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Chapter 1

Introduction

Physics is a qualitative science, and physics is an experimental science. In some rare cases a
physical problem may have an exact (or high precision) solution as, for example, in the case
of spectrum of Hydrogen atom, or for a value of the fundamental constant e2/h̄c. Typically,
however, it is not so, because of two reasons: first, objects are too complicated in almost all cases
and, second, physical laws often have an approximate nature. Therefore, to solve a particular
problem, one has, first, to invent a physical model, and then to look for a (mathematically cor-
rect, if possible) solution. A special attention has to be devoted to “simplest/minimal” models
which may have an exact solution. After that, if the proposed model occurs to be successful
enough as, for example, many models in classical mechanics, it passes to mathematical or engi-
neering branches of sciences. Mathematics, on the contrary, is a rigorous science, and essentially
it is just a language – a typical sequence of step is “Definitions/Axioms → Statements” (often
deducted with small clear steps), then again “Definitions/Axioms → Statements”, etc. Never-
theless, physics remains a very interesting field, because it deals with objects and phenomena of
everyday life.

Methods used in theoretical physics are common in different branches of physics. In the
present book, the main attention will be given to methods and applications used in Solid State
Physics. The book is organized in the following way: we include
• definitions,
• formulas and theorems (typically without proofs which may be found in references),
• models,
• techniques (i.e., how to use different methods), and
• physical results (if possible, given “by fingers”).

As the main “language” of the book we choose the canonical quantization technique. There-
fore, a reader has to have a knowledge of some mathematics. This is an activation barrier which,
however, must be overcome.

1.1 The main ideas

The main ideas are the following.
Hamiltonian. In a general case, Hamiltonian of a system of M nuclei (M ∼ 1023) and

N = MZ electrons (Z = 3 to 100 according to the Mendeleev table) has the following form:

7



8 CHAPTER 1. INTRODUCTION

H = kinetic energy of nuclei
+ energy of repulsion of the nuclei
− energy of interaction
of the positive background with itself

→ Hphonons

+ energy of repulsion of electrons
− energy of interaction
of the negative background with itself

→ ∑
q 6=0(2πe2/q2)

(
ρ∗qρq − n

)

(exchange and correlation effects)

+ kinetic energy of electrons → ∑
kσ(h̄2k2/2m) c∗kσckσ

+ potential energy of interaction
of electrons with nuclei in equilibrium state
− energy of interaction
of the positive and negative backgrounds

→ ∑
kk′σ

(
Hkk′ − δkk′ h̄

2k2/2m
)

c∗kσck′σ

+ potential energy of interaction
of electrons with moving nuclei

→ Hel−ph =
∑

kqjσ F (qj) c∗k+q,σckσ

(
a∗qj + aqj

)

Methods of solution. Usually one has to use one or another approximate method, such as the
self-consistent field (SCF) method, the Hartree–Fock (HF) approximation, the mean field (MF)
method, the random phase approximation (RPA), etc. All these methods are in fact different
variants of the MF approximation, or the lowest-order approximation of a perturbation theory.
Often a hierarchy of characteristic times helps to simplify essentially the solution of the problem
(as an example, the adiabatic approximation will be consider in ...).

Probably, the most powerful approach in theoretical physics is to reduce the whole Hamil-
tonian to one describing a set of weakly-interacting quasi-particles, such as
– phonons (acoustical and optical if the lattice is complex),
– electron-hole pairs (one-electron excitations),
– excitons (in semiconductors),
– plasmons (due to Coulomb interaction between electrons),
– polarons (due to electron-phonon interaction),
– polaritons,
– magnons, etc.,
i.e., one has to calculate effective parameters of these quasi-particles as well as their mutual
interactions. Thus, a solution may be found approximately only.

Steps. During solution of a problem one typically has to pass through few steps, looking for
answers on the following questions:

(A) – how to reduce H to Hquasiparticles (that may be done approximate only),
(B) – what to calculate (e.g., correlation functions and/or response functions),
(C) – how to calculate (e.g., by the Green function technique).

Details of the steps:
(A) – A rigorous reduction of H to Hquasiparticles has no sense; we have to guess the model

(i.e. Hquasiparticles) from the very beginning (the main requirement here is that the model must
be maximally simple, but it should correctly describe the object or phenomenon under interest),
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and then only (sometimes much later) the introduced model may find a background (examples
will be given below in the book).

(B) – What to calculate? If we are interesting in the equilibrium state of the system, then
the distribution function

ρ(. . .) ∝ exp−βH(. . .) (1.1)

should be calculated. For calculation of thermodynamic potentials, we need to know the one-
particle distribution function ρ(x) and the two-particle function ρ(x1, x2), i.e. the general func-
tion (1.1) should be integrated over all coordinates except x1 and x2.

In a general nonequilibrium case, the correlation function

QAB(t1, t2) = 〈δA(t1) δB(t2)〉 (1.2)

should be known. It contains almost all information about the system. Namely, at experiment
one could measure:

(a) the scattering cross-section

∂2σ

∂Ω ∂ε
∝ Q̂AB(ω, k) . (1.3)

In elastic scattering experiments (= diffraction) one measures the structure factor. In inelastic
scattering experiments, we obtain the spectrum of system excitations. In both cases, the so-
called Debye-Waller (DW) factor may be measured (see below).

(b) the response function (if a perturbation of the system because of measuring may be
considered as a “small” one)

〈δA〉 ∝
∫

. . . α(. . .) F (. . .) , (1.4)

where α is the generalized susceptibility; the latter is coupled with Q̂ by the fluctuation-
dissipation theorem (FDT, or the famous Niquist theorem).

(C) – How to calculate? In particular, one of useful methods is the Green function technique.
Its idea is the following: let we need to solve the problem

Aφ = b. (1.5)

Let us first solve the problem
AG = 1, or G = A−1, (1.6)

then the solution for a general case is given by

φ = Gb . (1.7)

An advantage of this approach is that Eq. (1.6) has to be solved once only; then we have the
solution for any b (examples will be given below).



Chapter 2

Mathematical Introduction

2.1 Hilbert Space

The laws of quantum mechanics are formulated in the so-called Hilbert space. Namely, a state
of a quantum-mechanical system is described by a vector (element) of the Hilbert space, and
any change of the state (e.g., measure of some quantity, or system evolution, etc.) is described
by action of a corresponding operator defined in the Hilbert space. Below we give in brief the
main definitions.

Space is a set of elements called vectors. A vector is denoted by ψ or |ψ〉.
Topological space is ... A special case of topological space is the metric space. Metric space

is the space where a metrics ρ(ψ1, ψ2) is defined for any two elements.

Linear space is the space where the following two operations are defined: (1) the sum
operation, i.e. a rule which puts into correspondence a vector |ψ3〉 = |ψ1〉 + |ψ2〉, belonging
to the same space, for any two vectors |ψ1〉 and |ψ2〉. The sum operation is commutative;
(2) the operation of multiplying on a complex number, i.e., if c is a complex number, the vector
|ψ2〉 = c|ψ1〉 should belong to the same space. These two operations must also satisfy the two
rules (α + β)|ψ〉 = α|ψ〉+ β|ψ〉 and α(|ψ1〉+ |ψ2〉) = α|ψ1〉+ α|ψ2〉.

Normalized space is the linear space where every element has its own norm denoted ||ψ||. The
norm of an element is a number, associated with this element, which must satisfy the following
three conditions:

(1) ||ψ|| ≥ 0, and ||ψ|| = 0 if and only if ψ = 0;
(2) ||ψ1 + ψ2|| ≤ ||ψ1||+ ||ψ2||;
(3) ||αψ|| = |α| · ||ψ||.
Complete space is the normalized space where any fundamental sequence of elements (i.e.

a sequence that satisfies the Cauchy condition) converges to an element belonging to the same
space. If the space is not complete, it may be completed by adding the corresponding converging
elements.

The linear normalized complete space is called the Banach space.

Basis is a special set of vectors of the complete space such that any other vector may be
presented as a linear combination of the basic elements.

Separable space is the complete space which has a countable everywhere-dense subset. The
basis of the separable space consists of countable number of vectors.

Euclidean space is the (linear) complete space where a scalar product is defined, i.e., a
complex number c = 〈ψ1|ψ2〉 is associated with any two vectors |ψ1〉 and |ψ2〉. The scalar

11
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product must satisfy the following three conditions:
(1) linearity,
(2) symmetry, 〈ψ1|ψ2〉 = 〈ψ2|ψ1〉, and
(3) 〈ψ|ψ〉 ≥ 0, and 〈ψ|ψ〉 = 0 if and only if ψ = 0.
Two (nonzero) elements are called ortogonal if 〈ψ1|ψ2〉 = 0.
Comment 1: The norm in the Euclidean space is defined as ||ψ|| = √〈ψ|ψ〉. The CB inequal-

ity, |〈ψ1|ψ2〉| ≤ ||ψ1|| · ||ψ2||, is always valid in the Euclidean space.
Comment 2: In the normalized space, if the norm satisfies the condition

||ψ1 + ψ2||2 + ||ψ1 − ψ2||2 = 2
(
||ψ1||2 + ||ψ2||2

)
,

then the scalar product may be defined as

〈ψ1|ψ2〉 =
1
4

(
||ψ1 + ψ2||2 − ||ψ1 − ψ2||2

)
.

Theorem: The Euclidean space always has the orthonormal basis (i.e. the basis which is
countable and complete, and its vectors are normalized and orthogonal). The presentation of a
vector over this basis is called the (generalized) Fourier series.

Hilbert space is the (complete) separable Euclidean space. Its basis may be finite or infinite
(rigorously, the basis must be infinite, but in quantum mechanics the basis is often finite, so we
will not use this restriction). All infinite Hilbert spaces are isomorphic each other.

Operator A is an operation which, acting on a vector, produces (another) vector belonging
to the same space, |ψ2〉 = A|ψ1〉.

The simplest operator is the identity operator 1 which does not change the vector under
action. If {ϕi} is the basis of the Hilbert space, then

1 =
all∑

i

|ϕi〉〈ϕi| . (2.1)

Hermitian conjugate A∗ of an operator A is defined by the equation

〈ψ1|Aψ2〉 = 〈ψ1A
∗|ψ2〉 . (2.2)

Note: (. . . ABC . . .)∗ = . . . C∗B∗A∗ . . .
Inverse operator A−1 is defined by the equation

A−1A = 1. (2.3)

Operator A is called Hermitian if A∗ = A.
Operator U is called unitary if U−1 = U∗.

2.2 The main postulates of quantum mechanics

1. Any state of a system is described by a vector in a Hilbert space corresponded to the given
system.

2. Any measurable quantity of the system is described by a corresponding linear Hermitian
operator called observable which acts in this space.

3. Any symmetry of the system is described by a corresponding unitary operator .
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2.3 Bases

2.3.1 Discrete basis: a general case

Let A is a observable, and
A|ai〉 = ai|ai〉. (2.4)

Then |ai〉 are known as eigenvectors and ai as eigenvalues, i = 1, 2, . . . , n (may be n = ∞).
Condition of completeness of the set of eigenvector is

∑

i

|ai〉〈ai| = 1. (2.5)

Ortonormality condition takes the form

〈ai|ak〉 = δik. (2.6)

The complete orthonormal basis is the best one. However, non-orthogonal and unnormalized
bases may be used as well – sometimes they may lead to a more clear physical picture, although
algebra becomes more lengthy. In studying complex quantum-mechanical systems the basis is
often incomplete; this results in an approximate description of the system. Emphasize that the
basis should not be overcomplete, because this could lead to artifacts.

2.3.2 Space L2(X)

The space L2(X) is the set {f(x)} of all real functions defined on the interval X, such that (1) all
functions are integrable according to Lebesgue measure µ(X) < ∞, and (2) for any function,∫

dx f2(x) < ∞.
The space L2(X) is the Hilbert space. The scalar product in this space is defined as

〈ψ1|ψ2〉 =
∫

dx ψ1(x)ψ2(x) . (2.7)

The following bases may be introduced in this space:
1. For the finite interval (0, π) the functions {sin(kx), cos(kx)}, where k = 0, 1, . . . ,∞,

constitute the basis. Any function may be expanded over this basis, and this expansion is
known as the conventional Fourier series.

2. For the finite interval (0, 1) the set of functions {xk}, where k = 0, 1, . . . ,∞, constitutes
the basis. Any function may be expanded over this basis, the expansion is known as the Taylor
series. This basis is not orthogonal, but it may be orthogonalized; the resulting polynomials are
called the Legendre polynomials.

3. The set of functions {xke−x2} constitutes the basis on the (−∞,∞) interval. Being
orthonormalized, these functions are known as the Chebyshev–Hermite polynomials.

4. The set of functions {xke−x} constitutes the basis on the (0,∞) interval. Being orthonor-
malized, these functions are called the Laguerre polynomials.

2.3.3 Continuous Basis

The set of points of the interval (−∞,∞) is uncountable, so the corresponding space is not
Hilbert. Being overcomplete, it may lead to artifacts when used as the vector space in quantum
mechanics. However, due to its convenience, it is often used as the space in some quantum-
mechanical problems such as, e.g., the scattering problem. This basis is defined by

Q|q〉 = q|q〉 . (2.8)
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The condition of completeness of the eigenvector set is
∫
|q〉 dq 〈q| = 1. (2.9)

Ortonormality in the continuous basis takes the form

〈q′|q′′〉 = δ(q′ − q′′) . (2.10)

The wave function for the state |p〉 is introduced as

ψp(q) = 〈q|p〉 . (2.11)

The scalar product is defined by the integral

〈r|p〉 =
∫
〈r|q′〉 dq′ 〈q′|p〉 =

∫
dq′ ψ∗r (q

′)ψp(q′) . (2.12)

The action of an operator is described by the integral

〈r|f(Q)|p〉 =
∫
〈r|q′〉 dq′ 〈q′|p〉 =

∫
dq′′ ψ∗r (q

′′)f(q′′)ψp(q′′) . (2.13)

Example: the momentum operator P = −i ∂
∂Q acts by

〈q′′|P |q′〉 = −i
∂

∂q′
δ(q′ − q′′) , (2.14)

so that
〈r|P |p〉 =

∫
dq′′ ψ∗r (q

′′)
[
−i

∂

∂q′′
ψp(q′′)

]
. (2.15)

2.4 Basis for canonical quantization

Canonical (second, secondary) quantization is neither “second” nor “quantization”. The canon-
ical quantization is simply a very useful language in description of a system of N ≥ 2 identical
particles, especially when the number of particles is not conserved.

The canonical quantization Hilbert space LN for the system of N identical particles is con-
structed with the help of the Hilbert space L1 of a single particle. Namely, if {ϕi} is the basis
of the space L1, a vector of the space LN is denoted as

|ni1 , ni2 , ni3 , . . .〉 . (2.16)

This vector describes the system state where there are ni1 particles in the state ϕi1 , ni2 particles
in the state ϕi2 , etc. Therefore, LN is also called the space of occupation numbers. Any vector
of this space may be transformed into another vector by action of a combination of the so-called
creation and annihilation operators, so any operator may be expressed through these special
operators. Moreover, any state of LN for any N may be constructed with the help of creation
operators from a single vector

|0〉 ≡ |0i1 , 0i2 , 0i3 , . . .〉 , (2.17)

which is called the vacuum state.
Let us describe this construction in detail. The Hilbert space for the system of N ≥ 2

identical particles may be constructed from the N = 1 space in the following way: Let we already
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constructed the Hilbert space L1 ≡ {ϕi} for the system of one particle. Then, for the system of
two particles it seems natural to choose, as the Hilbert space, the direct product of two copies of
the one-particle Hilbert space, L2 = L1

⊗
L1 ≡ {ϕ(2)

ij = ϕiϕj}. When these two particles are not
identical, this construction is correct. However, for the system of identical particles it is not so,
the space L2 is overcomplete. Indeed, the vectors |i, j〉 and |j, i〉 are different vectors of L2, but
both vectors describe the same state of the quantum-mechanical system, because the identical
particles cannot be distinguished, and the permutation of two particles must not change the
system state. Therefore, this uncertainty must be excluded, extra vectors should be removed
from the Hilbert space. On the other hand, according to the axiom 5 of quantum mechanics
(see below Sec. 3.1), the vectors ϕ and eiαϕ with α being real, describe the same state of the
quantum-mechanical system, and a freedom in choosing of α leads to different constructions of
the Hilbert space, which correspond to different types of particles (in nature, however, only two
types of particles are realized, the Bose particles and the Fermi particles).

The “canonical quantization” method of construction of the Hilbert space for the system of
N ≥ 2 identical particles consists of the following six simple steps:
(1) Choose a basis {ϕi} ≡ {|i〉} for the one-particle (N = 1) system.
(2) Formally introduce the state |0〉 called the vacuum state. For a physical system this state
corresponds to the state without particles (N = 0).
(3) Define the creation operator c∗i by the equation

|i〉 = c∗i |0〉. (2.18)

(4) Define the annihilation operator ci as the Hermitian conjugate of the creation operator,
ci = (c∗i )

∗, and define the vacuum state by the equation

ci|0〉 = 0. (2.19)

Equation (2.19) is physically clear: it is nothing to destroy in the vacuum state, where there are
no particles.
(5) Choose permutation relations for the operators introduced above (either commutate or anti-
commutate rules, see below).
(6) Finally, a state of the system consisting of N particles is obtained by the consequent (N -
times) action of creation operators on the vacuum state.

Let us describe these steps in more details and show that they are self-consistent and rigorous.
The step (1) has been already described above.
The step (2) is formal and, therefore, needs no explanation.
Let us show that the definitions (3) and (4) are self-consistent: the action of the annihilation

operator ci, defined as the Hermitian conjugate of the operator c∗i , on the state |i〉 produces the
vacuum state, ci|i〉 = |0〉. Indeed, multiplying both sides of Eq. (2.19) on 〈0| from the left-hand-
side (l.h.s.), we obtain the identity:

〈0|ci|i〉 = (〈i|c∗i |0〉)∗ = (〈i|i〉)∗ = 1 = 〈0|0〉 = 1. (2.20)

The step (5) defines the rules for consequent action of creation and annihilation operators.
Namely, the state with two particles, one in the state |i〉 and another in the state |j〉 (j 6= i), may
be created in two ways: as |ϕ(2)

1 〉 = c∗i c
∗
j |0〉 or as |ϕ(2)

2 〉 = c∗jc
∗
i |0〉. Because both vectors describe

the same state, they must be coupled by the relation |ϕ(2)
1 〉 = eiα|ϕ(2)

2 〉. Different choices of
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the real α result in different Hilbert spaces. In quantum mechanics, only two choices are used:
α = 0 and α = π, or |ϕ(2)

1 〉 = ±|ϕ(2)
2 〉. Thus, we have to take

c∗i c
∗
j = ±c∗jc

∗
i . (2.21)

The plus sign describes Bose particles, and the minus sign corresponds to Fermi particles. For
the Fermi case we automatically obtain from (2.21) that c∗i c

∗
i = 0, i.e. the configuration with

two particles in the same state is forbidden. This is the well-known Pauli principle.
To find the commutator for ci and c∗i , let us use the fact that the basis {ϕi} is orthonormal,

〈j|i〉 = δij . Because |i〉 = c∗i |0〉 and |j〉 = c∗j |0〉, or 〈j| = 〈0|cj , we obtain 〈j|i〉 = 〈0|cjc
∗
i |0〉 = δij .

