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Hexagon formation in photorefractive crystals as
mirrorless coherent oscillation
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The spontaneous appearance of hexagon patterns in photorefractive crystals is treated as mirrorless coherent
four-wave mixing oscillation. It is shown experimentally that the system has a well-defined coupling-strength
threshold and behaves as other coherent optical oscillators near the threshold. A simple relation for the angle
of the hexagon sideband as a function of the distance between the end mirror and the sample is derived and
verified experimentally. © 1998 Optical Society of America [S0740-3224(98)01207-7]
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1. INTRODUCTION
Since the first observation of photorefractive hexagons by
Honda,1 the formation of regular patterns in nonlinear
wave mixing in these media has attracted considerable
attention, both experimentally2–10 and theoretically.11–14

The appearance of other patterns such as rolls,1 lines,7

and squares,8,9 were reported, the conditions necessary
for pattern formation were established, and the factors
that define the angular structures were found.4,11–13 It
has been shown that formation of hexagons and other
regular structures is related to recording of the reflection
gratings by the two counterpropagating pump waves and
by the sidebands with the pump waves.

In practically all the studies mentioned above the ap-
pearance of the regular patterns was considered the re-
sult of spatial instability of the counterpropagating pump
waves. We emphasize here that the sidebands of hexa-
gons and other regular spatial structures are typical ex-
amples of coherent mirrorless oscillation.15,16 This ap-
proach does not contradict the previous one, because
mirrorless oscillation is in fact a spatial variation of abso-
lute instability.17,18 At the same time, it allows us to re-
veal some new aspects of this phenomenon that under-
score the similarity to the usual lasers and other four-
wave mixing oscillators. Ideologically our approach is
close to that of Refs. 12, 14, and 18 in which hexagon for-
mation was considered a kind of parametric four-wave
mixing process.

2. MODELS FOR PATTERN FORMATION
Assume that a hexagon is already excited; then in a cer-
tain plane that contains two pump waves we may have, in
addition, four sidebands as shown in Fig. 1A. Sideband g
(with wave vector kg) records with pump wave b (with
wave vector kb) a grating (with grating vector K1). The
same grating K1 is also recorded by the second pump, a
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(wave vector ka), with sideband d8 (wave vector kd8), as
shown in Fig. 1B. In a similar way the grating with grat-
ing vector K2 is recorded by pairs of waves a, d, and b, g8
(Fig. 1C). Apart from the gratings with grating vectors
K1 and K2 the principal grating with grating vector K0
5 ka 2 kb is recorded by counterpropagating pump
waves a and b (Fig. 1D).

By considering wave g as a signal wave, we can see
from Fig. 1B that wave d8 corresponds to the phase-
conjugate wave that appears as the result of standard
backward wave-four wave mixing.15 In a similar way
waves d and g8 make a pair, signal wave–conjugate wave,
for the four-wave mixing process shown in Fig. 1C.

It is well known that backward-wave four-wave mixing
may result in mirrorless oscillation if the coupling
strength Gl (G is the coupling constant and l is the sample
thickness) is larger than a certain threshold value. The
necessary condition for this type of oscillation is the pres-
ence of local response in photorefractive crystal used, ei-
ther inherent or that which is due to the frequency shift of
the sidebands with respect to the pump wave in the crys-
tal with purely 90° out-of-phase gratings. This conclu-
sion is valid for mixing with predominant transmission
gratings as well as for mixing when only reflection grat-
ings are recorded (see, e.g., Refs. 16 and 17). Therefore
one could expect the appearance of the frequency-
degenerate patterns in photorefractive crystals with drift
or photovoltaic charge transport (rings19 and hexagons20

were observed in LiNbO3:Fe with the strong photovoltaic
effect) or of nondegenerate hexagons in crystals with the
diffusion charge transport.

This was the main qualitative result of the
theories.11,12 In fact, the distinction of the mixing pro-
cess in hexagon formation11,12 from the usual backward-
wave four-wave mixing16 is in the coupling of sidebands g,
d and g 8, d8 because of the diffraction from the principal
grating K0 recorded by counterpropagating pump waves
1998 Optical Society of America
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(Fig. 1E). This diffraction can be exactly Bragg matched
if the geometrical dephasing is compensated for by the
nonlinear dephasing,11,12 but it may also be nearly Bragg-
matched because of rather soft angular selectivity of the
reflection grating.1 This is why a final result of
calculations11,12 is more complicated than that in Ref. 16;
in particular, these theories predict a certain angle be-
tween the sidebands and the pump waves (whereas the
direction of four-wave mixing mirrorless oscillation is not
restricted for the equal intensities of the pump waves).

