crystal is
neglected). Beam coupling itself is considered to be small
enough to permit use of the linear relation between the
amplitude of the space-charge grating and the gain factor.
Despite the fact that the space-charge limitations are
taken into account, the linear recombination of photoex-
cited carriers is assumed to dominate any multiparticle
recombination.

This paper has the following structure. After present-
ing the initial set of equations (which is exactly the same
as in Ref. 6; even the notation is preserved to make the
0740-3224/98/072125-07$15.00 ©
comparison easy) and recalling the main steps of its solu-
tion in Section 2, we derive the set of differential equa-
tions for the amplitudes of spatially modulated densities
of the ionized electron and hole traps with the frequency
shift between the writing waves taken into account (Sec-
tion 3). In Section 4 we solve this set of equations with-
out making any assumptions about the ratio of character-
istic grating lifetimes. In Section 5 we consider the
particular case of recording in tin hypothiphosphate
(Sn2P2S6; SPS). Finally, in Section 6 a comparison with
the experimental observations is presented.

2. FORMULATION OF THE PROBLEM
A classic arrangement for the recording of the transmis-
sion holographic grating in photorefractive crystal is con-
sidered. Two waves,

E1 5 A1 exp~2ik1 • r 1 ivt !,

E2 5 A2 exp@2ik2 • r 1 i~v 1 V!t#, (1)

form a running fringe pattern

I 5 I0@1 1 m exp~iKx 1 iVt !# (2)

inside the photorefractive crystal. Here k1,2 are the wave
vectors of the recording waves, v and (v 1 V) are their
temporal frequencies, I0 5 uA1u2 1 uA2u2 is the total in-
tensity inside the crystal, m 5 u2A1A2u/I0 is the fringe
contrast, and K is the spatial frequency of the fringe pat-
tern.

The contrast of the fringes is taken to be small, i.e.,
m ! 1. The self-diffraction from the recorded grating is
1998 Optical Society of America
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neglected; i.e., m is assumed to be independent of propa-
gation coordinate z. Therefore only the material equa-
tions are considered.

Following the approach given in Ref. 6, we assume the
presence of two types of impurity center, one being close
to the conduction band with total density N1 and the
other close to the valence band with total density N2 .
The first level is populated by electrons, and the second is
populated by holes. Both levels are partially ionized; N1

i

and N2
i are the densities of the empty electron and hole

levels. The electrons from level 1 can be excited to the
conduction band either thermally (with the probability
bn) or because of phototransition (with probability sn I).
Similarly, holes can be released from level 2 to the va-
lence band by thermal transition (probability bp) or by
phototransition (probability sp I).

The rate equations for ionized electron traps and hole
traps are

]N1
i

]t
5 ~bn 1 sn I !~N1 2 N1

i! 2 gnN1
in,

]N2
i

]t
5 2~bp 1 sp I !N2

i 1 gp~N2 2 N2
i!p, (3)

where n and p are the densities and gn,p are the recom-
bination constants for free electrons and free holes, re-
spectively.

The continuity equations for electrons and holes are

]n
]t

5
]N1

i

]t
1

1
e

]jn

]x
,

]p
]t

5 2
]N2

i

]t
2

1
e

]jp

]x
, (4)

and the current equations are

jn 5 emnnE 1 eDn
]n
]x

,

jp 5 emppE 2 eDp
]p
]x

, (5)

where mn,p are the mobilities, Dn,p 5 (kBT/e)mn,p are the
diffusivities for electrons and holes, respectively, and jn,p
are the electron and hole currents.

The Poisson equation completes the set of material
equations for calculation of the space-charge field:

]E
]x

5
e

ee0
~ p 2 n 1 N1

i 2 N2
i 2 Na!, (6)

where ee0 is the dielectric constant and Na is the density
of optically inactive acceptors that are compensating for
N1

i and N2
i.