Using the definition of the vacuum state, this equation may be rewritten as 〈0|cjc
∗
i ∓ c∗i cj |0〉 =

〈0|δij |0〉. The later may be satisfied, if we assume that

cjc
∗
i ∓ c∗i cj ≡ [cjc

∗
i ]−η = δij . (2.22)

One can easily check that Eq. (2.22) is consistent with all other definitions introduced above.
As was shown above, for the Fermi particles the same state cannot be occupied by two

particles. Now let us calculate the probability that the same state is occupied by two Bose
particles, i.e. let us calculate |ϕ(2)|2 for the vector ϕ(2) = c∗c∗|0〉. Using the Bose commutation
rule, we obtain

〈ϕ(2)|ϕ(2)〉 = 〈0|ccc∗c∗|0〉 = 〈0|c(1 + c∗c)c∗|0〉 = 〈0|cc∗|0〉+ 〈0|cc∗cc∗|0〉
= 1 + 〈0|cc∗(1 + c∗c)|0〉 = 1 + 1 = 2. (2.23)

Analogously one can obtain that |ϕ(N)|2 = N ! for the vector ϕ(N) = (c∗)N |0〉. This is the
well-known Bose condensation: Bose particles prefer to occupy the same state; at T = 0 this
clearly should be the state with the lowest energy.

Let us summarize all rules together separately for Bose and Fermi particles.

2.4.1 Bose particles

Commutators:

[c, c∗]− = 1, all others = 0. (2.24)

Normalized basic vectors, 〈n|n〉 = 1, are defined by

|n〉 =
1√
n!

(c∗)n |0〉. (2.25)

Action of creation and annihilation operators on the basic vectors is described by the following
relations:

c∗ |0〉 = |1〉, c |0〉 = 0,

c∗|1〉 =
√

2 |2〉, c |1〉 = |0〉,
c∗|2〉 =

√
3 |3〉, c |2〉 =

√
2 |1〉,

. . . . . .
c∗|n〉 =

√
n + 1 |n + 1〉, c |n〉 =

√
n |n− 1〉.

(2.26)
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2.4.2 Fermi particles

Commutators:
[ci, c

∗
j ]+ = δij , all others = 0. (2.27)

Action of creation and annihilation operators on the basic vectors is:

cj | . . . , 0j , . . .〉 = 0, (2.28)
c∗j | . . . , 0j , . . .〉 = (−1)pj | . . . , 1j , . . .〉, (2.29)
cj | . . . , 1j , . . .〉 = (−1)pj | . . . , 0j , . . .〉, (2.30)

c∗j | . . . , 1j , . . .〉 = 0, (2.31)

where pj is the total number of occupied states which are to the left of the state j.

2.5 Analytical Functions

A complex function f(z) is defined as a rule which puts in a correspondence one point z of the
complex plane to another point w ≡ f(z),

z = x + iy → w = u + iv. (2.32)

Regular (analytical) function f(z) at a given point z = ξ is defined as the function which
has the so-called Laurent’s series near this point, i.e. if it can be presented as the series

f(z) =
∞∑

n=0

cn (z − ξ)n, (2.33)

which converges within a circle |z − ξ| < r with r > 0. The function is regular if and only if it
is differentiable, i.e.

... (2.34)

The coefficients in the Laurent series can be found by the integrands

cn =
1

2πi

∫
dz

f(z)
(z − ξ)n+1

. (2.35)

The regular function is differentiable an infinite number of times, and

f (n)(z) =
n!
2πi

∫
dξ

f(ξ)
(ξ − z)n+1

. (2.36)

Analytical continuation: Let fα(z) is a regular function at a point z = α, and let Γ is a
curve which begins at the point z = α. Then the doublet {z,Γ}, where Γ connects a point z
with the initial point α, defines the Riemann surface. The function f(z) is called the analytical
continuation of fα(z) on the curve Γ, if f(z) is regular for any point z ∈ Γ (Note: such a
procedure is dined if there is a special point, see below). Then, we may define in a similar way
the function which is analytical (regular) in a simply connected domain G: Analytic function in
a domain is the function which is analytical at any point within this domain.

Cauchy: if f(z) is regular in G, G is a finite simply connected domain, and C ∈ G is a closed
simple curve, then ∮

C
dz f(z) = 0 (2.37)
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and

f(z) =
1

2πi

∮

C
dξ

f(ξ)
ξ − z

. (2.38)

If a function cannot be analytically continued to a point ξ, this point is called the special
point. A special point is called the isolated special point, if the function is regular within the
ring 0 < |z − ξ| < R. An isolated special point is called the pole, if 1/f(z) has the k-order
zero (otherwise the isolated special point is called the essentially special point). For poles, the
residue theory operates.

2.5.1 Fourier and Laplace Transforms

Many properties of Green functions and susceptibility simply follow from analytical properties
of functions of a complex variable. Let us summarize here the main definitions and theorems.
In what follows, ω = ωR + iωI denotes the complex plane.

A general case

Let G(t) be a function of a real variable t, −∞ < t < +∞, and let |G(t)| < ∞.
Define the Fourier transform as

Ĝ(ωR) =
∫ +∞

−∞
dt eiωRtG(t) . (2.39)

Define the Laplace transform as

Ḡ(ω) =
∫ ∞

0
dt eiωtG(t) , ωI > 0. (2.40)

Define the generalized Laplace transform as

Ḡ(ω) =
∫ +∞

−∞
dωR

2πi

Ĝ(ωR)
ωR − ω

, ωI 6= 0. (2.41)

The function (2.41) is analytical everywhere on the ω-plane with the cut along the real axis.
From (2.41) it follows that

Ḡ(ωR ± i0) =
1

2πi
P

∫ +∞

−∞
dω′R

Ĝ(ω′R)
ω′R − ωR

± 1
2
Ĝ(ωR) (2.42)

and, therefore,
Ĝ(ωR) = Ḡ(ωR + i0)− Ḡ(ωR − i0) . (2.43)

The Wiener-Khintchine theorem states that
∫ +∞

−∞
dt G∗

1(t) G2(t) =
∫ +∞

−∞
dωR

2π
Ĝ∗

1(ωR) Ĝ2(ωR) . (2.44)

Note also that if G(t) is an even function, G(t) = G(−t), then

Ĝ(ωR) = Ḡ(ωR + i0) + Ḡ(−ωR + i0) . (2.45)
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A real function

If G(t) is the real function, then directly from the definition (2.39) it follows that

Ĝ∗(ωR) = Ĝ(−ωR) , (2.46)

i.e. Re Ĝ(ωR) is the even function, and Im Ĝ(ωR) is the odd function of ωR. From Eq. (2.41) we
obtain in this case that

Ḡ∗(ω) = Ḡ(−ω∗) (2.47)

and, therefore, Ḡ(iωI) is real.
Connection: calculating

∫
O dω ω Ḡ(ω)

(
ω2 + ω2

R

)−1 by two methods, we obtain
∫ +∞

−∞
dω′R

ω′R Ḡ(ω′R + i0)
(ω′R)2 + ω2

R

= iπḠ(iωR) . (2.48)

Note that if G(t) is the even function, then from Eqs. (2.45) and (2.47) it follows that Ĝ(ωR) is
real, and from Eq. (2.42) we obtain

Re Ḡ(ωR ± i0) = ±1
2
Ĝ(ωR) . (2.49)

Causality

If G(t) = 0 for t < 0 (the fundamental concept of causality which describes the relationship
between causes and effects), then its Fourier and Laplace transforms have some important prop-
erties.

Let us define the function G̃(ω) for all ω in such a way that G̃(ω) = Ḡ(ω) for ωI > 0, while
for ωI ≤ 0 the function G̃(ω) is defined as analytical continuation of this function. Then the
function G̃(ω) is analytical for ωI ≥ 0 and may have special points at ωI < 0. Moreover, directly
from the causality it follows that

G̃(ωR) = Ĝ(ωR) . (2.50)

Using Eqs. (2.50) and (2.42), we obtain

Ĝ(ωR) =
1
πi

P
∫ +∞

−∞
dω′R

Ĝ(ω′R)
ω′R − ωR

. (2.51)

Taking the real and imaginary parts of Eq. (2.51), we get

Re Ĝ(ωR) = +
1
π
P

∫ +∞

−∞
dω′R

Im Ĝ(ω′R)
ω′R − ωR

(2.52)

and

Im Ĝ(ωR) = − 1
π
P

∫ +∞

−∞
dω′R

Re Ĝ(ω′R)
ω′R − ωR

. (2.53)

Then, with (2.52) we get

Ḡ(ω) =
∫ +∞

−∞
dωR

π

Im Ĝ(ωR)
ωR − ω

(2.54)

(the Kramers–Kronig relation).
Note: it G(t) is real, then from (2.48), (??), (??) and (??) it follows that

Ḡ(iωI) =
2
π

∫ ∞

0
dω′R

ω′R Im Ĝ(ω′R)
(ω′R)2 + ω2

I

. (2.55)
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Integrating Ḡ(iωI), we obtain
∫ ∞

0
dωI Ḡ(iωI) =

∫ ∞

0
dωR Im Ĝ(ωR) . (2.56)

2.6 Green Functions

The Green function technique is a powerful method which provides the general solution of a
problem. This technique is used in different areas and, therefore, may be realized in different
ways.

Recall the main idea: if we need to solve the equation Aφ = b, we firstly have to find a
solution of the problem G = A−1, and then the solution for a general case has the form φ = Gb.

Consider the following simple examples (for quantum-mechanical many-particle systems the
technique is more involved and will be described in Sec. 6).

2.6.1 Mathematical physics: Diffusion equation

Consider the diffusion (parabolic) equation

u̇(x, t) = D∆u(x, t) + f(x, t) , (2.57)

where f(x, t) is called the source, with the initial condition

u(x, 0) = ϕ(x). (2.58)

First let us solve the equation
Ġ = D ∆G (2.59)

with the initial condition
G(x, 0) = δ(x). (2.60)

The solution of Eq. (2.59) is

G(x, t) =
1√

4πDt
exp

(
− x2

4Dt

)
. (2.61)

The function (2.61) is the Green function for the problem (2.57). The general solution of
Eq. (2.57) can then be expressed as

u(x, t) =
∫

dx′ ϕ(x′) G(x− x′, t) +
∫

dx′
∫ t

dt′ f(x′, t′) G(x− x′, t− t′) . (2.62)

2.6.2 Operator Green function (one-particle problem)

A formal solution of the equation
(ω −H) Ĝ(ω) = 1 (2.63)

is
Ĝ±(ω) = (ω −H ± iδ)−1, δ → 0. (2.64)

If
H|n〉 = En|n〉, (2.65)
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then
Ĝ±(ω) =

∑
n

|n〉〈n|
ω − En ± iδ

. (2.66)

Thus, the poles of the Green function give the eigen-energies En, while residues at these poles
give the corresponding eigenfunctions |n〉.

Then, the density of states is equal to

N (ω) = ± 1
π

Im Sp Ĝ∓(ω) . (2.67)

The main advantage of this technique is proved in the perturbation theory approach. Namely,
if

H = H0 + V, (2.68)

then
G = G0 + G0V G = G0 + GV G0 . (2.69)

This equation may then be iterated resulting in the perturbation theory series.

2.6.3 Perturbation theory in continuous spectrum

Let
H0ϕ0 = Eϕ0 (2.70)

and
(H0 + V ) ϕ = Eϕ . (2.71)

Note that here E is the same in both equations! (for a discrete spectrum, the situation is more
complicated and inconvenient because of corrections like E

(0)
n → En).

Equations (2.70, 2.71) may be rewritten as

(H0 − E)(ϕ− ϕ0) = −V ϕ . (2.72)

Introducing the Green function G0 = (E −H0)−1, the solution may be written as

ϕ = ϕ0 + G0V ϕ (2.73)

or, in full notation, as

ϕ(x) = ϕ0(x) +
∫

dx′ G0(x, x′;E) V (x′)ϕ(x′) . (2.74)

In the scattering problem, ϕ0(x) corresponds to the incoming wave, and one has to use the
Green function G+

0 .

2.6.4 Scattering theory

The scattering operator is defined as

T̂ (ω) = V̂ + V̂ Ĝ0(ω) T̂ (ω) . (2.75)

Therefore, we have

T = V + V GV ,

TG0 = V G ,

G0T = GV ,

G = G0 + G0TG0 . (2.76)



Chapter 3

Quantum Mechanics

3.1 Axioms

Any state of a physical system is described by a vector of a corresponding Hilbert space.
Laws of the quantum mechanics reduce to the following axioms:

(1) Linear Hermitian operators
(called observable)

(1) are used for presentation of measured val-
ues.

(2) Eigenvalues of observable operators (2) present possible results of the measuring.

(3) If two operators A and B commute, (3) then the simultaneous measure of A and B
is possible.

(4) Let [A,B] = 0, ψ(j) be the eigenvectors of A, and ϕ(k) be the eigenvectors of B. Then two
observable operators A and B may be united into a single observable C = A

⊗
B, where the

operator C acts in the space {ψ(j)}⊗{ϕ(k)}.
(5) A normalized vector ψ (5) describes a state of the system.

Note: the same state may be described by the vector ψeiβ provided β is a real number.

(6) The projection of ψ onto
an eigenvector ψ(j) of the observable A,
p(j)|ψ〉 = |ψ(j)〉〈ψ(j)|ψ〉 = cj |ψ(j)〉,

(6) characterizes the possibility to obtain at
measuring the value a(j).

(7) The probability to obtain the value a(j) is equal to c∗jcj .

(8) The average value of the observable A for the system in the state ψ is equal to
A = 〈ψ|Aψ〉 =

∑
j(c

∗
jcj) a(j). A is real, because A is Hermitian.

(9) If ϕ = B ψ, then B = 〈ψ|ϕ〉 = ψ∗ϕ. The probability of the transition of the system from
the state ϕ to the state ψ is equal to |ψ∗ϕ|2.

3.2 The Main Postulate of Quantum Mechanics

The main postulate of quantum mechanics (which play the same role as Newtonian equations
in classical mechanics) states:

23
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For any physical object, it exists the Hermitian operator, H = H∗, such that the average
value of any observable A satisfies the equation

Ȧ =
i

h̄
(HA−AH) +

∂A

∂t
. (3.1)

Here the left-hand side means

Ȧ ≡ d

dt
A = 〈ψ̇|A|ψ〉+ 〈ψ|Ȧ|ψ〉+ 〈ψ|A|ψ̇〉 , (3.2)

and the right-hand side means

i

h̄
(HA−AH) +

∂A

∂t
=

i

h̄
〈ψ|HA−AH|ψ〉+

〈
ψ

∣∣∣∣
∂A

∂t

∣∣∣∣ψ
〉

. (3.3)

H is called the Hamiltonian of the object. In a general case the form of H should be guessed
for a given system. The main postulate may be satisfied by different methods. The following
three methods (called representations) are used usually:

Schrödinger representation
Operators:

ȦS =
∂AS

∂t
, (3.4)

vectors:
ih̄

d

dt
|ϕS〉 = H|ϕS〉. (3.5)

If the eigenvalue problem HϕS = EϕS is solved, then

ϕS(t) = e−iωtϕS(0), where ω = E/h̄. (3.6)

Heisenberg representation
Operators:

ȦH =
i

h̄
(HAH −AHH) +

∂AH

∂t
, (3.7)

vectors:
d

dt
|ϕH〉 = 0. (3.8)

When the eigenvalue problem Hϕ
(H)
m = Emϕ

(H)
m is solved, then

〈ϕj |AH(t)|ϕk〉 = e
i
h̄
(Ej−Ek)t〈ϕj |AS |ϕk〉 . (3.9)

Interaction representation
If the Hamiltonian is presented in the form

H = H0 + V (t) , (3.10)

then operators:

ȦI =
i

h̄
(H0AI −AIH0) +

∂AI

∂t
, (3.11)
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vectors:
ih̄

d

dt
|ϕI〉 = V (t) |ϕI〉 . (3.12)

Coupling of different representations:

ϕS(t) = UϕH , (3.13)

AH(t) = U∗ASU , (3.14)

AI(t) = eiH0tASe−iH0t , (3.15)

where we introduced the evolution operator U(t) = e−i(H/h̄)t.

3.3 Density Matrix Formalism

The density operator (matrix) P, which completely characterizes the system state, is defined by
the following set of axioms:

(1) P is Hermitian operator; P =
∑

j ωj |j〉〈j|, where P|j〉 = ωj |j〉.
(2) ωj ≥ 0 (P is positively defined).

(3)
∑

j ωj = 1, or SpP = 1.

(4) A = Sp (PA) =
∑

j ωj 〈j|A|j〉. Here ωj is the probability for the system to be in the state
|j〉.
Note: in distinct from the wave function, the density matrix is defined uniquely.

Definition: The state is called the pure state, if only one ωj = 1, while all others = 0.

Theorem: The state is pure, if and only if P2 = P, i.e. if P is the projection operator.

The main postulate of quantum mechanics takes the form

Sp (ȦP + AṖ) = Sp
[

i

h̄
(HA−AH)P +

∂A

∂t
P

]
. (3.16)

In the Schrödinger representation from the axiom 1, using |j(t)〉 = e−iHt|j(0)〉, we obtain

P(t) = e−iHtP(0) e+iHt, (3.17)

so that the density matrix satisfies the Liouville equation

Ṗ = − i

h̄
(HP − PH) . (3.18)

In the Heisenberg representation P does not depend of time.
Applications:

Prob (l) = Sp (P · |l〉〈l|) = 〈l|P|l〉 =
∑

j

ωj |〈l|j〉|2. (3.19)

Information entropy:

S = −
∑

j

ωj ln ωj = −Sp (P lnP) = −lnP . (3.20)
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For a pure state we have S = 0, while for the equipartition distribution, ωj = const, S reaches
its maximal value.