The next important step in theory was reported in Ref.
13, where Honda and Banerjee revealed the additional
coupling process for symmetric sidebands, which is re-
lated to the transverse intensity modulation inside the
sample (owing to the interference of the coherent pump
and the copropagating sidebands). As a result, the am-
plitude of the reflection grating appears to be transver-
sally modulated and the photons from, e.g., pump a are
diffracted into both sidebands, d and d 8. The most im-
portant result is that this theory predicts the finite
threshold for the excitation of frequency-degenerate side-
bands also for a photorefractive crystal with a purely non-
local response.13 With the effect of transverse modula-
tion taken into account, the threshold conditions for
hexagon generation become softer also for the photore-
fractive crystals with the local response.14

All the theories mentioned above do not predict the to-
tal number of sidebands in the three-dimensional case.
In the experiment only one pair of sidebands can be ex-
cited near each of two pump waves (rolls), four (square) or
six (hexagon) sidebands may appear, or the sidebands can
form a homogeneous ring. We are aware of no previous
reports of the excitation of flowerlike patterns that are
known, e.g., from nonlinear mixing of counterpropagating
light waves in gases,21,22 but there is no clear restriction
for observation of these more-complicated patterns in
photorefractive crystals. We believe that the two-
dimensional analysis can be applied for any pattern with
an even number of petals (sidebands), as well as for the
spatially degenerate case in which the ring is generated.

Summarizing this short overview of the existing mod-
els, we conclude that all of them predict the threshold of
the sideband excitation. In spite of the fact that different
numbers of light beams are coupled together in different
models, four-wave mixing is the basic interaction for all of
them. Below we consider the manifestation of the
threshold in hexagon formation for BaTiO3: Co.

Fig. 1. A, Orientation of the incident and generated light beams
in hexagon formation. B, C, Elementary backward-wave four-
wave mixing processes, and D, E, diffraction from the principal
grating. The wave vectors k are shown as the solid arrows in
B–E; the grating vectors are shown by dotted lines.
The threshold condition for optical oscillators always
includes the amplitude condition and the phase condition
of the self-excitation. The amplitude condition imposes a
certain restriction on the one-path gain in the amplifying
medium (for an oscillator with closed optical cavities, e.g.,
one-path gain should overcome all losses in the cavity).
The phase condition reflects the requirement of positive
feedback in the optical oscillator; it defines the frequen-
cies and the spatial structures of the oscillation modes.
In Section 3 we present the results of our experiments,
which show how these conditions are satisfied in hexagon
oscillation.

3. EXPERIMENT
Hexagon formation in a BaTiO3:Co sample was studied
experimentally in the geometry proposed and imple-
mented previously in Ref. 4. A 1-mm-thick Z-cut sample
of BaTiO3:Co is illuminated by the light beam from a
single-mode single-frequency Ar1 laser (l 5 0.515 mm;
Fig. 2). The incident beam is focused by an objective
with focal length F 5 45 cm onto the plane behind the
sample, where a highly reflecting flat mirror is placed
(lenses with other focal lengths, e.g., with F 5 15 cm and
F 5 70 cm, were also used, but below we describe the ex-
periments performed with the 45-cm focal-length objec-
tive). The mirror is adjusted to reflect the incident wave
exactly in a backward direction; the reflected wave is
close to a phase-conjugate wave with respect to the inci-
dent one (convergent incident and divergent reflected
spherical waves). This mirror is mounted upon a mi-
crometer stage, which allows for its plane-parallel dis-
placement in a range of few centimeters.