3. EQUATIONS FOR THE SPACE CHARGE
The solution of the set of material equations [Eqs. (3)–(6)]
will be found for low contrast [m ! 1 in Eq. (2)] when we
can represent all spatially dependent quantities, keeping
only the first nonvanishing spatially nonuniform terms in
expansions, as

n~t, x ! 5 n0~t ! 1 n1~t !exp~iKx 1 iVt ! 1 c.c.,
p~t, x ! 5 p0~t ! 1 p1~t !exp~iKx 1 iVt ! 1 c.c.,

N1
i~t, x ! 5 N̄1~t ! 1 M1~t !exp~iKx 1 iVt ! 1 c.c.,

N2
i~t, x ! 5 N̄2~t ! 1 M2~t !exp~iKx 1 iVt ! 1 c.c.,

E~t, x ! 5 E1~t !exp~iKx 1 iVt ! 1 c.c. (7)

Here E1(t) is the amplitude of the space-charge field.
By substituting Eqs. (7) into Eqs. (4) and combining the

terms that describe the spatially uniform quantities and
terms with identical exponential functions we get for
adiabatically slow temporal variations (]n/]t 5 ]p/]t
5 0)

N̄1 5 const.,

n0 5 ~bn 1 sn I0!~N1 2 N̄1!/gnN̄1 ,

N̄2 5 const.,

p0 5 ~bp 1 sp I0!N̄2 /gp~N2 2 N̄2! (8)

and for the amplitudes of the spatially modulated densi-
ties

n1 5 FmsnI0~N1 2 N̄1! 2 M1~bn 1 snI0 1 gnn0 1 iV!

2
]M1

]t G Y gnN̄1 ,

p1 5 FmspI0N̄2 2 M2~bp 1 spI0 1 gpp0 1 iV!

2
]M2

]t G Y gp~N2 2 N̄2!. (9)

The substitution of Eqs. (7) into Poisson equation (6)
will provide

Na 5 p0 2 n0 1 N̄1 2 N̄2 (10)

and for the space-charge field

E1 5 ~ p1 2 n1 1 M1 2 M2!c/~ee0iK !. (11)

By a similar procedure with Eqs. (4) and (5) we get

]M1

]t
1 iVM1 1

e
ee0

mnn0~ p1 2 n1 1 M1 2 M2!

2 K 2Dnn1 5 0,

]M2

]t
1 iVM2 2

e
ee0

mpp0~ p1 2 n1 1 M1 2 M2!

2 K 2Dpp1 5 0. (12)

Introducing the standard characteristic times

tm
n 5

ee0

emnn0

~dielectric relaxation time for electrons in the dark!,

tm
p 5

ee0

empp0

~dielectric relaxation time for holes in the dark!,
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tn 5
1

gnN̄1
~free-electron lifetime!,

tp 5
1

gp~N2 2 N̄2!
~free-hole lifetime!, (13)

the characteristic transport lengths

LDn
2 5 Dntn ~electron diffusion length!,

LDp
2 5 Dptp ~hole diffusion length!, (14)

and the characteristic electric fields
Eqn 5
eN̄1~N1 2 N̄1!

ee0KN1
~ limiting space-charge field that could be created by the electrons!,

Eqp 5
eN̄2~N2 2 N̄2!

ee0KN2
~ limiting space-charge field that could be created by the holes!, (15)
and combining Eqs. (14) and (15) with Eqs. (10) and (11),
we complete the set of linear differential equations for the
amplitudes of space-modulated densities for ionized elec-
tron traps M1 and ionized hole traps M2 :

]M1

]t S 1 1
tn

tm
n 1 K 2DntnD

1 M1F1 2 tn~bn 1 snI0 1 gnn0 1 iV!

tm
n

1 K 2Dntn~bn 1 snI0 1 gnn0 1 iV!G 1
]M2

]t S 2
tp

tm
pD

1 M2F2
1 1 tp~bp 1 spI0 1 gpp0 1 iV!

tm
p G

5 2
tp

tm
n mspI0N̄2 1

tn

tm
n msnI0~N1 2 N̄1!