In the coordinate representation:

P(x, x′) =
∑

j

ωj ϕ∗j (x
′)ϕj(x) , (3.21)

A =
∫

dx dx′ P(x, x′) A(x′, x) , (3.22)

x =
∫

dx xP(x, x) , (3.23)

p = −
∫

dx

[
−ih̄

∂

∂x
P(x, x′)

]

x=x′
. (3.24)

3.4 Conservation Laws

As was emphasized above, there are no general receipt how to involve a Hamiltonian for a given
problem. In many cases it has to be guessed. Typically, the following procedure is used:
• first, we have to choose an appropriate Hilbert space;
• second, we have to guess a form of the Hamiltonian;
• finally, we have to choose a suitable representation and then solve the corresponding evolution
equation.

Analogously to the classical mechanics, a very helpful is to use the system symmetry and
the corresponding conservation laws.

Let us consider the conservative system, i.e. the system described by the Hamiltonian which
does not depend implicitly on time. An observable A is conserved, if Ȧ = 0, or

d

dt
〈A〉 = 0 . (3.25)

From the main postulate one can see that the condition (3.25) is satisfied for any state ψ, if
and only if, first, A does not depend implicitly on time and, second, if A commutates with the
Hamiltonian,

[A,H]− = 0 . (3.26)

A conservation law is always connected with the corresponding symmetry of the system. A
general theory is described below.

Let us define:
• Let G be the group of transformations of the system.
• Let P be the unitary representation of the group G in the space of vectors of the given system,
P (G) ≡ {U}, where U ∈ P (G) is the unitary operator corresponding to the element g ∈ G, i.e.
the transformation g is described by ψ → Uψ and A → UA U−1.
• If every U ∈ P (G) satisfies Eq. (3.26), then G is the symmetry group of the given system.
• Let AG be the Lee algebra uniquely coupled with the symmetry group G.
• Let P̃ be the representation of the algebra AG in the space of vectors of the given system.

Then P̃ (AG) ≡ {A}, where any A ∈ P̃ (AG) is the Hermitian operator, i.e. it is observable.
Also, the corresponding unitary operator U ∈ P (G) can be presented as

U = eiαA, (3.27)
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so that U describes a “shift” of the system state on the “distance” α (the reverse statement will
be true if the system allows an infinitesimally small shifts α).

Let us consider the following examples.

(1) The trivial choice A = −H/h̄ corresponds to energy conservation. The corresponding
unitary operator is the evolution operator,

U = e−iHt/h̄, (3.28)

it describes the shift of the system state along the time variable t,

|ψS(t)〉 = U |ψS(0)〉, (3.29)

or
BH(t) = UBH(0)U−1. (3.30)

(2) The choice A = P/h̄, where P is the total momentum of the system, corresponds to
the momentum conservation due to translational invariance of the system. The corresponding
unitary operator

U = eiaP/h̄ (3.31)

describes the displacement of the center of mass of the system over the distance a,

|q + a〉S = U |q〉S , (3.32)

or
(Q + a)H = UQHU−1. (3.33)

(3) The choice A = J/h̄, where J is the total angular momentum of the system, corre-
sponds to the angular momentum conservation due to rotational invariance of the system. The
corresponding unitary operator

U = eiφnJ/h̄ (3.34)

describes the rotation of the system on the angle φ over the axis n. In a general case J is the
sum of orbital and spin angular operators (see below Sec. 3.6).

(4) The inversion operator Π is defined by

Π|q〉 = | − q〉 . (3.35)

The operator Π is the Hermitian unitary operator. Because Π2 = 1, the eigenvalues of Π are
±1, i.e. Π|±〉 = ±|±〉, where |±〉 are the eigenvectors. Any state may be expanded over these
two eigenvectors,

|ψ〉 = |ψ+〉+ |ψ−〉, (3.36)

where |ψ+〉 is the even component and |ψ−〉 is the odd component. If an operator A commutes
with Π, the eigenvectors of A should be either even or odd. For example, the eigenstates of the
orbital momentum operator L behave as

ΠYlm(θ, φ) = (−1)lYlm(θ, φ) . (3.37)

Any observable may be split into the even and odd operators, A = A+ + A−, where

ΠA+Π∗ = A+ , ΠA−Π∗ = −A− . (3.38)
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Table 3.1: Symmetry operators

symmetry group of generators rang invariant operators
translation P 3 P
inversion Π 1 Π
rotation J 1 J2

rotation and inversion J, Π 2 J2, Π
translation and rotation J, P 3 P2, (J ·P)

The operators H, L, s, J are the even operators, while the operators Q and P are the odd
operators. Note that

〈ψ±|A−|ψ±〉 = 0 . (3.39)

Usually [Π,H]− = 0; the corresponding conserved quantity is called the parity (notice that in the
weak interaction of the quantum field theory the parity is not conserved). Thus, if an eigenstate
of H is not degenerated, this state must have a certain parity. The matrix representation of Π
is

Π =

(
1 0
0 −1

)
, |+〉 =

(
1
0

)
, |−〉 =

(
0
1

)
. (3.40)

The main symmetry operators are summarized in Table 3.1.

Let the symmetry group G (i) be the unitary semi-simple Lee group, (ii) have n generators,
and (iii) have l invariant (Hermitian) operators (l < n). Then:
(1) the system has n conserved quantum numbers;
(2) the system has l “good” quantum numbers, which:
– conserve,
– can be measured simultaneously,
– uniquely define the multiplet, and
– the transitions are allowed only within the multiplet;
(3) all states of a given multiplet have the same energy.

3.5 Nonrelativistic Quantum Mechanics

The nonrelativistic quantum mechanics is based on the following two main hypotheses, which
are consistent with the main postulate: the first is the shape of Hamiltonian,

H =
P 2

2m
+ V (Q) , (3.41)

and the second is the commutation rule,

QP − PQ = ih̄ , (3.42)

where P is the momentum operator and Q is the coordinate operator. Therefore we have

P = mQ̇,

and for any analytical function f

f(Q1, . . . , Qr, . . .) Pr − Pr f(Q1, . . . , Qr, . . .) = ih̄
∂f

∂Qr
, (3.43)
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Qr f(P1, . . . , Pr, . . .)− f(P1, . . . , Pr, . . .) Qr = ih̄
∂f

∂Pr
. (3.44)

3.5.1 Schrödinger equation (conventional form)

Using the continuum coordinate basis Q|q〉 = q|q〉, we obtain for the momentum operator the
expression P = −ih̄ ∂

∂Q . Introducing the wave function ψE(q) = 〈q|E〉, the equation H|E〉 =
E|E〉 may be rewritten in the form

− h̄2

2m

∂2

∂q2
ψE(q) + V (q) ψE(q) = E ψE(q) . (3.45)

3.6 Angular Momentum

As an important example of Hilbert space, let us consider the angular momentum.
Definition: The operator M = {M1, M2,M3} is called the angular momentum operator, if it

satisfies the equation
M×M = ih̄M . (3.46)

Theorem: (?) one of the components of the angular momentum operator, say M3, always
may be chosen in such a way that

[M3,M2]− = 0 . (3.47)

Let |m,m3〉 be an eigenvector of both operators M2 and M3. Then

M3|m,m3〉 = h̄m3|m,m3〉 (3.48)

and
M2|m,m3〉 = h̄2m(m + 1)|m,m3〉, (3.49)

where
m = 0,

1
2
, 1,

3
2
, 2, . . . (3.50)

(this sequence may either be finite or may continue up to infinity), and

m3 = −m,−m + 1, . . . ,m− 1,m︸ ︷︷ ︸
2m+1

. (3.51)

3.6.1 Orbital momentum

The orbital momentum is defined as L = Q×P,

L1 = Q2P3 −Q3P2 ,

L2 = Q3P1 −Q1P3 ,

L3 = Q1P2 −Q2P1

(3.52)

analogously as in classical mechanics. Its eigenvectors/eigenvalues are

L2|l, l3〉 = h̄2l(l + 1)|l, l3〉 , (3.53)

where l = 0, 1, 2, . . .∞.
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In the coordinate representation (r, θ, ϕ):

Lz = −i
∂

∂ϕ
, (3.54)

L2 = − 1
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− 1

sin2 θ

∂2

∂ϕ2
(3.55)

and

|l, m〉 =
∫ π

0
dθ sin θ

∫ 2π

0
dϕYl,m(θ, ϕ) |θ, ϕ〉 . (3.56)

Here

Yl, m(θ, ϕ) =
{

(2l + 1)(l −m)!
4π(l + m)!

}1/2

Pm
l (cos θ) eimϕ. (3.57)

In particular,

Y0, 0 =
1√
4π

, (3.58)

Y1, 1 =
√

3
4π

sin θ eiϕ, (3.59)

Y1, 0 =
√

3
4π

cos θ , (3.60)

Y2, 2 =
1
4

√
15
2π

sin(2θ) e2iϕ, (3.61)

Y2, 1 =
1
4

√
15
2π

sin(2θ) eiϕ, (3.62)

Y2, 0 =
√

5
4π

(
3
2

cos2 θ − 1
2

)
(3.63)

and
Yl,−m = Y ∗

l,m . (3.64)

Notice that
∑L

l=0(2l + 1) = (L + 1)2.
Note: the magnetic momentum of a charge, which is coupled with the orbital (mechanical)

momentum L, is equal to µBm, where µB = ... is ...

3.6.2 Spin momentum

Spin 0

This case is trivial, s = 0.

Spin 1/2

For the spin-1
2 particles the spin operator is expressed throughout the Pauli matrices,

s =
1
2
h̄σ . (3.65)

Recall that the Pauli matrices are defined as

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (3.66)
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In the coordinate representation

σθϕ =

(
cos θ e−iϕ sin θ

eiϕ sin θ − cos θ

)
= σ1 sin θ cosϕ + σ2 sin θ sinϕ + σ3 cos θ, (3.67)

|θ, ϕ; ↑〉 =

(
cos θ/2

eiϕ sin θ/2

)
, |θ, ϕ; ↓〉 =

(
−e−iϕ sin θ/2

cos θ/2

)
, (3.68)

so that
σθϕ|θ, ϕ; ↑〉 = +|θ, ϕ; ↑〉 , σθϕ|θ, ϕ; ↓〉 = −|θ, ϕ; ↓〉 . (3.69)

Spin 1

For the spin-1 particles the spin operator is expressed throughout the Dirac matrices,

s = h̄β . (3.70)

Recall that the Dirac matrices are

β1 =
1√
2




0 1 0
1 0 1
0 1 0


 , β2 =

1√
2




0 −i 0
i 0 −i
0 i 0


 , β3 =

1√
2




1 0 0
0 0 0
0 0 −1


 . (3.71)

In the coordinate representation

βθϕ =
1√
2




√
2 cos θ e−iϕ sin θ 0

eiϕ sin θ 0 e−iϕ sin θ

0 eiϕ sin θ −√2 cos θ


 (3.72)

= β1 sin θ cosϕ + β2 sin θ sinϕ + β3 cos θ, (3.73)

|θ, ϕ; +1〉 =




e−iϕ(1 + cos θ)√
2 sin θ

eiϕ(1− cos θ)


 , (3.74)

|θ, ϕ; 0〉 =



−e−iϕ sin θ√

2 cos θ
eiϕ sin θ


 , (3.75)

|θ, ϕ;−1〉 =



−e−iϕ(1− cos θ)√

2 sin θ
−eiϕ(1 + cos θ)


 . (3.76)

3.6.3 Total momentum

The total momentum is
J = L + S . (3.77)

Theorem: If the system consists of parts with the momenta J1,J2, . . ., then the total momentum
is J = J1 + J2 + . . .
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3.7 Heisenberg Uncertainly Principle

Let the system is in a state |b〉, 〈b|b〉 = 1, and denote

q = 〈b|Q|b〉 , (3.78)

p = 〈b|P |b〉 , (3.79)

(∆q)2 = 〈b|(Q− q)2|b〉 , (3.80)

(∆p)2 = 〈b|(P − p)2|b〉 . (3.81)

Theorem:

∆p ∆q ≥ 1
2
h̄ , (3.82)

where the equality sign is realized for the harmonic oscillator only.
Proof : define

|u〉 = (P − p) |b〉 and |v〉 = (Q− q) |b〉 , (3.83)

and then use the BS (?) inequality

||u|| · ||v|| ≥ |〈u|v〉| . (3.84)

The equality is achieved, if and only if |u〉 = iγ|v〉 with γ being real. The wave function in this
case is Gaussian,

ψb(x) =
(

γ

π

)1/4

exp
[
−γ

2
(x− q)2 + ipx

]
. (3.85)

A general case: if there are three Hermitian operators K, L, and M such that

[K, L]− = iM , (3.86)

then

(∆K)2 (∆L)2 ≥ 1
4
M2. (3.87)

3.8 The HellmannFeynman Theorem

If
H = H0 + gV, (3.88)

then

Eexact
0 = 〈Ψ0(g)|H|Ψ0(g)〉 = E0 +

∫ g

0
dg

Eint(g)
g

, (3.89)

where Eint(g) = 〈Ψ0(g)|gV |Ψ0(g)〉. Thus,

∆E =
∫ 1

0
dg 〈Ψ0(g)|V |Ψ0(g)〉 . (3.90)
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3.9 System of Identical Particles

Let us consider now a system of identical particles. The main point here is that in quantum
mechanics, in contrast to classical mechanics, identical particles cannot be distinguished. This
leads to the existence of Fermi and Bose types of particles.

First, we have to introduce a Hilbert space LN for the system of N identical particles. It
is natural to construct LN using the Hilbert space L1 ≡ {ψ(1)

i }, the one-particle space. For
example, for the system of two particles the Hilbert space L2 ≡ {ψ(2)} may be constructed as
the direct product of two one-particle spaces, L2 = L1

⊗
L1, i.e. its elements are ψ

(2)
ij (1, 2) =

ψ
(1)
i (1)ψ

(1)
j (2). But this space is overcomplete in the case of the system of identical particles.

Indeed, the permutation 1 ⇔ 2 must give the same state of the system, because the particles
are identical. Therefore, it must be ψ(2)(2, 1) = eiβψ(2)(1, 2) with β being real. Any choice for
β may in principle be used, but only the following two choices, β = 0 and β = π, are realized in
nature. The first one corresponds to Bose particles,

ψ(2)(2, 1) = +ψ(2)(1, 2), (3.91)

and the second describes Fermi particles,

ψ(2)(2, 1) = −ψ(2)(1, 2). (3.92)

The type of particles is connected with their spin: the particles with integer spin, s =
0, 1, 2, . . ., are Bose particles, while the particles with half-integer spin, s = 1

2 , 3
2 , . . ., are Fermi

particles. The coupling of spin and type follows from the symmetry reason: the orbital momen-
tum should be even for the symmetric wavefunction (for bosons) and odd for the antisymmetric
wavefunction (for fermions). Because the orbital momentum is the sum of angular and spin
momentums, that gives ... see Lipkin p.158.

Now let us consider a general case of N ≥ 2 in more details.

3.9.1 Coordinate representation

To satisfy the condition (3.91) for the system of Bose particles, the wavefunction should be taken
in the form

ψ
(N)
i1i2...iN

(r1, r2, . . . , rN ) = N
∑

ψ
(1)
i1

(r1)ψ
(1)
i2

(r2) . . . ψ
(1)
iN

(rN ) , (3.93)

where N is the normalization factor. For the Fermi system, we have to choose

ψ
(2)
i1i2

(r1, r2) =
1√
2

[
ψ

(1)
i1

(r1)ψ
(1)
i2

(r2)− ψ
(1)
i1

(r2)ψ
(1)
i2

(r1)
]
, (3.94)

or, in a general case,

ψ
(N)
i1i2...iN

(r1, r2, . . . , rN ) = N
∑

P

(−1)P ψ
(1)
i1

(r1)ψ
(1)
i2

(r2) . . . ψ
(1)
iN

(rN ) . (3.95)

This wavefunction may be written as the Slater determinant ,

ψ
(N)
i1i2...iN

(r1, r2, . . . , rN ) =
1√
N !

det




ψ
(1)
i1

(r1) ψ
(1)
i2

(r1) . . . ψ
(1)
iN

(r1)
ψ

(1)
i1

(r2) ψ
(1)
i2

(r2) . . . ψ
(1)
iN

(r2)
...

...
. . .

...
ψ

(1)
i1

(rN ) ψ
(1)
i2

(rN ) . . . ψ
(1)
iN

(rN )




. (3.96)
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However, using of these wavefunctions in calculation is quite inconvenient, especially if the
number of particles is not constant; much more natural and convenient is the canonical quanti-
zation basis introduced above in Sec. 2.4.

3.9.2 Canonical quantization basis

The vacuum state and creation-annihilation operators have been described above in Sec. 2.4. Any
operator (e.g., observable) may be expressed through the creation and annihilation operators.
In particular, the operator of the number of particles in a state |i〉 is Ni = c∗i ci, and the operator
of the total number of particles is N =

∑
i Ni. A general form of a one-particle operator is

A =
∑

ij

Aij c∗i cj , (3.97)

and a general form of a two-particle operator is

B =
∑

iklm

Biklm c∗kc
∗
i clcm . (3.98)

Clearly, the system Hamiltonian may be expressed through the creation–annihilation operators
as well. In the simplest case, when the basis is constructed of eigenvectors of H, H|i〉 = εi|i〉,
and the interaction between the particles is absent, the Hamiltonian takes the form

H =
∑

i

εi c
∗
i ci . (3.99)

In a general case, a form of the Hamiltonian is to be guessed. But for the conventional
Hamiltonian,

H =
N∑

a=1

p2
a

2m
+

N∑

a=1

V (xa) +
1
2

∑

a 6=a′
v(xa, xa′) , (3.100)

the transformation to the canonical quantization basis may be done with the following unique
receipt. Namely, let us choose a one-particle basis {ϕi(x)} and then introduce the so-called field
operator

Ψ(x) =
∑

i

ci ϕi(x) . (3.101)

Then a one-particle operator A =
∑N

a=1 A(xa) in the canonical quantization basis is defined by

A = 〈Ψ∗(x)A(x)Ψ(x)〉 =
∑

ij

〈ϕi|A(x)|ϕj〉 c∗i cj , (3.102)

and the two-particle operator B = 1
2

∑
a6=a′ B(xa, xa′) is defined by

B =
1
2
〈Ψ∗(x)Ψ∗(x′)B(x, x′)Ψ(x′)Ψ(x)〉 =

∑

iklm

Biklm c∗kc
∗
i clcm , (3.103)

where
Biklm =

∫
dx

∫
dx′ ϕ∗i (x)ϕ∗k(x

′)B(x, x′)ϕl(x)ϕm(x′) . (3.104)

One can easily check that the matrix elements of operators defined in this way, coincide with
the correct ones.
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The main trick in calculation of matrix elements in the canonical quantization basis is the
following: using commutation relations, we should move the annihilation operators one by one
to the right-hand side (or the creation operators, to the left-hand side); then their action on the
vacuum state gives zero, while constants arising during the permutations, give the result.