The intensity of the incident wave is controlled with a
variable beam attenuator, and its polarization can be
changed by l / 4 and a polarizer. Beam splitter BS1 is
used to reflect part of the backreflected radiation to the

Fig. 2. Schematic of the experimental setup: VBA, variable
beam attenuator; l/4, quarter-wave plate; P, O, objective; BS1,
BS2, beam splitters; PRC, BaTiO3 :Co sample; M, highly reflect-
ing mirror; S, screen. Shutter Sh is used to open the erasing
beam. The vectors e and c define the polarization of the pump
wave and the orientation of the crystal polar axis, respectively.
In some experiments, instead of a screen a high-pass spatial fil-
ter and a lens focusing the radiation of six hexagon spots to the
photodetector (not shown in the figure) are installed.
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screen for hexagon observation. Beam splitter BS2 re-
flects an additional light beam from the same Ar1 laser,
at oblique incidence to the sample; this beam serves for
optical erasure of the recorded photorefractive gratings.
Usually this beam is stopped by a shutter.

With the extraordinary pump wave the self-excitation
of a hexagon (like that shown in the inset of Fig. 2) was
achieved by careful adjustment of the backreflecting mir-
ror. The intensity of the pump wave was not critical for
hexagon generation; the intensity of the sideband in-
creased linearly with the growth of the pump intensity.
The ratio of intensity of the sideband to that of counter-
propagating pump wave was approximately 3 3 1024.

The dynamics of the hexagon buildup are shown in Fig.
3. One can see a typical behavior for optical oscill-
ators23–25 with two different stages: a relatively long pe-
riod of linear development when the intensity is increas-
ing slowly and a sharp nonlinear increase of intensity fol-
lowed by the saturation of the output intensity. We
measure the oscillation switch-on time as the time inter-
val between the beginning of the exposure and the mo-
ment when the sideband intensity reaches 10% of its
steady-state value.

The amplitude condition of oscillation consists of the
requirement that photorefractive gain overcome the
losses of the system. Many possible ways to control the
photorefractive gain are known. We choose the one that
exploits the dependence of the gain on the polarization of
the interacting waves.

The sample of BaTiO3:Co is tilted nearly to u
5 35° ... 45° in the plane of the optical table, as shown
in Fig. 2. Therefore the incident wave with the arbitrary
polarization excites two waves, ordinary and extraordi-
nary, inside the crystal. Because of the considerable bi-
refringence the grating vectors in the tilted sample are
quite different for the reflection gratings recorded by two
ordinary and by two extraordinary waves. Thus, because
of the severe Bragg-matching condition of the reflection
gratings, a grating recorded by the ordinary waves cannot
be read out by the extraordinary waves, and vice versa.

Fig. 3. Temporal development of the sideband intensity. At t
5 0 the pump waves start to illuminate the sample in which all
photorefractive gratings were previously erased by an additional
coherent light wave. Dashed line, 10% level from the saturation
intensity of the hexagon sideband; Dt, delay time of the oscilla-
tion switch-on.
Owing to a very large electro-optic tensor component in
BaTiO3, r42 , the gain factor for mixing of the extraordi-
nary waves is larger for this orientation than that for
mixing of the ordinary waves. The oscillation wave will
appear, meeting the requirement of minimum loss and
maximum gain; i.e., one can expect oscillation of the ex-
traordinary wave only. This result is in agreement with
the published data,4,6–10 in which both the pump waves
and the sidebands were polarized extraordinarily, and in
the present experiment we verify this by rotating the po-
larization of the pump waves. Figure 4 shows that
within the experimental error the polarization angle of
the sidebands ch remains the same when polarization of
the pump wave cp changes more than 10°.

When the pump polarization angle is different from
cp 5 0 the G factor diminishes (the ordinarily polarized
component of pump wave does not contribute to the am-
plification process but still contributes to photoconductiv-
ity, thus reducing G for mixing of the extraordinary
waves). By diminishing G in such a way one can ap-
proach the threshold of oscillation and, going further,
completely suppress the oscillation. Figure 5 shows the
dependence of the polarization angle on the intensity of
the hexagon sideband and the characteristic delay time
of oscillation switch-on. Note the sharp decrease of
the intensity and its complete disappearance below cp
5 2 6° and above cp 5 16°. As for other coherent op-
tical oscillators,23–25 the characteristic time of the oscilla-
tion buildup increases considerably in the vicinity of the
threshold values.