1 K 2DntnmsnI0~N1 2 N̄1!,

]M2

]t S 1 1
tp

tm
p 1 K 2DptpD

1 M2F1 2 tp~bp 1 spI0 1 gpp0 1 iV!

tm
p

1 K 2Dptp~bp 1 spI0 1 gpp0 1 iV!G 1
]M1

]t S 2
tn

tm
nD

1 M1F2
1 1 tn~bn 1 snI0 1 gnn0 1 iV!

tm
n G

5 2
tn

tm
p msnI0~N1 2 N̄1! 1

tp

tm
p mspI0N̄2

1 K 2DptpmspI0N̄2 . (16)

Depending on the experimental conditions, Eqs. (16)
can be considerably simplified. It is well known, e.g.,
that the free-carrier lifetime is much smaller than the di-
electric relaxation time. Therefore the terms that con-
tain (tp /t m

n), (tn /t m
n), (tp /t m

p), and (tn /t m
p) can be

neglected; then Eqs. (16) will be reduced to the form

]M1

]t
~1 1 K 2Dntn! 1

M1

tm
n @1 1 iVtm

n

1 K 2Dntntm
n~bn 1 snI0 1 gnn0 1 iV!] 1 M2S 2

1
tm

nD
5 K 2DntnmsnI0~N1 2 N̄1!,
]M2

]t
~1 1 K 2Dptp! 1

M2

tm
p @1 1 iVtm

p

1 K 2Dptptm
p~bp 1 spI0 1 gpp0 1 iV!] 1 M1S 2

1
tm

pD
5 K 2DptpmspI0N̄2 ,

(17)

with

A1 5 2B1@1 1 iVtm
n~1 1 lDn

2K 2! 1 ~ED /Eqn!#,

A2 5 2@tm
p~1 1 LDp

2K 2!#21,

B1 5 2@tm
n~1 1 LDn

2K 2!#21,

B2 5 2A2@1 1 iVtm
p~1 1 lDp

2K 2! 1 ~ED /Eqp!#,

C1 5 2~mee0 /e !KEDB1
snI0

bn 1 snI0
,

C2 5 2~mee0 /e !KEDA2
spI0

bp 1 spI0
, (18)

and the set of equations for M1,2 becomes

]M1

]t
1 A1M1 1 B1M2 5 C1 ,

]M2

]t
1 A2M1 1 B2M2 5 C2 . (19)

With zeroth initial conditions (no gratings at t 5 0) the
solutions of Eqs. (17) are

M1~t ! 5 2
B1C2 2 B2C1

a1a2
2

a1 1 B2

A2
K1 exp~a1t !

2
a2 1 B2

A2
K2 exp~a2t !,

M2~t ! 5 2
A2C1 2 A1C1

a1a2
1 K1 exp~a1t !

1 K2 exp~a2t !. (20)
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Taking into account that the densities of free electrons
and free holes are usually much smaller than the densi-
ties of the charge redistributed in traps, i.e., p1 , n1
! M1 , M2 , we get from Eqs. (13) for the space-charge
field

Esp 5
ie

ee0K
~M2 2 M1!, (21)

where

K1 5
a1C2 1 A1C2 2 A2C1

a1~a1 2 a2!
,

K2 5 2
a1C2 1 A1C2 2 A2C1

a2~a1 2 a2!
; (22)

a1,2 5
2~A1 1 B2! 6 @~A1 2 B1!2 1 4A2B1#1/2

2
.

(23)

This is a general solution for the space charge for an
arbitrary ratio of relaxation times of two gratings and ar-
bitrary frequency detuning. It is easy to verify that for
V 5 0 this solution coincides with that obtained by
Zhivkova and Miteva.6

As the refractive-index change is proportional to the
space-charge field in the approximation of the theory that
we are considering, Eq. (21) also describes the dynamics
of the phase grating amplitude. For V 5 0 this grating
is p/2 shifted with respect to the fringes, and the coupling
strength is purely real. With V Þ 0 the phase shift de-
viates from the exact p/2 value, and therefore the cou-
pling strength becomes complex. To calculate the gain
factor that is usually measured in the experiment one
should take the real part of the complex coupling con-
stant:

G 5 Re@~2pin3reff Esc!/ml#, (24)

where reff is the effective electro-optic constant and Esc is
given by Eqs. (22).