Finally note that when there are two different types of particles, e.g. electrons and protons,
the former described by operators c, and the later, by operators d, for the mixed commuta-
tions we may use either commutation or anticommutation relation depending on which is more
convenient; in both cases the mixing commutators must be taken to be zero (see Lipkin p.175).

3.9.3 Nonortogonal basis (Fermi system)

In some cases, a more clear physics is achieved with using a nonortonormalized basis {φi},

〈φi|φj〉 = Sij , {Sij} ≡ S . (3.105)

Introducing the creation and annihilation operators a∗i and ai with the help of the field operator

Ψ =
∑

i

φiai , (3.106)

one can find that they must satisfy the commutation relation

[a∗i , aj ]+ =
(
S−1

)
ji

. (3.107)

Then, the one-particle operators still have the standard form,

A =
∑

kl

〈φk|A|φl〉 a∗kal . (3.108)

the identity operator now takes the form

1 =
∑

klσ

|φkσ 〉S−1
kl 〈φlσ| , (3.109)

and the operator of the total number of particles is

N =
∑

klσ

a∗kσ Skl alσ . (3.110)

The operator a∗i creates a particle in the state with the wavefunction
∑

m φmS−1
mi which is

orthogonal to all functions φk with k 6= i. On the other hand, the particle in the state with the
wavefunction φm is created by the operator

∑
k Smka

∗
k .

3.10 Examples

3.10.1 Harmonic oscillator

The harmonic oscillator is the most important system in quantum mechanics (as well as in clas-
sical mechanics, where it corresponds to linear approximation, the main lowest-order approxi-
mation). Besides, the harmonic oscillator is the only system which has the same description in
quantum and classical mechanics.
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Coordinate representation

In the coordinate (conventional) representation, the Schrödinger equation is

− h̄2

2m

∂2ψ

∂x2
+

1
2
mω2

0x
2ψ = Eψ(x) , (3.111)

which has the solution

ψn(x) =
(

mω0

πh̄

)1/4 1√
2nn!

exp
(
−mω0

2h̄
x2

)
Hn

(
x

√
mω0

h̄

)
, (3.112)

where
Hn(y) = (−1)ney2 dn

dyn
e−y2

(3.113)

are Hermite polynomials. The spectrum of harmonic oscillator is discrete, infinite, and equidis-
tant,

En =
(

n +
1
2

)
h̄ω0 , n = 0, 1, 2, . . . ,∞. (3.114)

The “dipole” matrix elements are

xmn =
∫

dxψ∗nxψm = δn,m+1

√
nh̄

2mω0
+ δn,m−1

√
(n + 1)h̄
2mω0

. (3.115)

Note: for a general case, H = a2p2 + b2x2, the spectrum is En =
(
n + 1

2

)
h̄(2ab).

Canonical quantization basis

In the canonical quantization basis the description of harmonic oscillator takes a much simpler
form, because we do not need to solve the partial differential equation and to know the explicit
form of wavefunctions. The creation operator may be introduced as

c∗ =
(

m

2h̄ω0

)1/2 (
ω0 x− i

m
p

)
. (3.116)

From the commutation relation xp−px = ih̄ it follows that c and c∗ satisfy the Bose commutation
cc∗ − c∗c = 1. Then, reversing (3.116),

x =
(

h̄

2mω0

)1/2

(c + c∗) , (3.117)

and then substituting (3.116) and (3.117) into the Hamiltonian

H =
p2

2m
+

1
2
mω2

0x
2, (3.118)

we immediately obtain

H = h̄ω0

(
c∗c +

1
2

)
. (3.119)

Thus, the harmonic oscillator may be treated either as one particle with the equidistant
spectrum, or as the system of identical noninteracting Bose particles with zero rest mass, so
that their number is not conserved; these descriptions are identical.
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3.10.2 A free particle

Let us consider now the simplest case of V (r) ≡ 0. In the three-dimensional space, there are three
conserved quantities, so that a state is to be labelled by three quantum numbers. Depending
on a symmetry of the problem, one may use different bases. All the bases belong to continuum
spectrum, E ≥ 0, therefore they are normalized on delta-function.

Plane waves

The simplest is the basis of plane waves,

ψk(r, t) = ψk(r) e−i E
h̄

t, ψk(r) = eik·r, (3.120)

the states are labelled by the quantum numbers k = {kx, ky, kz}. These functions are eigen-
functions of the momentum operator P which commutates with the Hamiltonian. The energy
is

E =
h̄2

2m
k2 =

h̄2

2m
(k2

x + k2
y + k2

z) . (3.121)

Spherical symmetry

When the problem has a spherical symmetry, we may use for the basis the eigenfunctions of
the angular momentum operator L (which commutates with the Hamiltonian). The states are
labelled by three quantum numbers E, l, and m (instead of E one might use k =

√
2mE/h̄).

The wave functions are
ψk, l, m(r, θ, ϕ) = R0

k, l(r) Yl, m(θ, ϕ) , (3.122)

where

R0
k, l(r) =

χ0
k, l(r)
r

, χ0
k, l(r) =

√
kr Jl+ 1

2
(kr) , (3.123)

and J is the Bessel function. The wave functions are normalized on delta-function, so that
∫

dr χ0
k′, l(r) χ0

k, l(r) = δ(k′ − k) . (3.124)

The state R0
k, l(r) corresponds to the standing wave. Besides, in scattering problem, the propa-

gating waves are also used,

R±
k, l(r) =

√
m

kh̄
(−1)l

(
r

k

)l (
d

r dr

)l e±ikr

r
, (3.125)

where the sign + (−) corresponds to the wave outgoing from the center (coming to the center).
The wave functions ψ± are normalized on one outgoing (incoming) particle per one time unit.

The plane wave may be expanded in a series over the spherical (Bessel) wavefunctions,

eik·r = eikr cos θ =
∞∑

l=0

√
π

2
il(2l + 1) Pl(cos θ)

Jl+ 1
2
(kr)

kr
, (3.126)

where P are the Legendre polynomials,

Pm
l (x) =

(1− x2)m/2

2ll!
dl+m

dxl+m
(x2 − 1)l. (3.127)
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Some particular cases:

R0
k, 0(r) =

√
2
π

sin(kr)
r

, (3.128)

R0
k, 1(r) =

√
2
π

k

[
sin(kr)
(kr)2

− cos(kr)
kr

]
, (3.129)

R0
k, 2(r) =

√
2
π

k

{[
3

(kr)3
− 1

kr

]
sin(kr)− 3

cos(kr)
(kr)2

}
, (3.130)

R±
k, 0(r) =

√
m

kh̄

e±ikr

r
. (3.131)

Asymptotic for r → 0:

R0
k, l(r) ≈ rl

√
2
π

kl+1

(2l + 1)!!
, (3.132)

R±
k, l(r) ≈ r−(l+1)

√
m

kh̄

(2l − 1)!!
kl

. (3.133)

Asymptotic for r →∞:

R0
k, l(r) ≈

√
2
π

sin (kr − lπ/2)
r

, (3.134)

eikr cos θ ≈ 1
kr

∞∑

l=0

il(2l + 1)Pl(cos θ) sin
(

kr − lπ

2

)
, (3.135)

R±
k, l(r) ≈

√
m

kh̄

exp [±i (kr − lπ/2)]
r

. (3.136)

Cylindrical symmetry

When the system has a cylindrical symmetry, the cylindrical Bessel functions are used:

eikr cos θ =
∞∑

m=−∞
Jm(kr) ime−imθ (3.137)

= J0(kr) + 2
∞∑

k=1

(−1)k {J2k(kr) cos(2kθ) + iJ2k−1(kr) cos[(2k − 1)θ]} . (3.138)

Note: the bases describe above, are complete for the V (r) ≥ 0 case, but not so if V (r) < 0
somewhere; in the latter case the basis should additionally be completed with coupled (discrete)
state(s), described by localized wavefunctions.

3.10.3 Central-symmetry potential

When the potential U(r) has the central symmetry, the Hamiltonian commutates with the
angular momentum operator. Thus, the states may be labelled by the energy E and by the
eigenvalues l and m of the operators L and Lz (the direction z may be chosen arbitrary).
Writing

ψ = Rl(r)Yl, m(θ, ϕ) (3.139)

and introducing the function
χl(r) = rRl(r), (3.140)
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where χl(r) → 0 at r → 0, we obtain for χl(r) the equation

− h̄2

2m

∂2

∂r2
χl(r) +

[
rUl(r)

1
r

]
χl(r) +

h̄2

2m

l(l + 1)
r2

χl(r) = Eχl(r) . (3.141)

In Eq. (3.141) we wrote Ul(r) for a general (pseudopotential) case ...

Coulomb potential

Let us consider the potential U(r) = ∓α/r, where α > 0. The states in the continuous spectrum,
E > 0, are labelled by the quantum number k and has the asymptotic (standing waves) at r →∞

Rk, l(r) ≈
√

2
π

1
r

sin
(

kr ± 1
k

ln(2kr)− lπ

2
+ δl

)
, (3.142)

where
δl = arg Γ

(
l + 1∓ i

k

)
. (3.143)

The coupled states, E < 0, exist for the case of attraction only. They consist of the discrete
spectrum and may be labelled by the quantum number n. Note that for the Coulomb attraction,
the number of coupled states is infinite at any α, and En → −0 at n →∞.

Power potential

Now let us consider the potential U(r) = ±α/rn with n > 1. Let for simplicity U(r) = 0 at
r > R0 (R0 is the radius of interaction).

For the continuous spectrum, E > 0, in the region r > R0 the wave function is determined
by the equation

χ′′k, l(r)−
l(l + 1)

r2
χk, l(r) + k2χk, l(r) = 0 , (3.144)

which has the solution

χk, l(r) = N
√

kr
[
cos δl(k) Jl+ 1

2
(kr)− sin δl(k) Nl+ 1

2
(kr)

]
, (3.145)

where N is the normalization constant and N is the Neumann function. The wavefunction has
the following asymptotic at r →∞,

Rk, l(r) ≈ N sin (kr − lπ/2 + δl(k))
r

. (3.146)

The phase δl(k) is defined by matching the function (3.145) with the solution of the Schrödinger
equation in the region r < R0.

The coupled states, E < 0, exist only for the case of attraction, and this attraction should
be strong enough, α ∼ R−2

0 (?). In the region r > R0 the wave function is determined by the
equation

χ′′k, l(r)−
l(l + 1)

r2
χk, l(r)− κ2χk, l(r) = 0 , (3.147)

which, in particular, at l = 0 has the solution

χk, 0(r) = N e−κr. (3.148)

The parameter κ is defined by matching the function (8.14) with the solution of the Schrödinger
equation in the region r < R0. It has only a finite number of solutions, which define the discrete
system spectrum, En = −h̄2κ2

n/2m.
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3.10.4 Hydrogen atom

The Hydrogen atom is one of few exactly solvable systems in quantum mechanics. The Schrödinger
equation (c > 0)

− h̄2

2m
∆ψ − 2c

r
ψ = Eψ(r) (3.149)

has, besides the continuous spectrum solutions described above in Sec. 3.10.3, the infinite discrete
number of bounded solutions

ψn, l, m(r, θ, ϕ) = Rn, l(r) Yl, m(θ, ϕ) , (3.150)

Rn, l(r) = − 2
n2

√
(n− l − 1)!
[(n + l)!]3

e−r/n
(

2r

n

)l

L2l+1
n+l

(
2r

n

)
, (3.151)

where

Lm
n (z) =

n!
(n−m)!

ez dn

dzn
e−zzn−m (3.152)

are the Laguerre polynomials.
The states are labelled by three quantum number n, l and m, which vary within the intervals

n = 1, 2, . . . , ∞ ,

l = 0, 1, 2, . . . , n− 1,

m = −l,−l + 1, . . . , l − 1, l. (3.153)

The energy of these states depends on the main quantum number only:

En = −2mc2

n2h̄2 . (3.154)

A degeneracy over l is “accidental”, it exists for the Coulomb potential only, i.e. only for
the hydrogen atom (and when other perturbations like relativistic ones may be ignored). For
any deviation from the Coulomb law, the energy of a state depends on l. In atomic physics the
states with different l are often labelled by letters in the following way:

l = 0 corresponds to s
l = 1 corresponds to p
l = 2 corresponds to d
l = 3 corresponds to f
. . .

(3.155)

Thus, the Hilbert space for the Hydrogen atom is L = Lr
⊗

Lθ
⊗

Lϕ
⊗

Lσ, where Lr is the
set of Laguerre polynomials of r, Lθ is the set of Hermite polynomials of cos θ, Lϕ is the Fourier
functions of ϕ, and Lσ consists of two vectors | ↑〉 and | ↓〉. This basis is complete and, therefore,
may be used in studying of more complicated atoms as well. The basis of Lr is, however, to
be modified — in computer calculation the Hermitian polynomials might be more convenient,
because the calculation of matrix elements becomes simpler. The ground state of ...

|1s ↑, 1s ↓, 2s ↑, 2s ↓, 2px ↑, 2px ↓, 2py ↑, 2py ↓, 2pz ↑, 2pz ↓, 3s ↑, 3s ↓, 0, 0, . . .〉. (3.156)
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3.10.5 Free (noninteracting) Fermi gas

For the free electron gas the natural basis consists of plane waves,

ϕk(r) = |k〉 = V
−1/2
vol eikr, (3.157)

which are numerated by the wavevector

k =

(
2π

Lx
nx,

2π

Ly
ny,

2π

Lz
nz

)
. (3.158)

The energy of the state |k〉 is

εk =
h̄2k2

2m
. (3.159)

The field operator has the form

Ψ(r) =
∑

kσ

ckσ ϕk(r) |σ〉, (3.160)

so that the Hamiltonian takes the form

H0 =
∑

kσ

εk c∗kσckσ. (3.161)

In the ground state (GS) of the system |Φ0〉 the electrons occupy all levels below the Fermi
level, the energy of which is determined by the total number of electrons:

N =
∑

|k|<kF ,σ

1 = 2(spin)
Vvol

(2π)3

∫

|k|<kF

d3k 1 = 2
Vvol

(2π)3
4
3
πk3

F (3.162)

so that

kF =
(

3π2 N

Vvol

)1/3

, εF =
h̄2k2

F

2m
=

h̄2

2m

(
3π2 N

Vvol

)2/3

, (3.163)

and the GS energy is determined by the kinetic energy of all electrons below the Fermi level,

E0 = 2
Vvol

(2π)3
4π

h̄2

2m

∫ kF

0
dk k4 = Vvol

h̄2k5
F

10π2m
= N

3
5
εF

=
3h̄2

10m

(
3π2

Vvol

)2/3

N5/3 = N
1
r2
s

3h̄2

10m

(
9π

4

)2/3

=? =
2.21
r2
s

(Ry). (3.164)

Note also a useful formula

d3k = 4πk2 dk = 2π

(
2m

h̄2

)3/2√
ε dε . (3.165)

Excitations over the GS are defined as follows: let us introduce the quasiparticle annihilation
operator ηk defined by the equation ηk|Φ0〉 = 0 (for all k!), i.e.

ηk =

{
ck for k > kF (electron),
c∗k for k < kF (hole).

(3.166)
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Then the creation operator is η∗k, and the main operators take the form

Nquasiparticles =
∑

kσ

η∗kσηkσ = Nel + Nholes ,

Nel =
∑

k>kF ,σ

η∗kσηkσ , Nholes =
∑

k<kF ,σ

η∗kσηkσ , (3.167)

H ≡ H0 − µN = (E0 − µN) +
∑

kσ

ω(k) η∗kσηkσ, (3.168)

where

ω(k) =

{
µ− k2/2m if k < kF ,
k2/2m− µ if k > kF ,

(3.169)

so that ω(k) ≥ 0.
We would like to pay attention to a trick we made here: we introduced the new vacuum state,

taking for it the previously found GS, and defined the quasiparticle creation and annihilation
operators over this new vacuum state.

Fermi surface ...
density of states ...
Finally, when the electron gas interacts with an external potential v(r) (e.g., due to an

impurity in a metal), the perturbation is

Hint =
∑

kk′σ
vkk′ c

∗
kσck′σ , (3.170)

where
vkk′ = 〈k|v|k′〉 =

1
Vvol

∫
d3r v(r) e−i(k−k′)r =

1
Vvol

v(k − k′) . (3.171)

In particular, for the Coulomb impurity we have

v(r) = e2/r , v(q) = 4πe2/q2. (3.172)

3.10.6 Free (noninteracting) Bose gas

...

3.10.7 Noninteracting particles in an external field

...

3.10.8 Two-atomic molecule

Consider now a two-atomic molecule A–B. As the Hilbert space one might take the orbitals of
one of the atoms, e.g., the atom A, because this basis is complete and, therefore, any state of
the atom B may be expressed through the basis of the atom A. Clearly, however, that such a
basis is inconvenient, especially for the symmetric molecule A–A. One might take, as the Hilbert
space, the space L = LA

⊗
LB, but this basis is overcomplete and may lead to wrong results.