The phase condition of oscillation consists of the re-
quirement that the electric field of the light wave repro-
duce itself after one round trip of the cavity. There is no
closed optical cavity in the case of optical hexagon forma-
tion that we are considering here. The phase condition is
met here because of certain restrictions imposed on the
phase difference of all six interacting waves propagating
in the same plane. (Let us recall, e.g., the relation w3
5 2w4 1 w1 1 w2 1 constant for the phases of phase
conjugate w3 , signal w4 , and pump w1,2 waves in standard
backward-wave four-wave mixing16 in a photorefractive
crystal with the diffusion nonlinearity or similar relations
for the more complicated parametric mixing processes de-
scribed, e.g., in Ref. 18).

Fig. 4. Polarization angle of hexagon sidebands ch versus po-
larization angle of incident pump wave cp .
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One particular manifestation of the conditions for
phase oscillation for hexagons consists in the requirement
of self-reproduction of the transverse intensity distribu-
tion near the output face of the photorefractive sample.
As has been already mentioned, the periodic transverse
intensity distribution is of primary importance in hexa-
gon formation13 because it modulates the diffraction effi-
ciency of the reflection grating. To ensure the best con-
ditions for reflection-grating recording the requirement is
imposed that the transverse intensity distribution in the
light wave that is reflected by the mirror inside the
sample be exactly the same as that in the wave traveling
in the direction of the mirror.

Fig. 5. A, Hexagon sideband intensity, and B, oscillation
switch-on time versus polarization angle cp of the incident pump
wave. Dashed lines are guides for the eye.

Fig. 6. Angle u between the hexagon sideband and the pump
beam versus the distance L between the sample and the backre-
flecting mirror. The solid curve is the best fit to relation (2) with
N 5 1.
It is well known that periodic amplitude or phase
transparencies reproduce themselves at a certain dis-
tances when they are illuminated by a coherent light
wave (Talbot self-reproduction). For an amplitude trans-
parency (we ignore a possible minor contribution of the
phase transmission grating recording) the distance be-
tween a transparency and its Nth sharp identical image
is

LN 5 L2N/l, (1)

where l is the wavelength of light, L is the spacing of a
periodic structure, and N is an integer.

Taking into account that the angle of diffraction u from
the periodic structure is u 5 l/L, one can easily get the
relation for the angular position u of the sideband:

u ' ~l N/2L!1/2, (2)

where L is now the distance between the sample and the
mirror; it is equal to half of the reproduction distance, L
5 LN /2.

Both u and L are the self-adjustable parameters for the
process of pattern formation considered here; they are not
imposed by any external factors (such as cavity mirror po-
sition and mirror alignment for the oscillators with the
external cavity). This is why for the arbitrary spacing L
between the sample and backreflecting mirror one should
expect the appearance of the sidebands at an angle that
meets the condition of relation (2).

Figure 6 represents the measured dependence of the
angle between the pump wave and the hexagon sideband
as a function of the spacing between the end mirror and
the sample. The solid curve shows the best fit to the de-
pendence calculated for the first self-reproduction plane
(N 5 1). The only fitting parameter in this comparison
is a small constant correction factor D for the distance
L, because L cannot be measured exactly for the tilted
sample. It should be kept in mind that the absolute
value of D for several measurements was always much
smaller than the self-reproduction distance 2L (D
' 1 ... 2 mm, whereas 2L ' 20 ... 40 mm). Therefore
the agreement between the measured and the calculated
data is quite reasonable.

Relations similar to relation (2) were also derived in
Refs. 11 and 13 from other considerations; however, to our
knowledge, they were not verified experimentally.

4. CONCLUSIONS
The appearance of the symmetrical sidebands (forming
the rolls, squares, hexagons, or concentric rings) when
two counterpropagating waves are recording the reflec-
tion grating in a photorefractive crystal can be considered
mirrorless coherent oscillation. The threshold properties
were studied experimentally. It was shown that the in-
tensity of the sidebands gradually decreases to zero while
the switch-on time of the oscillation is increases drasti-
cally as the coupling strength diminishes to the threshold
value. As for other optical oscillators, the output radia-
tion always corresponds to modes with the highest gain:
The polarization of the hexagon sidebands, e.g., is purely
extraordinary, whatever polarization of the pump waves
and angular separation of the sidebands from the pump
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wave are imposed by the condition of self-reproduction of
the optical field in the sample after reflection from the
end mirror.
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