In Section 4 we shall concentrate on the interaction
with the parameters that is typical of SPS and present a
detailed comparison of calculated data with those mea-
sured in our previous experiment.5

4. COMPARISON WITH EXPERIMENTAL
RESULTS FOR TIN
HYPOTHIODIPHOSPHATE
According to the data of Ref. 5, the formation of one of two
out-of-phase gratings in SPS is due to photostimulated
charge separation, whereas for the other grating the ther-
mally stimulated charge transport is dominating. Figure
1 is the energy-level diagram of SPS. This result allows
us further to simplify the model by putting sp 5 0 and
therefore C2 5 0. Taking into account the large differ-
ence in characteristic relaxation times for the two grat-
ings (.17 ms for the fast grating and more than 100 s for
the slow grating), we can present the solution for M1,2 in
the following form:

M1 . @1 2 exp~2A1t !#C1 /A1 ,

M2 . 2@1 2 exp~2B2t !#C1A2 /A1B2 . (25)
Note the absence of the fast grating lifetime in the first
of Eqs. (25). The equation looks reasonable, however, as
the time needed to form the fast grating is much less than
time necessary to develop the slow grating.

The ultimate expression for the gain factor is

G~t ! }
ED /~1 1 lSn

2K 2!

1 1 ~tm
nV!2~1 1 lDn

2K 2!2/~1 1 lSn
2K 2!2

3 X2
1 1 lSp

2K 2

~1 1 lSp
2K 2!2 1 ~tm

pV!2~1 1 lDp
2K 2!2

3 H 1 2 F ~tm
pV!~1 1 lDp

2K 2!

1 1 lSp
2K 2 sin~Vt !

1 cos~Vt !GexpS 2
t

tm
p

1 1 lSp
2K 2

1 1 lDp
2K 2D J

1 H 1 2 F ~tm
nV!~1 1 lDn

2K 2!

1 1 lSn
2K 2 sin~Vt !

1 cos~Vt !GexpS 2
t

tm
n

1 1 lSn
2K 2

1 1 lDn
2K 2D J C. (26)

Fig. 1. Energy-level diagram. CB, conduction band; VB, va-
lence band.

Fig. 2. Schematic representation of the experimental setup.
M’s, mirrors; P, prism; BS, beam splitter; EOM, electro-optic
modulator; ND, neutral-density filter; D, detector; OSC,
oscillator.
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Fig. 3. Calculated (left) and measured (right) temporal variations of the transmitted signal wave intensity. The total intensity of the
two light waves is 15 W/cm2 at l 5 1 mm; the fringe spacing L 5 1 mm.
Relation (26) describes the dynamics of the gain factor
in SPS for two waves shifted by V in frequency with re-
spect to each other. Let us first discuss some limiting
cases and verify that relation (26) can be reduced to the
known results for specific experimental situations.

Fig. 4. Transient (open squares) and steady-state (filled circles)
gain factor versus frequency detuning. The solid curve shows
the results calculated with the parameters given in Table 1.

Table 1. Parameters of the SPS Sample Used in
the Calculation

tm
p (s) tm

n (s) lSn (mm) lSp (mm)
4p 2n3reff

l cos u8

kBT
e

140 0.03 0.9 0.65 7.1 3 1024
A. Two Gratings, Strictly Degenerate Interaction

G~t ! }
ED

1 1 lSn
2K 2 H 2

1

~1 1 lSp
2K 2!

3 F1 2 expS 2
t

tm
p

1 1 lSp
2K 2

1 1 lDp
2K 2D G

1 F1 2 expS 2
t

tm
n

1 1 lSn
2K 2

1 1 lDn
2K 2D G J .

This relation describes the characteristic dynamics of
the beam coupling with a transient peak followed by a
much smaller steady-state gain.6–8

B. Two Gratings, Strictly Degenerate Interaction,
Saturation

G~t → `! }
EDlSp

2K 2

~1 1 lSn
2K 2!~1 1 lSp

2K 2!
.

An important consequence of this equation is that for
small spatial frequencies the steady-state gain factor in-
creases as K3 with a constant of proportionality that in-
cludes the diffusion length for holes lSp

2.

C. Only One (Fast) Grating
To suppress the slow grating let us assume that its Debye
screening length is infinitely large. In this case

G~t ! }
ED~1 1 lSn

2K 2!