The solution of the problem is to use the orbitals of both atoms, but not the whole (infinite) sets
of wavefunctions, but a reduced set, i.e. only a finite number n of them. Then for any n < ∞
the basis will be incomplete — it will never be overcomplete, and a larger is n, a more accurate
will be the result.
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For a qualitative description, it is already enough to take two orbitals, by one orbital from
each atom. The Hamiltonian is:

H =
∑
σ

[Eanaσ + Ebnbσ + (Vab c∗aσcbσ + h.c.)] . (3.173)

Let us use the canonical transformation method, where we are looking for a solution in the
form

caσ = (1 + γ2)−1/2(c1σ + γc2σ) ,

cbσ = (1 + γ2)−1/2(γc1σ − c2σ) , (3.174)

and we should choose γ so that to diagonalize the Hamiltonian, i.e. to reduce it to the form

H =
∑
σ

(E1n1σ + E2n2σ) . (3.175)

The solution is:

γ =

√
1 +

(
∆E

2V

)2

+
∆E

2V
, (3.176)

E1,2 =
Ea + Eb

2
±

√(
∆E

2

)2

+ V 2 , (3.177)

where
∆E = Eb −Ea , V 2 = VabVba . (3.178)

The Green functions are:

Gσ
aa = (ε− Eb)/Z , Gσ

ab = Vab/Z , (3.179)

where
Z = (ε− Ea)(ε−Eb)− V 2 = (ε− E1)(ε− E2) . (3.180)

The Green function may be rewritten as

Gσ
aa =

αa

ε− E1
+

βa

ε− E2
, (3.181)

where

αa =
Eb − E1

E2 − E1
=

1
2

+
∆E

4
√

(∆E/2)2 + V 2
,

βa =
E2 − Eb

E2 −E1
=

1
2
− ∆E

4
√

(∆E/2)2 + V 2
, (3.182)

so that
ρσ

a(ε) = αaδ(E − E1) + βaδ(E −E2) . (3.183)

Cases:
If Ea = Eb, we have γ = 1 and E1,2 = Ea ± |V |.
If Ea < Eb, we have γ > 1 (?), and in the state |1〉, the electron disposition is closer to the
atom A.
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The Fermi level εF is determined from the equation
∑
σ

∫ εF

−∞
dε [ρσ

a(ε) + ρσ
b (ε)] = N, (3.184)

where N is the total number of electrons. If N = 2, then

naσ = αa = βb, (3.185)

and the dissociation energy is equal to

D = (Ea − E1) + (Eb −E1). (3.186)

show fig!

3.10.9 Gurney model

... virtual level, Friedel ocsillations ...

3.10.10 Two-body system

The Hamiltonian of two interacting particles,

H =
P 2

1

2m1
+

P 2
2

2m2
+ V (Q1, Q2) , (3.187)

may be rewritten as

H =
P 2

2M
+

p2

2m
+ V , (3.188)

where the centre of mass variables are

P = P1 + P2 , (3.189)

Q = (m1Q1 + m2Q2)/M , (3.190)

P = MQ̇ , (3.191)

M = m1 + m2 (3.192)

and the relative variables are
p = (m2p1 −m1p2)/M , (3.193)

q = Q1 −Q2 , (3.194)

p = mq̇ , (3.195)

m = m1m2/M . (3.196)

The relative kinetic energy may be rewritten as

p2 = r−2L2 + p2
r , (3.197)

where L is the orbital momentum, L = q × p, r is defined by

r2 = q · q , (3.198)

and the radial momentum is introduced as

pr = r−1(q · p− ih̄) , (3.199)

so that pr = mṙ.



Chapter 4

Approximate Methods

4.1 Adiabatic Approximation

When a system consists of particles of two types, light and heavy ones (e.g., electrons and
nuclei), its dynamics may be considered within the adiabatic approximation, where light particles
adiabatically follow the positions of heavy particles.

Let {r} be the coordinates of light particles and {R}, the coordinates of heavy particles.
Then, presenting the Hamiltonian as

H = H0(r,R) + TR , (4.1)

where TR is the kinetic energy of heavy particles, the eigenfunctions of the whole problem

HΨ(r,R) = EΨ(r,R) (4.2)

may be looked for in a form
Ψ(r,R) =

∑
n

φn(R) ϕn(r,R), (4.3)

where ϕn(r,R) are eigenfunctions of the equation

H0(r,R) ϕn(r,R) = εn(R) ϕn(r,R) (4.4)

and R’s are treated as the parameters. Thus, the problem (4.2) reduces to the equation

{[TR + εn(R)]− E}φn(R) ≈ 0 . (4.5)

4.2 Thomas–Fermi Approximation

For a nonrelativistic Fermi system of charged particles (e.g., for the electron gas) the potential
energy may be written as

V (r) = eϕ(r) , (4.6)

where e is the charge and ϕ(r) is the potential which satisfies the Poisson equation

∇2ϕ(r) = 4πen(r) , (4.7)

n(r) being the density of particles. When (i) the potential varies slowly, and (ii) the particles
move slowly (a quasi-adiabatic case), we may put approximately

n(r) = 2(spin)
1

(2π)3
4
3
πk3

F (r) ,
h̄2k2

F (r)
2m

= µ− eϕ(r) (4.8)

45
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assuming that the chemical potential µ is constant (i.e., it is the same for the whole system)
and is determined by the total number of particles. The coupled system of equations (4.7, 4.8)
corresponds to the Thomas-Fermi (TF) approximation.

In the linearized TF approximation we also put (+ or − ?)

n(r) =
1

3π2

[
2m

h̄2 (µ + eϕ(r))
]3/2

≈ n +
3
2

n

εF
eϕ(r) . (4.9)

The Poisson equation then reduces to

∇2ϕ(r) = k2
TFϕ(r) , (4.10)

which leads to a screening, ϕ(r) ∝ e−kTFr, with the TF momentum

k2
TF =

6πne2

εF
=

2.6
rs

a.u. (4.11)

4.3 Method of Motion Equations

Let one can find an operator A such that it satisfies the equation

[H, A∗]−|Ψ0〉 = h̄ωA∗|Ψ0〉 , (4.12)

then the operator A∗ creates an excitation with the energy h̄ω.
Proof : the state A|Ψ0〉 has the energy E0 − h̄ω,

HA|Ψ0〉 = (E0 − h̄ω)A|Ψ0〉 . (4.13)

But because E0 is the minimum energy of the system, it must be A|Ψ0〉 = 0, i.e. A is the
annihilation operator, therefore A∗ should be the corresponding creation operator,

HA∗|Ψ0〉 = (E0 + h̄ω)A∗|Ψ0〉 . (4.14)

If we can find an operator A such that it satisfies the operator equation

[H, A∗]− = h̄ωA∗, (4.15)

then this system has a Bosonic (equidistant) spectrum, i.e. the state (A∗)2 |Ψ0〉 has the energy
2h̄ω, the state (A∗)3 |Ψ0〉 has the energy 3h̄ω, etc.

In a general case, we have to find a set of operators {A∗j} which satisfy the equations

[H, A∗j ]− = h̄ωjA
∗
j , (4.16)

then the creation operator A∗j creates its own type of excitation.
If we have found a closed set of operators {An} such that

[An,H]− =
∑
m

KnmAm , (4.17)

then, using the equation

〈[[An,H]−, A∗l ]η〉 =
∑
m

Knm〈[Am, A∗l ]η〉 , (4.18)

we can calculate the corresponding Green functions,

〈〈An, B〉〉ω =
∑
m

(
(ω −K)−1

)
nm
〈[Am, B]η〉 . (4.19)
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4.4 WKB Approximation

Looking for a solution of the Schrödinger equation in the quasi-classical approximation, let us
substitute the wavefunction

ψ(r, t) = exp
[

i

h̄
S(r, t)

]
(4.20)

into the Schrödinger equation thus obtaining the equation for the function S(r, t),

∂S

∂t
= −(∇S)2

2m
− V (r) +

ih̄

2m
∇2S . (4.21)

If (∇S)2 À h̄(∇2S), or

p2 À h̄
∂p

∂x
=

mh̄

p

∣∣∣∣
∂V

∂x

∣∣∣∣ , (4.22)

the last term in the r.h.s. of Eq. (4.21) may be neglected, and it reduces to the classical Hamilton-
Yacobi equation, S(r, t) being the action.

In the stationary state, when ψ(r, t) = e−iEt/h̄ϕ(r), the action takes the form S(r, t) =
σ(r)− Et, where the function σ(r) satisfies the equation

(∇σ)2

2m
+ V (r)− ih̄

2m
∇2σ = E . (4.23)

Looking for a solution of this equation in a series of h̄,

σ(r) = σ0(r) +
(

h̄

i

)
σ1(r) +

(
h̄

i

)2 1
2!

σ2(r) + . . . , (4.24)

we obtain in the lowest (h̄0) order

(∇σ0)2

2m
+ V (r) = E . (4.25)

In the one-dimensional case this equation has the solution

σ0(x) = ±
∫ x

a
dx p(x) , p(x) =

√
2m[E − V (x)] , (4.26)

or
ϕ(x) =

C1

|p(x)| exp
(

i

h̄

∫ x

a
dx p(x)

)
+

C2

|p(x)| exp
(
− i

h̄

∫ x

a
dx p(x)

)
(4.27)

=
C

|p(x)| sin
(

α +
1
h̄

∫ x

a
dx p(x)

)
. (4.28)

The WKB (Wentzel–Kramers–Brillouin) approximation is rigorous when |p(x)| is large, i.e. when
E 6= V (x). When E < V (x), then p(x) is complex, and Eq. (8.14) describes the tunnelling effect.

The next order in h̄ leads to the equation

∇σ1 =
∇2σ0

2∇σ0
, (4.29)

which gives
σ1(x) = const + ln [p(x)]−1/2 . (4.30)
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4.5 Conventional Perturbation Theory

For the Hamiltonian
H = H0 + gV, (4.31)

where H0 has the eigenvectors |ϕn〉,

H0|ϕn〉 = Em|ϕn〉, (4.32)

the eigenfunctions of H may be looked for in the form

|ψ〉 =
∑
n

an |ϕn〉. (4.33)

This leads to the eigenvalue problem

(E − Em) am = g
∑
n

anVmn , (4.34)

or
Det [(Em −E) δmn + gVmn] = 0 . (4.35)

Solving this problem by iterations, we obtain

ψ(l) = ϕl + g
∑

n 6=l

Vnl

El − En
ϕn + . . . (4.36)

and

E(l) = El + gVll + g2
∑

n6=l

|Vnl|2
El −En

+ . . . (4.37)

When two levels of H0 are degenerated, say E1 ≈ E2, first we have to solve exactly the
eigenvalue problem for the two levels 1 and 2 thus finding the new energies E′

1 and E′
2 and

wavefunctions ϕ′1 and ϕ′2, and then use the basis with these two new states instead the old ones;
then the divergence disappears.

4.6 Stationary Perturbation Theory

Let us introduce the wavefunctions |Υn〉 = C|Ψn〉, where the constant C is chosen so that
〈Φn|Υn〉 = 1. Then

∆E = 〈Φ0|V |Υ0〉 . (4.38)

Introduce also the projection operator

Q = 1− |Φ0〉〈Φ0| (4.39)

and suppose that the ground state |Φ0〉 is nondegenerated. Then one can easily find that

(u−H0)|Υ0〉 = (u−H + V )|Υ0〉 = (u− Eexact
0 + V )|Υ0〉 (4.40)

and
|Υ0〉 = |Φ0〉+ Q|Υ0〉 = |Φ0〉+

Q

u−H0
(u− Eexact

0 + V )|Υ0〉 , (4.41)
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where u is a parameter. Equations (4.41) may be solved by iterations, leading to the series

|Υ0〉 =
∞∑

n=0

[
Q

u−H0
(u− Eexact

0 + V )
]n

|Φ0〉 . (4.42)

The choice u = Eexact
0 leads to the Brillouin–Wigner perturbation series,

|Υ0〉 = |Φ0〉+
1

Eexact
0 −H0

QV |Φ0〉+
1

Eexact
0 −H0

QV
1

Eexact
0 −H0

QV |Φ0〉+ . . . (4.43)

and

∆E = 〈Φ0|V |Φ0〉+ 〈Φ0|V Q

Eexact
0 −H0

V |Φ0〉+ 〈Φ0|V Q

Eexact
0 −H0

V
Q

Eexact
0 −H0

V |Φ0〉+ . . .

(4.44)
The choice u = E0 results in the Rayleigh–Schrödinger perturbation series,

∆E = 〈Φ0|V |Φ0〉+ 〈Φ0|V Q

E0 −H0
V |Φ0〉+ 〈Φ0|V Q

E0 −H0
V

Q

E0 −H0
V |Φ0〉

−〈Φ0|V |Φ0〉〈Φ0|V Q

(E0 −H0)2
V |Φ0〉+ . . . (4.45)

This variant of the perturbation theory operates for many-body systems, because “incorrect”
terms are cancelled with unconnected diagrams of the “correct” terms.

4.7 Dynamic Perturbation Theory

Let
H = H0 + g(t) V , (4.46)

where g(t) = 0 at t → −∞ and g(0) = 1, for example,

g(t) = ge−δ|t| , (4.47)

where δ → 0, and in the final expressions we have to put g = 1. Equation (4.47) corresponds to
adiabatically slow turning on of the interaction.

Introduce the adiabatic operator S as

S(t, t0) = eiH0t U(t, t0) e−iH0t . (4.48)

S(t, t0) is the unitary operator, and it satisfies the equation

ih̄
∂

∂t
S(t, t0) = g(t)V (t) S(t, t0) , S(t, t0)|t=t0 = 1 , (4.49)

where V (t) = eiH0t V e−iH0t. The adiabatic operator may be considered as the evolution operator
in the interaction representation, |ψ(t)〉int = S(t, t0)|ψ(t0)〉int.

A formal solution of Eq. (4.49) is

S(t, t0) = 1− i

∫ t

t0
dt1 g(t1)V (t1)S(t1, t0) . (4.50)
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Iterating this equation, we obtain the perturbation series

S(t, t0) =
∞∑

n=0

(−i)n
∫ t

t0
dt1

∫ t1

t0
dt2 . . .

∫ tn−1

t0
dtn g(t1)g(t2) . . . g(tn) V (t1)V (t2) . . . V (tn) . (4.51)

Using the chronological operator Pch, this series may be rewritten as

S(t, t0) =
∞∑

n=0

(−i)n

n!

∫ t

t0
dt1

∫ t

t0
dt2 . . .

∫ t

t0
dtn g(t1)g(t2) . . . g(tn)Pch[V (t1)V (t2) . . . V (tn)] . (4.52)

Substituting Eq. (4.47) into Eq. (4.52), we obtain

Sδ ≡ S(0,−∞) =
∞∑

n=0

(−i)n gn

n!

∫ 0

−∞
dt1

∫ 0

−∞
dt2 . . .

∫ 0

−∞
dtn eδ(t1+t2+...+tn) Pch[V (t1)V (t2) . . . V (tn)] .

(4.53)
One can check that the operator Sδ satisfies the following identity (Gell-Mann and Chow),

[H0, Sδ]− = −gV Sδ + ih̄δg
∂

∂g
Sδ . (4.54)

Then, after some algebra described in detail in a number of textbooks (which all reduce to the
proof that the adiabatic hypothesis is rigorous here) one can obtain finally

|Ψn(g)〉 = lim
δ→+0

Sδ|Φn〉
〈Φn|Sδ|Φn〉 (4.55)

and
∆En(g) = lim

δ→+0
ih̄δg

∂

∂g
ln〈Φn|Sδ|Φn〉 . (4.56)

In the case of degenerated spectrum, these equations coincide with the Rayleigh–Schrödinger
perturbation series.

The described dynamic perturbation theory forms the base for the diagram perturbation
theory described below in Sec. 8.14.



Chapter 5

Linear Response Theory

The linear response technique is one of the most powerful methods used in solid state physics.
First, the linear response describes most experiments. Namely, let a coherent flux of particles

(e.g., photons, electrons, protons, neutrons, ions, atoms, or even molecules) with a given energy
εini and momentum pini = h̄kini (and, may be, with given values of internal degrees of freedom
such as spin) be directed to a target (one atom or molecule, gas, liquid, amorphous or crystalline
solid), and then the scattered flux is analyzed, i.e., the intensity of the scattered flux with a
given energy εfin and momentum pfin = h̄kfin (and, may be, spin) is measured. Such experi-
ments give in principle the whole information about the object, namely its geometrical structure
(diffraction experiments – the main point in this approach is to analyze the angle distribution
of scattered particles) and its internal structure (inelastic spectroscopy experiments), i.e. the
dispersion of excitations (low-energy excitations, which are usually treated as quasiparticles –
phonons, electron-hole pairs, excitons, plasmons, magnons, etc., and high-energy excitations
such as electronic transitions between different levels, or atomic displacements such as creation
of defects or even evaporation of atoms from a target surface). It is clear, however, that so
rich information cannot be extracted without a theoretical support – we have to compare the
experimental cross-section scattering intensities with those predicted by theory.

Second, the linear response theory and the generalized susceptibility calculated within its
framework, gives in principle all information about the given state (which may be nonequilibrium
in a general case) of the system under consideration. Besides, it describes also the scattering
experiments when the interaction of the particle with the target may be considered as a “weak”
perturbation. Namely, this is correct for light scattering, diffraction of high-energy electrons,
scattering of atoms with thermal energies, but not so for laser, X-ray and gamma scattering,
LEED, SIMS; in the later cases a more accurate description should be used.

The cross-section of scattering is connected with the corresponding correlation function de-
pending on the type of particles and the mechanism of their interaction with the target. In turn,
the correlation function is coupled with the corresponding generalized susceptibility. Generalized
susceptibilities may be of different types; recall ε(k, ω) simplest.

5.1 Scattering Theory

In general, the problem reduces to writing the Hamiltonian in a form

H = Hparticle + Htarget + Hint (5.1)

51
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and then to solution of the Schrödinger equation ih̄Ψ̇ = HΨ with given initial conditions. As
the initial state it is natural to take the plane wave

|Ψini〉 =
1√
Vvol

eikinix−iωinit|σini〉 , (5.2)

where |σini〉 describes internal degrees of freedom of the incoming particle such as spin of the
incoming electron or a state of the incoming atom, and also includes the description of the initial
state of the target. The state (5.2) corresponds to the flux of particles which is equal to

jini =
h̄

2minii
(Ψ∗

ini∇Ψini −Ψini∇Ψ∗
ini) =

h̄kini

miniVvol
=

pini

miniVvol
=

vini

Vvol
. (5.3)

However, usually it is simpler to assume that the incoming flux is constant, and to consider
the stationary Schrödinger equation, looking for its solution in a form

Ψ = Ψini + δΨ+ (5.4)

with the special boundary conditions corresponding to outgoing (scattered) waves in Ψ+. Then,
the intensity of the scattered flux with given parameters is proportional to |〈Ψ|Ψfin〉|2, where

|Ψfin〉 =
1√
Vvol

eikfinx−iωfint|σfin〉 . (5.5)

The differential scattering cross-section is then defined by

d2σ

dε dΩ
=
|jfin|
|jini| , (5.6)

where jfin dε dΩ is a part of the flux of particles scattered in the direction kfin in the solid angle
dΩ with the energies εfin < ε < εfin + dε. Taking into account the normalization (8.14), the
cross-section is determined by

d2σ

dε dΩ
= |B|2 mini|kfin|

mfin|kini| , (5.7)

where
B(q, ω) = 〈Ψfin|δΨ+〉 (5.8)

and

q = kini − kfin , (5.9)
h̄ω = εini − εfin . (5.10)

Note that the energy and momentum are not independent parameters, they are coupled by the
relation εini = p2

ini/2mini for the nonrelativistic particles with nonzero rest mass (e.g., electrons),
or by the relation εini ≡ h̄ωini = h̄c|kini| for photons (light scattering experiments), and similar
relations for the scattered particles in the final state. Therefore, as independent parameters, the
energy and two angles are chosen usually.

Until this point the described approach is exact. In the linear response theory, however, the
interaction of the external flux with the system is assumed to be weak, and the scattering proba-
bility B(q, ω) is calculated in the Born approximation (i.e., in the first order of the perturbation
theory), so that it is given by the Fermi golden rule:

|B(q, ω)|2 =
2π

h̄
|〈Ψfin|Hint|Ψini〉|2δ(εfin + h̄ω − εini) . (5.11)
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The Born approximation is accurate in two limiting cases. If we denote by U the amplitude of the
interaction Hint and by R its effective radius, then the first limit corresponds to a weak interac-
tion, U ¿ h̄2/miniR

2, and the second limit corresponds to fast particles, U ¿
(
h̄2/miniR

2
)

kiniR,
when the interaction time is short. The scattering in the Born approximation is additive, i.e. it
corresponds to kinematic diffraction (multiple-scattering events are neglected). Notice that the
optical theorem (the conservation of probabilities) does not operate in this approximation.

As an example, let us consider the case when the interaction Hamiltonian may be presented
in the form

Hint(r) =
∑
a

vat(r − ra) =
∫

dr′ ρ(r′) vat(r − r′) , (5.12)

where r is the coordinate of the external particle, and

ρ(r′) =
∑
a

δ(r′ − ra) (5.13)

is the local density of target atoms interacting with the incoming flux. When the system is
characterised by a hierarchy of times as, e.g., in the adiabatic approximation where electronic
processes are much faster then the motion of atoms, so that the target wavefunction may be
presented as |σ〉 = |σ(at)〉|σ(el)〉, then the matrix element in (5.11) may be split into two factors,

〈Ψfin|Hint|Ψini〉 = S(qω1) V (qω2) , (5.14)

where ω1 + ω2 = ω, V (qω) is the atomic form-factor ,

V (qω) =
∫

dr′ e−iqr′〈σ(el)
fin | vat(r′) |σ(el)

ini 〉 , (5.15)

and S(qω) is the so-called (dynamic) structure form-factor ,

S(q) =
1

Vvol

∫
dr′ e−iqr′〈σ(el)

fin |ρ(r′)|σ(el)
ini 〉 . (5.16)

Such a splitting is rigorous if either |ω1| ¿ |ω2| or |ω1| À |ω2|. For the sake of simplicity we
assume in what follows that ω2 = 0.

Now, presenting the delta-function in (5.11) in the integral form,

δ(εfin − εini − h̄ω) =
1

2πh̄

∫ +∞

−∞
dt eiωteiEinit/h̄e−iEfint/h̄, (5.17)

we may rewrite the matrix element (5.11) in the form

|B(qω)|2 =
2π

h̄

1
2πh̄

|V (q)|2
V 2

vol

∫∫
dr′ dr′′ eiqr′−iqr′′

∫ +∞

−∞
dt eiωteiEinit/h̄

×〈σini|ρ(r′)|σfin〉e−iEfint/h̄〈σfin|ρ(r′′)|σini〉

=
|V (q)|2
h̄2V 2

vol

∫∫
dr′ dr′′ eiq(r′−r′′)

∫ +∞

−∞
dt eiωt〈σini|ρ(r′, t)ρ(r′′, 0)|σini〉 , (5.18)

where at the last step we took into account that in scattering experiments the final state of the
target is not defined and, therefore, we have to sum over all possible intermediate states of the
target. Then, after averaging over the final states of the particle (?!!),

∑

f

→ d3kf

(2π)3
= k2

f dkf dΩf =
(

m

h̄

)2

kf dεf dΩf , (5.19)
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the cross-section finally takes the form

d2σ

dε dΩ
= Vvol

kfin

kini

1
(2π)3

m2
fin

h̄5 |V (q)|2 [Qelastic(q)δ(ω) + Qρρ(qω)] . (5.20)

The first term in square brackets describes the elastic scattering on target atoms with fixed
positions, and the second one is the correlation function

Qρρ(qω) =
∫∫

dr′ dr′′ eiq(r′−r′′)
∫ +∞

−∞
dt eiωt〈δρ(r′, t) δρ(r′′, 0)〉 (5.21)

for the density fluctuations,
δρ(r) = ρ(r)− 〈ρ(r)〉 . (5.22)

Equation (5.20) is the desired expression which couples the cross-section of inelastic scattering
with the correlation function.

Let us consider the scattering when the target corresponds to an ideal crystal, so that the
atomic coordinates are

rl = l + ul , ul =
∑
q

uqe
iql + h.c. (5.23)

In this case the structure form-factor may be presented as

S(K) ≡ 1
Vvol

∑

l

e−iKrl =
1

Vvol

∑

l

exp

{
−iK

[
l +

∑
q

(
uqe

iql + h.c.
)]}

=
1

Vvol

∑

l

e−iKl
∏
q

exp
(
−iKuqe

iql + h.c.
)

≈ 1
Vvol

∑

l

e−iKl
∏
q

[
1− iK

(
uqe

iql + h.c.
)
− 1

2
|Kuq|2

]

=
[
S(0)(K) + S(1)(K) + . . .

]
e−W . (5.24)

Here S(0)(K) describes the classical (Bragg’s) elastic diffraction,

S(0)(K) =
1

Ω 0
δK, g , (5.25)

where g is a vector of the inverse lattice. In diffraction, the elastic scattering with K = g 6= 0
is possible because this momentum is taken away by the lattice as a whole; because the total
mass Mlattice of the lattice is infinite, the corresponding energy h̄2g2/2Mlattice is zero.

The term S(1)(K) corresponds to one-phonon processes,

S(1)(K) =
1
Ω0

∑
q

(−iKuq) δK, g+q , (5.26)

where also the energy conservation law should be taken into account. The processes with g = 0
are called the normal (N -) processes, and those with g 6= 0 are called the Umklapp (U -) processes.

Finally, the factor e−W is the Debye-Waller factor . It gives the main contribution coming
from multiphonon processes and leads to the decreasing of the scattered intensity, I = I0e

−2W .
The Debye-Waller factor is defined as

e−W =
∏
q

[
1− 1

2
|Kuq|2

]
= exp

(
−

∑
q

1
2
|Kuq|2

)
. (5.27)
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Assuming that |Kuq|2 ≈ 1
3K2|uq|2 and using the Debye model, the Debye-Waller factor is equal

to

W =
3
2

h̄2K2T 2

mkBΘ2
D

∫ ΘD/T

0
dz z

(
1

ez − 1
+

1
2

)
≈





3
2

h̄2K2T
mkBΘ2

D
if T →∞ ,

3
8

h̄2K2

mkBΘD
if T → 0 ,

(5.28)

the T → 0 case describes the contribution of zero vibrations.
! Connection with previous ?! DW is missing ?

5.2 Correlation Functions

The correlation function for two operators A(t) and B(t) (in Heisenberg representation) is defined
as

QAB(t) = 〈δA(0) δB(t)〉 , (5.29)

where
δA(t) = A(t)− 〈A(t)〉 . (5.30)

Theorem:
QAB(−t) = QBA(t + iβh̄) = exp

(
iβh̄

∂

∂t

)
QBA(t) , (5.31)

or
Q̂AB(−ωR) = e−βh̄ωRQ̂BA(ωR) . (5.32)

Proof :

QAB(t) ∝ Sp
[
e−βHA(0)B(t)

]
= Sp

[
A(0)

(
e−βHe+βH

)
B(t)e−βH

]

= Sp
[
A(0)e−βHB(t− iβh̄)

]
= Sp

[
e−βHB(t− iβh̄)A(0)

]

= Sp [B(0)A(−t + iβh̄)] ∝ QBA(−t + iβh̄) . (5.33)

Consequence: if T = 0, then Q̂(ωR) = 0 for ωR < 0.
Note: in the classical mechanics case, we have to take the limit h̄ → 0.

5.3 Generalized Susceptibility

Let the interaction has the form
Hint = −x̂f(t) , (5.34)

where f(t) is the (infinitesimal) external force (perturbation), and x̂ is an operator of the system
under consideration. In a general case Eq. (5.34) should be rewritten as

Hint = −1
2

[x̂f(t) + h.c.] = −1
2

∑

k

[x̂kfk(t) + h.c.] . (5.35)

The linear response is

〈x(t)〉 =
∫ ∞

0
dτ α(τ) f(t− τ) . (5.36)

Equation (5.36) is the definition of the generalized susceptibility α.
As usual, the Fourier transform is defined by

〈x(ω)〉 = α(ω) f(ω) , (5.37)
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where
α(ω) = αR(ω) + iαI(ω) =

∫ ∞

0
dt α(t) e+iωt. (5.38)

Define also
ω = ωR + iωI . (5.39)

Owing two conditions,
(1) α(t) is real, and
(2) causality (the lower limit in Eqs. (5.36, 5.38) is zero),
we have according to general results of Sec. 2.5.1 the following consequences:

1. Directly from the definition it follows that α(ω) = α∗(−ω). Therefore, αR(ω) is the even
function, while αI(ω) is the odd function.

2. From the definition and causality it follows that α(ω) is an analytical function on the
upper half-plane, including the real axis (except, may be, the point ωR = 0).

3. From the definition it follows that α(−ω∗) = α∗(ω). Therefore, α(iωI) is real.
4. Theorem:

in the upper half-plane, α(ω) takes real values only on the imaginary axis;
α(iωI) monotonically decreases when ωI increases, and α(i∞) = 0.

Therefore, α(ω) has no zeroes in the upper half-plane (for proof see Landau V p.414).
5. H. A. Kramers and R. L. Kronig relations (dispersion relations):

αR(ω) =
1
π
P

∫ +∞

−∞
dω1

αI(ω1)
ω1 − ω

=
2
π
P

∫ +∞

0
dω1

ω1 αI(ω1)
ω2

1 − ω2
, (5.40)

αI(ω) = − 1
π
P

∫ +∞

−∞
dω1

αR(ω1)
ω1 − ω

+
(

A

ω
if α(ω ∼ 0) ≈ i

A

ω

)
. (5.41)

(Proof is trivial, e.g. see Sec. 2.5.1 or Landau V p.416).
6. Therefore,

α(iω) =
2
π

∫ +∞

0
dω1

ω1 αI(ω1)
ω2

1 + ω2
and

∫ +∞

0
dω α(iω) =

∫ +∞

0
dω αI(ω). (5.42)

7. R. Kubo (1956): α(ω) may be calculated by

αik(ω) =
i

h̄

∫ ∞

0
dt eiωt

〈
x̂i(t) x̂∗k(0)− x̂∗k(0) x̂i(t)

〉
, (5.43)

or
Im α̂ik(ωR) =

[
1
2h̄

tanh
(

h̄ωR

2kBT

)] ∫ +∞

−∞
dt eiωRt

〈
x̂i(t) x̂∗k(0) + x̂∗k(0) x̂i(t)

〉
. (5.44)

In the classical mechanics limit we have to put

1
ih̄

(AB −BA) →
∑
a

(
∂A

∂ra

∂B

∂pa
− ∂A

∂pa

∂B

∂ra

)
(5.45)

and [
1
2h̄

tanh
(

h̄ωR

2kBT

)]
→ ωR

4kBT
. (5.46)

The proof may be found in a number of textbooks, e.g. see Landau V p.428. Here we outline
the main steps only:
(1) use an adiabatically slow increasing force, f(t) ∝ eδt;
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(2) use the standard perturbation theory: H0|n(0)〉 = En|n(0)〉, where |n(0)(t)〉 = e−iEnt|n(0)〉;
(3) for the equation ih̄ ∂

∂t |n(t)〉 = [H0 + Hint(t)]|n(t)〉, look for its solution in the form |n(t)〉 =
|n(0)(t)〉+

∑
m anm(t) |m(0)(t)〉;

(4) the first-order solution is

amn(t) ≈ − 1
2ih̄

∫ ∞

0
dτ ei(τ−t)(En−Em)

∑

l

[〈m|A∗l |n〉fl(t− τ) + f∗l (t− τ)〈m|Al|n〉] ; (5.47)

(5) finally, calculate 〈Al(t)〉 = 〈n(t)|Al|n(t)〉 and compare the result with the definition (8.14).
8. Sum rule:
∫ +∞

−∞
dωR

π
ωn

R Im α̂(ωR) =
1
h̄

〈[
1
h̄n [. . . [A,H] . . . , H], B(0)

]

−

〉
, n = 1, 3, 5, . . . (5.48)

Proof: calculate
(
i ∂
∂t

)n ∫
dω e−iωt Im α̂AB(ω).

9. Fluctuation–dissipation theorem couples the generalized susceptibility with the cor-
relation function. Directly from the Kubo formula we have

∫
dωRe−iωRt Im α̂AB(ωR) =

1
2h̄

[QAB(−t)−QBA(t)] =
1
2h̄

(
eiβh̄ ∂

∂t − 1
)

QBA(t) (5.49)

and, therefore,

Im α̂AB(ωR) =
1
2
βωR Q̂BA(ωR)

eβh̄ωR − 1
βh̄ωR

. (5.50)

...?...

〈
x2

〉
=

h̄

π

∫ +∞

0
dω αI(ω) cth

(
h̄ω

2T

)
≈





if T À h̄ω
for all ω
when αI 6= 0





= Tα(ω)|ω=0 , (5.51)

or (
x2

)
ω

= 2h̄αI(ω)
{

1
2

+
1

eh̄ω/T − 1

}
. (5.52)

10. Energy dissipation: if

f(t) = Re f0e
−iωt =

1
2

(
f0e

−iωt + c.c.
)

, (5.53)

then the heat pumped into the system per one time unit, is equal to

Q̇ =
dE

dt
=

〈
∂H

∂t

〉
=

〈
∂Hint

∂t

〉
= −〈x(t)〉 ∂f

∂t
= −1

4
iω [α̂(ω)− α̂(−ω)] |f0|2 (5.54)

and, because f(t) is real and α(t) is real too, with (2.46) we obtain finally

Q̇ =
1
2

ω Im α̂(ω) |f0|2 > 0 . (5.55)

If the system is in equilibrium, i.e. it is dynamically stable, we have Q̇ > 0, so that

ωR Im α̂(ωR) > 0 for all ωR 6= 0 (5.56)

(see also Landau V p.413).
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In a general case, if f(t) operates during a finite time, i.e. if f(t) → 0 for t → ±∞, the total
energy absorbed by the system is equal to

Q ≡
∫ +∞

−∞
dt Q̇ = −

∫ +∞

−∞
dωR

2π
iωR α̂(ωR) |f̂(ωR)|2 =

∫ ∞

0

dωR

2π
2ωR |f̂(ωR)|2 Im α̂(ωR) . (5.57)

For the perturbation (5.35) this expression takes the form

Q =
∫ ∞

0

dωR

2π
f̂∗(ωR)

[
ωR

2i
(α̂(ωR)− α̂(−ωR))

]
f̂(ωR) , (5.58)

and Eq. (5.56) is to be rewritten as

ωR Im α̂kk(ωR) > 0 for all ωR 6= 0 . (5.59)

5.4 Hydrodynamic Approximation

...

5.5 Examples

5.5.1 Longitudinal permeability

Let us consider an electron gas, and let the external “force” be an external (infinitesimal) charge
with the density ρext ∝ e−ikx+iωteδt. In this case the interaction is given by the integral

Hint = e2
∫∫

dr dr′
ρ(r) ρext(r′)
|r − r′| . (5.60)

(Note: this is a potential interaction – all magnetic or electromagnetic effects are neglected!)
Thus, here “x” corresponds to ρ, “f” is given by ρext/|r− r′|, and we may introduce α as in the
standard theory.

To be in accordance with Maxwell equations, the permeability is defined as D = εE, or
ϕtot = ϕext/ε. Then from Maxwell equations it follows that ε = ...1/α, so that the properties of
εl are the following:

...

5.5.2 Transverse permeability

Let the external “force” be a plane electromagnetic wave,

A(xt) = A0e
iqx−iωt + h.c., (5.61)

where q2 = ω2/c2, and we chose the Lorentz calibration ϕ = 0, ∇ ·A = 0. Then the interaction
Hamiltonian is given by the expression

Hint = −1
c
j(xt) A(xt) , j(t) ≡

∑
a

ea

mac
pa . (5.62)

Then ...



Chapter 6

Green Functions

6.1 Introductional Remarks

...

6.2 General Theory

For two observable A(t) and B(t) (in the Heisenberg representation) the two-time causal Green
function is defined by

Gc(t, t′) ≡ 〈〈A(t)|B(t′)〉〉c =
1
i
〈TchA(t)B(t′)〉

= −iθ(t− t′)〈A(t)B(t′)〉 − iηθ(t′ − t)〈B(t′)A(t)〉 , (6.1)

where the average 〈. . .〉 has been defined above, see Eq. (8.14).
The retarded and advanced Green functions are useful in the T 6= 0 case. The retarded Green

function is defined by

Gr(t, t′) ≡ 〈〈A(t)|B(t′)〉〉r = −iθ(t− t′)〈[A(t), B(t′)
]
η〉

= −iθ(t− t′)
(〈A(t)B(t′)〉 − η〈B(t′)A(t)〉) , (6.2)

and the advanced Green function, by

Ga(t, t′) ≡ 〈〈A(t)|B(t′)〉〉a = +iθ(t′ − t)〈[A(t), B(t′)
]
η〉

= +iθ(t′ − t)
(〈A(t)B(t′)〉 − η〈B(t′)A(t)〉) . (6.3)

All three functions satisfy the same differential equation

ih̄
dG(t, t′)

dt
= h̄θ(t− t′)〈[A(t), B(t′)

]
η〉+ 〈〈{A(t)H(t)−H(t)A(t)} |B(t′)〉〉 (6.4)

with, however, different spectral theorems which play the role of boundary conditions. The
operator H(t) was defined above by Eq. (8.14); for the T = 0 case we have to use H(t). However,
when the Hamiltonian directly depends on time, the Green function technique becomes not too
suitable, although the corresponding perturbation theory has been developed by L.V.Keldysh;
it is described in [] (Landau X). Note that for Bose particles with zero rest mass such as photons
and phonons, Eq. (6.4) reduces to the identity; in this case the second-order motion equation
should be derived.