~1 1 lSn
2K 2!2 1 ~tm

nV!2~1 1 lDn
2K 2!2

3 H 1 2 F tm
nV

1 1 lDn
2K 2

1 1 lSn
2K 2 sin~Vt ! 1 cos~Vt !G

3 expS 2
t

tm
n

1 1 lSn
2K 2

1 1 lDn
2K 2D J .
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D. Only One Grating, Saturation

The equation
G~t → `! }
ED

~1 1 lSn
2K 2!@1 1 ~tm

nV!2~1 1 lDn
2K 2!2/~1 1 lSn

2K 2!2#
describes the well-known Lorentzian profile of the gain
spectrum for nearly degenerate two-beam coupling in a
medium with single exponential decay.9,10 One can also
obtain it by taking the Fourier transform of the charac-
teristic grating decay curve. Note that HWHM of the
Lorentz profile depends on the real grating lifetime, i.e.,
on the dielectric relaxation time with the correction factor
including transport lengths lDn and lSn .

E. Only One Grating, Saturation, Degenerate
Interaction

G~t → `! }
ED

~1 1 lSn
2K 2!

.

As expected, the gain factor depends on the diffusion
field with the correction factor that is due to the screening
effect.11

We now return to the analysis of qualitative conse-
quences of relation (26):

1. With increasing frequency detuning V the contribu-
tion of the slow grating gradually decreases; see the factor

1 1 lSp
2K 2

~1 1 lSp
2K 2!2 1 ~tm

pV!2~1 1 lDp
2K 2!2

in the left-hand side of relation (26), with V2 in the de-
nominator.

2. For the frequency detuning range (1 /tm
p) ! V

! (1 /tm
n) the steady-state (saturated) gain factor is

nearly equal to the gain factor that is due to the fast grat-
ing alone (the main contribution in the gain factor comes
from the term responsible for the fast grating):

G~t ! }
ED /~1 1 lSn

2K 2!

1 1 ~tm
nV!2~1 1 lDn

2K 2!2/~1 1 lSn
2K 2!2

3 F1 2 cos~Vt !expS 2
t

tm
n

1 1 lSn
2K 2

1 1 lDn
2K 2D G .

3. For nearly degenerate interaction the dynamics ex-
hibit damped oscillations; the larger V is, the smaller the
amplitudes of the oscillations become.

4. The frequency of the damped oscillations is exactly
equal to the frequency detuning V.

Qualitatively all these features were observed in the
experiments with SPS.5 Figure 2 represents the experi-
mental setup for the investigation of beam coupling. We
use an electro-optic modulator for frequency detuning.
In Fig. 3 we show the measured dependence of the ampli-
fied signal intensity along with that calculated for the ex-
perimental parameters given in Table 1. Except for the
Debye screening length lSp , which is taken from Ref. 8
(sample 2), the data in this table are from Ref. 5.
One can see excellent agreement between the calcu-
lated and the measured data. In Fig. 4 we plot the cal-
culated dependences of the steady-state and transient
gain factors versus detuning frequency and compare them
with the experimental dependences taken from our
publication.5 Once again we note the reasonable agree-
ment between the experimental and the calculated data.

5. CONCLUSIONS
In conclusion, we have presented a theory that permits us
to calculate the dynamics of space-charge grating forma-
tion and decay for the case of bipolar conductivity. The
general solution was derived for relatively weak interac-
tion (or small interaction length) for cases in which beam
coupling effects can be neglected and in which the con-
trast of the recording fringes can be considered to be in-
dependent of the propagation coordinate.

We analyzed in detail the particular case of Sn2P2S6,
for which one grating is formed by the light-induced re-
distribution of charges and the second grating, compen-
sating in part for the first grating, appears as a conse-
quence of thermal redistribution of the charge carriers of
opposite sign. Despite the fact that charge hopping8 is
believed to be the main process of charge transport in
Sn2P2S6, the comparison with the theory developed for
the band transport gives reasonable quantitative agree-
ment of the measured and the calculated data. This re-
sult demonstrates again that from purely wave mixing ex-
periments it is not easy to distinguish between band
transport and charge hopping transport in grating forma-
tion.

We believe that this calculation can be successfully
used for other photorefractive crystals that exhibit bipo-
lar conductivity.
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