59
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Below we will consider conservative systems only, when the Hamiltonian does not depend
explicitly on time. When a conservative system is in the equilibrium state, then G(t′, t′′) =
G(t′ − t′′) = G(t), and we may make the Fourier transform over time,

G(ω) =
∫ +∞

−∞
dt G(t) eiωte−δ|t|, G(t) =

1
2π

∫ +∞

−∞
dω G(ω) e−iωt. (6.5)

The motion equation for the Green functions takes the following form,

h̄ω〈〈A|B〉〉ω = h̄〈[A,B]η〉+ 〈〈AH −HA|B〉〉ω. (6.6)

Directly from the definition (6.1) of the causal Green function it follows that

Gc(t = +δ)−Gc(t = −δ) = −i〈[A,B]η〉 . (6.7)

The main application of the Green function technique is:

〈BA〉 =
1
i
Gc(t = −δ) =

1
2πi

∮

O
dω Gc(ω) , (6.8)

where the anticlockwise closed contour O consists of the real ω-axis and the upper half-circle.

Spectral properties of these Green functions are the following:

ReGr(ω) = − 1
π
P

∫ +∞

−∞
dω′

ImGr(ω′)
ω − ω′

, (6.9)

Gr(ω) is analytical function in the upper ω–half-plane, Imω > 0,

ReGa(ω) = +
1
π
P

∫ +∞

−∞
dω′

ImGa(ω′)
ω − ω′

, (6.10)

Ga(ω) is analytical function in the lower ω–half-plane, Imω < 0,

ReGc(ω) = − 1
π
P

∫ +∞

−∞
dω′

eβω′ − η

eβω′ + η

ImGc(ω′)
ω − ω′

, (6.11)

Gc(ω) is nonanalytical function on the ω–plane.
At T = 0 the causal Green function may be represented in the form:

Gc(ω) =
∫ +∞

−∞
dω′

[
ρ+(ω′)

ω − ω′ + iδ − µ
− η

ρ−(ω′)
ω + ω′ − iδ − µ

]
, (6.12)

where
ρ±(ω) =

∑
m

ρ
(m)
± δ (ω − ε±(m)) , (6.13)

h̄ε
(m)
+ = Eexact

m −Eexact
0 ,

h̄ε
(m)
− = Eexact

0 − Eexact
m , (6.14)

and

ρ
(m)
+ = 〈Ψ0|A|Ψm〉〈Ψm|B|Ψ0〉 ,

ρ
(m)
− = 〈Ψ0|B|Ψm〉〈Ψm|A|Ψ0〉 . (6.15)
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Proof : for t > t′ we have

〈A(t)B(t′)〉 = e−iEexact
0 (t′−t)〈Ψ0|Ae−iHteiHt′B|Ψ0〉

=
∑
m

ρ
(m)
+ exp

[
i
(
Eexact

m − Eexact
0

)
(t′ − t)

]
, (6.16)

while for t < t′ we can write

〈B(t′)A(t)〉 = e+iEexact
0 (t′−t)〈Ψ0|Be−iHt′eiHtA|Ψ0〉

=
∑
m

ρ
(m)
− exp

[
−i

(
Eexact

m − Eexact
0

)
(t′ − t)

]
. (6.17)

Properties of the causal Green function:
1. ∫ +∞

−∞
dω [ρ+(ω) + ρ−(ω)] = 〈Ψ0|AB + BA|Ψ0〉 . (6.18)

2. {
ρ+(ω) = 0 for ω < ε+ ≡ minm ε

(m)
+ ,

ρ−(ω) = 0 for ω > ε− ≡ maxm ε
(m)
− ,

(6.19)

where ε− ≤ µ ≤ ε+ .
3. G(ω) ∝ 1/ω at ω →∞.

4. If A = B∗, then ρ±(ω) ≥ 0.

In a general case the spectral function is defined as

J(ω) = − 1
2πi

(
eβω − η

)−1
[Gr(ω + iδ)−Ga(ω − iδ)] . (6.20)

Using the complete basis of eigenvectors of the operator H, H|Ψn〉 = En|Ψn〉, the spectral
function may be written as

J(ω) = Q−1
∑
mn

〈Ψn|A|Ψm〉〈Ψm|B|Ψn〉e−βEm δ

(
Em −En

h̄
− ω

)
. (6.21)

The Green functions may be expressed through the spectral function:

Gr,a(ω) =
∫ +∞

−∞
dω′

eβω′ − η

ω − ω′ ± iδ
J(ω′) , (6.22)

Gc(ω) = P
∫ +∞

−∞
dω′

eβω′ − η

ω − ω′
J(ω′)− iπ

(
eβω + η

)
J(ω) . (6.23)

6.3 Fermi Particles

6.3.1 Definitions

Recall: ĉĉ∗ + ĉ∗ĉ = 1 (ĉ and ĉ∗ are the annihilation and creation operators respectively; hat will
be omitted in what follows); in the Heisenberg representation c(t) ∝ ...

Let: εF = 0 (the origin of energy may be chosen arbitrary).



62 CHAPTER 6. GREEN FUNCTIONS

-3 -2 -1 0 1 2 3

-1.0

-0.5

0.0

0.5

1.0

 

 

f F
(x
),
  
ta
n
h
(x
)

x = ω / 2T

   f
F
(x)

 tanh(x)

Figure 6.1: The functions fF (x) (solid curve) and tanh(x) (dash curve).

Define the dimensionless variable x = ω/2T (kB = 1), and introduce the Fermi-Dirac distri-
bution function

fF (ω) =
1

eω/T + 1
=

1
2

[1− tanh(x)] , (6.24)

so that tanh(x) = 1− 2fF (ω). The function (6.24) is shown in Fig. 6.1.
The function fF (ω) has simple poles at ω = zn = i(2n + 1)πT ; the residues at these poles

are equal to −T .

The causal Green function is defined as

Gc(t) =
1
i
〈Tchc(t)c∗(0)〉 =

1
i
Θ(t)〈c(t)c∗(0)〉 − 1

i
Θ(−t)〈c∗(0)c(t)〉 . (6.25)

Its Fourier transform in the simplest case is

Gc(ω) =
1− fF (ω)

ω − εm + iδ
+

fF (ω)
ω − εm − iδ

. (6.26)

The retarded Green function G(+) = Gr is defined as

Gr(t) =
1
i
Θ(t)〈c(t)c∗(0) + c(0)c∗(t)〉 . (6.27)

Its Fourier transform is
Gr(ω) =

1
ω − εm + iδ

. (6.28)

The function Gr(ω) is analytical in the upper half-plane of the complex ω plane.

The advanced Green function G(−) = Ga is defined by the expression

Ga(t) = −1
i
Θ(−t)〈c(t)c∗(0) + c(0)c∗(t)〉 , (6.29)

Ga(ω) =
1

ω − εm − iδ
. (6.30)

The function Ga(ω) is analytical on the lower half-plane of the complex ω plane.
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All three Green functions introduced above, are dynamical (time-dependent) functions. The
perturbation theory technique exists only for the causal Green function and only in the T = 0
case.

Relationships between different Green functions:
First, all dynamical functions depend on time as G(t) ∝ e−iεmt.
The real parts of all three functions are equal each other:

Re Gc(ω) = Re Ga(ω) = Re Gr(ω) =
1
π
P

∫ +∞

−∞
dω1

J(ω1)
ω − ω1

, (6.31)

where J(ω) is the spectral function.
Imaginary parts of the Green functions may be expressed through the spectral function J(ω):

Im Ga(ω) = J(ω) , (6.32)

Im Gr(ω) = −J(ω) , (6.33)

Im Gc(ω) = −tanh(ω/2T ) J(ω) . (6.34)

Combining (6.31) and (6.33), the Green functions may be expressed through the function
J(ω). For example,

Gr(ω) = − 1
π
P

∫ +∞

−∞
dω1

J(ω1)
ω1 − ω − iδ

. (6.35)

For the system of noninteracting particles, the advanced and retarded Green functions, as well
as the real part of the causal Green function, do not depend on temperature. The temperature
dependence of the imaginary part of the causal function is described by the equation

ImGc(ω; T 6= 0) = tanh
(
−ω − εF

2kBT

)
ImGa(ω; T = 0) , (6.36)

where ω is assumed to be real.
The main application of the Green function technique is that an average value of any operator

can be calculated through the integral of the Green function, because

〈c∗c〉 =
1
i
Gc(t = −δ) =

1
2πi

∮

O
dω Gc(ω) =

1
π
P

∫ +∞

−∞
dω fF (ω)J(ω) , (6.37)

where the closed contour O consists of the real axis plus the upper half-cycle. In the last equality
we used the Kramers–Kronig relation.

Finally, let us introduce the Matsubara Green function. It does not depend on time and,
thus, describes the statistical (equilibrium) properties of the system only. However, it allows to
develop the perturbation theory technique for the T 6= 0 case.

Recall that β = 1/T (kB = 1), and introduce the variable τ defined within the interval

−β < τ < +β . (6.38)

Define the Matsubara representation for an operator A as

A(τ) = eτH0Ae−τH0 (6.39)

(indicate a formal analogy with the Heisenberg representation if we put τ = it).
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The Matsubara Green function is defined as

Gm(τ) = −〈Tmc(τ)c̄(0)〉 = −Θ(τ) 〈c(τ)c̄(0)〉+ Θ(−τ) 〈c̄(0)c(τ)〉 , (6.40)

where Tm is ... Directly from the definition we have

Gm(−τ) = −Gm(−τ + β) , (6.41)

so that Gm(τ) is a periodic function of τ with the period 2β and, therefore, in the interval
(−β, +β) the function Gm(τ) may be expanded into the Fourier series over the “harmonics”

ωn = (2n + 1)πT, where T =
2π

2β
and n = 0,±1,±2, . . . (6.42)

The Fourier series is

Gm(τ) =
1
β

+∞∑

n=−∞
Gm(ωn) e−iωnτ , (6.43)

and the Fourier transform of Gm(τ) is

Gm(ωn) =
∫ +β

−β
. . . =

∫ +β

0
dτ eiωnτGm(τ) , (6.44)

so that
Gm(−ωn) = [Gm(+ωn)]∗ (6.45)

and
Gm(ωn > 0) = Gr(iωn) . (6.46)

In the simplest case we obtain

Gm(τ > 0) = −e−τεn (1− fF (εn)) , (6.47)

Gm(ωn) = +
1

iωn − εn
. (6.48)

6.3.2 A general case

For two observable A(t) and B(t) the Green functions are defined by

Gc(t, t′) =
1
i
〈TchA(t)B(t′)〉 = −iθ(t− t′)〈A(t)B(t′)〉+ iθ(t′ − t)〈B(t′)A(t)〉 , (6.49)

Gr(t, t′) = −iθ(t− t′)〈[A(t), B(t′)
]
−〉 = −iθ(t− t′)


〈A(t)B(t′)〉︸ ︷︷ ︸

particle

+〈B(t′)A(t)〉


 , (6.50)

Ga(t, t′) = +iθ(t′ − t)〈[A(t), B(t′)
]
−〉 = +iθ(t′ − t)


〈A(t)B(t′)〉+ 〈B(t′)A(t)〉︸ ︷︷ ︸

hole


 . (6.51)

Different Green functions are coupled by the relationship

Gr, a(ω) = ReGc(ω)± i coth
(

ω

2T

)
ImGc(ω) , (6.52)
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where coth(x) = cosh(x)/sinh(x).
The real and imaginary parts of the causal Green function are coupled by the relation

Re Gc(ω) = − 1
π
P

∫ +∞

−∞
dω′

coth(βω′)
ω − ω′

ImGc(ω′) . (6.53)

At T = 0 this relation takes the form

Re Gc(ω) =
1
π
P

{∫ µ

−∞
−

∫ +∞

µ

}
dω′

ImGc(ω′)
ω − ω′

. (6.54)

For a normal (non superconductive) Fermi system, where the standard perturbation theory
technique may be used and the Dyson equation is valid, one has

G(k, ω) = [ω − ωk − Σ(k, ω)]−1 , (6.55)

and the T = 0 retarded Green function has pole(s) in the lower ω–half-plane at ω = ω′0 − iΓ′0
which describes a quasiparticle with the energy ω′0 and the lifetime 1/Γ′0, while the T = 0
advanced Green function has a pole in the upper ω–half-plane at ω = ω′0 + iΓ′0 which describes
a quasi-hole. Near the pole the Green function takes the form

Gr,a(ω) ≈ 1− ∂Σ(k0, ω0)/∂ω

ω − ω′0 ± iΓ′0
, (6.56)

so that
Gc(k, t) ≈ 1

i
Zk0e

−iω′0t
[
θ(t)e−Γ′0t − θ(−t)eΓ′0t

]
, (6.57)

where Zk0 = 1− ∂Σ(k0, ω0)/∂ω and 0 < Zk0 < 1.
Note that the one-particle Green function 〈〈cm|c∗n〉〉 may have poles corresponding to one-

particle excitations only.

6.3.3 Electron system

Coordinate basis

Let us consider the Hamiltonian in the coordinate representation,

H =
N∑

l=1

H0(rl) +
1
2

∑

l 6=l′
v(rl − rl′) , H0(r) = − h̄2∇2

r

2m
+ U(r) , (6.58)

and introduce the field operator

Ψ(ξ) =
∑

l

ϕl(ξ) ĉl , Ψ(ξ)Ψ∗(ξ′)−Ψ∗(ξ′)Ψ(ξ) = δ(ξ − ξ′) , (6.59)

where ϕl(ξ) is the wavefunction of the state |l〉, and ξ ≡ (r, σ, t). Introduce the causal Green
function as

Gc(ξ, ξ′) =
1
i
〈TchΨ(ξ)Ψ∗(ξ′)〉 . (6.60)

Then the average value of a one-particle operator F =
∑

l f(ξl) is equal to

F = i lim
t′→t+0

lim
r′→r

∫
dr f(ξ) Gc(ξ, ξ′) . (6.61)
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The Green function (6.60) satisfies the motion equation
[
ih̄

∂

∂t1
−H0(r1)

]
Gc(ξ1, ξ

′
1) = h̄ δ(ξ1 − ξ′1)−

∫
dr2 v(r1 − r2) Gc(1, 2, 2+, 1′)

∣∣∣∣
t2=t1

, (6.62)

where t+2 = t2 + δ and

Gc(1, 2, 3, 4) =
1
i
〈TchΨ(ξ1)Ψ(ξ2)Ψ∗(ξ3)Ψ∗(ξ4)〉 . (6.63)

If G0 is the Green function for noninteracting particles, v ≡ 0, then the functions G and G0 are
coupled by the Dyson equation,

G(x, x′; ω) = G0(x, x′; ω) +
∫

dx′′ dx′′′ G0(x, x′′; ω)Σ(x′′, x′′′; ω) G(x′′′, x′; ω) . (6.64)

Nonorthogonal basis

Let {ϕm} is a complete but nonorthogonal basis,

〈ϕm|ϕn〉 = Smn . (6.65)

The creation-annihilation operators for this basis satisfy the commutation relation

[cmσ, c∗nσ′ ]+ = δσσ′
(
S−1

)
nm

, (6.66)

where S ≡ {Smn}, and σ, σ′ stand for spins. The Hamiltonian in the nonortogonal basis takes
the form

H =
∑
mn

〈ϕm|H0|ϕn〉 c∗mcn +
1
2

∑

ijkl

〈ϕiϕj |v|ϕkϕl〉 c∗i c∗jclck . (6.67)

Introduce the causal Green function

Gc
mn(t) =

1
i
〈Tchcm(t)c∗n(0)〉 . (6.68)

Then at T = 0 we have

〈c∗ncm〉 =
1
i
Gc

mn(t = −δ) =
1

2πi

∮

O
dω Gc

mn(ω) , (6.69)

Gc
mn(t = +δ)−Gc

mn(t = −δ) = −i〈[cm, c∗n]+〉 . (6.70)

The energy of the ground state of the system is

Eexact
0 =

1
2

lim
t→−δ

∑
mn

[
1
i
HmnGc

nm(t) + h̄Smn
dGc

nm(t)
dt

]

=
1

4πi

∑
mn

∮

O
dω (Hmn + h̄ωSmn)Gc

nm(ω) . (6.71)

The Green function (6.68) satisfies the motion equation
∑

l

(h̄ωSkl −Hkl) Gc
ln(ω) = h̄δkn +

∑

jlm

vkjlm 〈〈c∗jcmcl|c∗n〉〉cω , (6.72)

and the Dyson equation takes the form

Gc
mn(ω) = Gc0

mn(ω) +
∑

kl

Gc0
mk(ω)Σkl(ω) Gc

ln(ω) . (6.73)
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Figure 6.2: The function fB(x) (solid curve) and coth(x) (dash curve)

6.4 Bose Particles

Recall: aa∗ − a∗a = 1, where in the Heisenberg representation a(t) ∝ e−iω0ta. Let ω > 0, and
define x = ω/2T .

Introduce the Bose-Einstein distribution function

fB(ω) =
1

eω/T − 1
=

1
2

[−1 + coth(x)] ≈
{

T/ω if ω ¿ T,
exp(−ω/T ) if ω À T,

(6.74)

so that coth(x) = 1 + 2fB(ω) (see Fig. 6.2). The function fB(ω) has simple poles at ω = zn =
i(2n)πT , residues in which are equal to +T .

Few useful formulas:
fB(−ω) = −1− fB(+ω) , (6.75)

f ′B(ω) ≡ dfB(ω)
dω

= − 1
T

fB(ω) [1 + fB(ω)] =
1

4T
[1− cotanh(x)][1 + cotanh(x)] . (6.76)

For Bose particles ImGc(ω) < 0 .
Different Green functions are coupled by the relationship

Gr, a(ω) = Re Gc(ω)± i tanh
(

ω

2T

)
Im Gc(ω) . (6.77)

The real and imaginary parts of the causal Green function are coupled by the relation

ReGc(ω) = − 1
π
P

∫ +∞

−∞
dω′

tanh(βω′)
ω − ω′

Im Gc(ω′) . (6.78)



Chapter 7

Phonons

Phonons (as well as photons) are Bose-particles with zero rest mass, so that their number
in the system is not conserved (the corresponding chemical potential is zero). That leads to
some difference in the Green function technique for their description. In particular, the motion
equation should be of the second order. Besides, phonons are important for applications of solid
state physics. For these reasons we describe the Green function technique for phonons in this
Chapter.

7.1 Hamiltonian

Let us consider an infinite (linear, one-dimensional) atomic chain. Define: let un be the displace-
ment operator of the n-th atom from its equilibrium position ln = na, so that the coordinate
of the atom is xn = ln + un, and let pn be the corresponding momentum. The coordinate and
momentum satisfy the standard quantum-mechanical relations,

unpn − pnun = ih̄ , others = 0 . (7.1)

Expand the potential energy U of the system in Taylor series over the displacements un:

U(. . . , x−1, x0, x1, . . .) =
1
2!

∑
n1, n2

∂2U

∂un1∂un2

un1un2 + . . . , (7.2)

where the zero-order term is constant and, therefore, can be omitted, and the first-order terms
are zero, because the expansion is done over the equilibrium state. Thus, the Hamiltonian in
the harmonic approximation is the following,

H =
+∞∑

n=−∞

p2
n

2mn
+

1
2

∑
n1,n2

α(n1, n2) un1un2 , (7.3)

where

α(n1, n2) =
∂2U

∂un1∂un2

. (7.4)

The motion equation has the following form,

mnün = − ∂U

∂un
= −

∑
n1

α(n, n1)un1 . (7.5)

69
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Thus, we come to the standard problem – to look for eigenvectors uk =
∑

n ϕknun and eigenfre-
quencies ωk so that ük + ω2uk = 0.

For a pairwise potential, the potential energy takes the following form,

U(. . .) =
1
2

∑

n1 6=n2

V (xn1 − xn2) , (7.6)

and the dynamical matrix α(n1, n2) is determined by the expressions

α(n1, n2) =
∂2V (xn1 − xn2)

∂un1∂un2

if n1 6= n2 (7.7)

and

α(n, n) =
∑

n1(n1 6=n)

∂2V (xn − xn1)
∂u2

n

. (7.8)

Define:
A is the matrix with the elements α(n1, n2), and
D is the matrix with the elements α(n1, n2)/

√
mn1mn2 .

7.2 Green Function Approach

7.2.1 Causal Green function (T = 0)

The causal Green function is defined as (e.g., see Kosevich)

Gc(t; n1, n2) =
√

mn1mn2

1
ih̄
〈Tch un1(t) un2(0)〉 , (7.9)

where u(t) is the displacement operator in the Heisenberg representation,

un(t) = ei(H/h̄)tune−i(H/h̄)t. (7.10)

Using the commutation relations (7.1), it is easy to check that the coordinates u(t) satisfy the
motion equations

dun(t)
dt

=
i

h̄
[Hun(t)− un(t)H] =

i

2mnh̄
(p2

nun − unp2
n) =

pn(t)
mn

, (7.11)

dpn(t)
dt

=
i

h̄
[Hpn(t)− pn(t)H] =

i

2h̄

∑
n1,n2

α(n1, n2)(un1un2pn − pnun1un2) = −
∑
n3

α(n, n3)un3 .

(7.12)
The quantum motion equations (7.11–7.12) has the same form as the classical ones. This is the
result of the harmonic approximation (7.3): for the harmonic oscillator the quantum motion
equation has the same form as the classical ones.

The Fourier transform of the Green function is defined as

G(t) =
1
2π

∫ +∞

−∞
dω e−iωtG(ω) , (7.13)

G(ω) =
∫ +∞

−∞
dt e+iωte−δ|t|G(t) . (7.14)
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The real and imaginary parts of Gc(ω) are coupled by the Kramers–Kronig relation

Re Gc(ω) =
1
π

{
P

∫ +∞

0
− P

∫ 0

−∞

}
dω′

Im Gc(ω′)
ω′ − ω

=
1
π
P

∫ +∞

0
dω1 Im Gc(ω1)

2ω1

ω2
1 − ω2

=
1
π
P

∫ +∞

0
dε

Im Gc(ε)
ε− ω2

, (7.15)

where P ∫
means the principal value of the integral, and we introduced also the variable ε = ω2

1.
From (7.15) one can see that

Re Gc(ω →∞) ≈
[
− 1

π
P

∫ +∞

0
dε Im Gc(ε)

]
1
ω2

(7.16)

and
Re Gc(ω = 0) = −

[
− 1

π
P

∫ +∞

0
dε Im Gc(ε)/ε

]
< 0 . (7.17)

Note that the prefactor in the definition (7.9) is chosen so that G(t) ∼ time and G(ω) ∼ ω−2.
The function (7.9) is the one-phonon Green function, therefore its poles describe the one-phonon
spectrum, i.e. the widths of peaks describe lifetimes of excitations, and Im Gc(ω) is the density
of phonon states.

7.2.2 Temporal Green functions (T 6= 0)

Recall that the perturbation theory technique for the interacting particles exists only for the T =
0 case and only for the causal Green function. However, when the phonon-phonon interaction
is not important, the temporal Green functions for T 6= 0 may be useful.

Notice: the factor √mn1mn2/h̄ will temporarily be omitted in what follows.

The causal Green function for T 6= 0 is defined as

Gc(t) =
1
i
〈Tch u(t) u(0)〉 =

1
i
Θ(t)〈u(t) u(0)〉+

1
i
Θ(−t)〈u(0) u(t)〉 . (7.18)

For the simplest case of one oscillator only, we can easily obtain that

Gc(t) ∝ 1
i
e−iω0|t| +

1
i
fB(ω0)

(
eiω0t + e−iω0t

)
, (7.19)

and the Fourier transform of (7.19) is

Gc(ω) =
1 + fB(|ω|)
ω2 − ω2

0 + iδ
− fB(|ω|)

ω2 − ω2
0 − iδ

. (7.20)

Note that
Gc(ω) = Gc(−ω) = Gc(|ω|) (7.21)

and
Im Gc(ω) ≤ 0 . (7.22)

The retarded Green function is

Gr(t) =
1
i
Θ(t)〈u(t)u(0)− u(0)u(t)〉 , (7.23)
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and for a single oscillator it takes the form

Gr(ω) =
1

ω2 − ω2
0 + iδ sign(ω)

. (7.24)

Recall that Gr(ω) is analytical in the upper half-plane of the complex ω plane. The function
Gr(t) describes outgoing waves: Gr(t) = 0 for t < 0, and Gr(t) = −(sinω0t)/ω0 for t > 0.

The advanced Green function is

Ga(t) = −1
i
Θ(−t)〈u(t)u(0)− u(0)u(t)〉 , (7.25)

Ga(ω) =
1

ω2 − ω2
0 − iδ sign(ω)

= [Gr(ω)]∗ . (7.26)

Recall that Ga(ω) is analytical in the lower half-plane. The function Ga(t) describes incoming
waves: Ga(t) = (sinω0t)/ω0 for t < 0, and Ga(t) = 0 for t > 0.

Relationships between different Green functions: introducing the spectral function J(ω),

J(ω) = −Im Gc(ω; T = 0) = J(−ω) , (7.27)

we have for the imaginary parts of the Green functions the following relations,

Im Gc(ω) = − [1 + 2fB(|ω|)]J(ω) = −coth
( |ω|

2T

)
J(ω) , (7.28)

Im Gr(ω) = −sign(ω) J(ω) , (7.29)

Im Ga(ω) = +sign(ω) J(ω) , (7.30)

and for the real parts, the relations

Re Gc(ω) = Re Ga(ω) = Re Gr(ω) =
1
π

{
P

∫ +∞

0
− P

∫ 0

−∞

}
dω1

J(ω1)
ω − ω1

=
1
π
P

∫ +∞

0
dω1

2ω1J(ω1)
ω2 − ω2

1

. (7.31)

Combining Eqs. (8.14) and (8.14), we can express the retarded Green function (8.14) through
the function J(ω):

Gr(ω > 0) =
1
π
P

∫ +∞

0
dω1

2ω1J(ω1)
ω2 − ω2

1 + iδ
. (7.32)

Notice that Eq. (8.14) is valid for ω > 0 only, while for the T = 0 case Eq. (8.14) is valid for all
ω.

Application: an average value of squared displacement is equal to

〈uu〉 = −1
i
Gc(t = 0) = − 1

2πi

∫

O
dω Gc(ω) =

1
π
P

∫ +∞

0
dω [1 + 2fB(ω)] J(ω) . (7.33)
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7.2.3 Matsubara Green function

Recall: β = 1/T , the variable τ is defined within the interval −β < τ < +β, and the Matsubara
representation is defined as

A(τ) = eτH0Ae−τH0 . (7.34)

Then the Matsubara Green function is defined as

Gm(τ) = −〈Tmu(τ)u(0)〉 = −Θ(τ)〈u(τ)u(0)〉 −Θ(−τ)〈u(0)u(τ)〉 . (7.35)

From the definition (7.35) we have

Gm(−τ) = +Gm(+τ) , (7.36)

so that Gm(τ) is again periodic with the period 2β, and in the interval (−β,+β) the Green
function may be expanded into the Fourier series over the “harmonics”

ωn = (2n)πT, where T =
2π

2β
and n = 0, ±1, ±2, . . . (7.37)

The Fourier transform of the Green function is

Gm(τ) =
1
β

+∞∑

n=−∞
Gm(ωn)e−iωnτ , Gm(ωn) =

∫ +β

−β
. . . =

∫ +β

0
dτ eiωnτGm(τ) , (7.38)

so that
Gm(−ωn) = [Gm(+ωn)]∗ (7.39)

and
Gm(ωn > 0) = Gr(iωn) . (7.40)

For the simplest case of one harmonic oscillator we have

Gm(τ > 0) = −e−τω0 (1 + fB(ω0))− e+τω0fB(ω0) (7.41)

and
Gm(ωn) = − 1

ω2
n + ω2

0

. (7.42)

7.3 Motion Equation for the Causal Green Function

Using the definition (8.14),

Gc(t; n1, n2) = Cn1n2 {Θ(t)〈un1(t) un2(0)〉+ Θ(−t)〈un2(0) un1(t)〉} , (7.43)

where Cn1n2 = √
mn1mn2/ih̄, and differentiating it twice over t,

dGc(t;n1, n2)
dt

=

= Cn1n2





δ(t) 〈un1(t) un2(0)〉︸ ︷︷ ︸
=0

+Θ(t)
〈

dun1(t)
dt

un2(0)
〉

+ Θ(−t)
〈

un2(0)
dun1(t)

dt

〉



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= Cn1n2

1
mn1

{Θ(t)〈pn1(t) un2(0)〉+ Θ(−t)〈un2(0) pn1(t)〉} , (7.44)

d2Gc(t; n1, n2)
dt2

=

= Cn1n2

1
mn1





δ(t) 〈pn1 un2 − un2 pn1〉︸ ︷︷ ︸
=−ih̄δn1n2

+Θ(t)
〈

dpn1(t)
dt

un2(0)
〉

+ Θ(−t)
〈

un2(0)
dpn1(t)

dt

〉




= Cn1n2

1
mn1




−ih̄ δ(t) δn1n2 −

∑
n3

α(n1, n3) [Θ(t)〈un3(t) un2(0)〉+ Θ(−t)〈un2(0) un3(t)〉]︸ ︷︷ ︸
=Gc(t;n3,n2)/Cn3n2





= −ih̄ δ(t) δn1n2Cn1n2

1
mn1

−
∑
n3

α(n1, n3)
Cn1n2

Cn3n2

1
mn1

Gc(t;n3, n2) , (7.45)

we finally obtain the motion equation

d2Gc(t;n1n2)
dt2

+
∑
n3

α(n1, n3)√
mn1mn3

Gc(t;n3, n2) = −i δ(t) δn1n2 . (7.46)

The Fourier transform of Eq. (7.46) takes the form
(
ω21−D

)
Gc(ω) = 1, (7.47)

where D is the square matrix with the elements α(n1n2)/
√

mn1mn2 .
Equations (8.14) and (8.14) follow from the classical Newtonian motion equations (8.14)

and (8.14). If we will use Langevin motion equations instead of Newtonian ones, we obtain
similar equations but with the substitution G̈c → G̈c − ηĠc in Eq. (7.46) and ω2 → ω(ω − iη) in
Eq. (7.47).

7.4 Spectrum

The density of vibrational modes is defined by the formula

g(ε) =
1
N

∑

k

δ(ε− ω2
0(k)) , (7.48)

where we introduced the variable ε ≡ ω2. According to the definition of the T = 0 causal Green
function, the density of vibrations is equal to

g(ε) =
(
− 1

N
Sp

)
1
π

Im Gc(ω) . (7.49)

The spectrum (7.49) is normalized on one atom, i.e. the total number of vibrational modes with
frequencies from ω2 to ω2 + dε is equal to Ng(ε) dε.

The frequency distribution function is defined as ρ(ω) = 2Nωg(ω2). It is determined by the
relation

ρ(ω) = − 2
π

ω Im Gc(ω) , (7.50)
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i.e. the number of vibrations with frequencies from ω to ω + dω is equal to ρ(ω) dω, and ρ(ω) is
normalized by one state per atom,

(
1
N

Sp
) ∫ ∞

0
dω ρ(ω) = 1 . (7.51)

Behavior of the phonon density strongly depends of the dimensionality of the system.

7.5 A General Case

Let for a complex (non Bravais) lattice, l numerate the elementary cells, l = 1, . . . , N ; N be the
total number of cells, m numerate the atoms in an elementary cell, m = 1, . . . , r, and α = x, y, z.
Then the atomic coordinates are described by the vector

Rlm = lm + u(lm) . (7.52)

The Hamiltonian in a general case has the following form,

H =
∑

lmα

1
2Mlm

p2
α(lm) +

1
2

∑

lmα

∑

l′m′α′
Aαα′

lm, l′m′ uα(lm) uα′(l′m′) , (7.53)

where

Aαα′
lm, lm =

∑

l′m′ 6=lm

∂2V (Rlm −Rl′m′)
∂uα(l′m′) ∂uα′(l′m′)

, Aαα′
lm, l′m′ =

∂2V (Rlm −Rl′m′)
∂uα(lm) ∂uα′(l′m′)

. (7.54)

The motion equation is the following,

Mlmüα(lm) = −
∑

l′m′α′
Aαα′

lm, l′m′ uα′(l′m′) = −Mlm ω2uα(lm) . (7.55)

Equation (7.55) is the equation for eigenfrequencies.

Now let us introduce the matrix D = {Dαα′
lm, l′m′},

Dαα′
lm, l′m′ = Aαα′

lm, l′m′ (MlmMl′m′)−1/2 . (7.56)

The eigenfrequency equation then takes the following form,

(D− ω21) B = 0 , (7.57)

or ∑

l′m′α′
Dαα′

lm, l′m′B
(s)
α′ (l′m′) = ω2

sB
(s)
α (lm) , (7.58)

where the quantum number s = 1, . . . , 3Nr numerates the eigenvectors B
(s)
α (lm) and the eigen-

values ω2
s . The eigenvectors should satisfy the orthonormalization condition,

∑

lmα

B(s)
α (lm) B(s′)

α (lm) = δss′ , (7.59)

and also, the completeness condition,
∑
s

B(s)
α (lm)B(s)

α′ (l′m′) = δll′δmm′δαα′ . (7.60)
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Then, the atomic coordinates are expressed through the eigenvectors of Eq. (7.58) as follows,

uα(lm) = B(s)
α (lm) M

−1/2
lm . (7.61)

One can easy check that the coordinates (7.61) satisfy the motion equation (7.55).

The phonon creation and annihilation operators as and a∗s are introduced by the relations

uα(lm) =
∑
s

(h̄/2Mlmωs)
1/2 B(s)

α (lm) (as + a∗s) (7.62)

and
pα(lm) = −i

∑
s

(h̄Mlmωs/2)1/2 B(s)
α (lm) (as − a∗s) . (7.63)

The Green matrix is then defined as

G = (ω21−D)−1. (7.64)

Rewriting Eq. (7.57) as
(ω21−B−1DB)B−1GB = 1, (7.65)

we can express the matrix Green function in the following form,

G = BB−1(ω21−B−1DB)−1 , (7.66)

or

Gαα′
lm, l′m′ =

∑
s

B
(s)
α (lm) [(B(s))−1]α′(l′m′)

(ω2 − ω2
s)

. (7.67)

7.6 Ideal Lattice

Consider the ideal periodic lattice of atoms of mass ms. In this case α(n1,n2) = α(n1 − n2).
Stability of the system leads to the condition

α(0) > 0 . (7.68)

The translation invariance of the system results in the equation
∑
n

α(n) = 0 . (7.69)

In this case the spectrum always has the acoustical phonon branch, for which ω0(k) ∝ k at
small k. When the elementary cell of the lattice is complex, the system has additionally optical
phonons. If one considers the optical phonons only , Eq. (7.69) must be rewritten as

∑
n

α(n) = msω
2
min(k = 0) (?) (7.70)

Making the Fourier transform over the vector index n, the phonon states are labelled by the
wave vector k. The phonon spectrum of the ideal lattice is

ω2
0(k) =

1
ms

∑
n

α(n) e−ikln . (7.71)
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When the lattice has the inversion symmetry, α(n) = α(−n), Eq. (7.71) may be rewritten as

ω2
0(k) =

1
ms

∑
n

α(n) [coskln − 1] . (7.72)

Introducing the phonon creation and annihilation operators,

un =
∑

k

(h̄/2msNω0(k))1/2 ak eikln + h.c. , (7.73)

the system Hamiltonian takes the standard form:

H =
∑

k

h̄ω0(k)
(

a∗kak +
1
2

)
. (7.74)

The Green functions of the ideal lattice are the following:

Gc
0(t > 0;n1,n2) =

∑

k

(2Niω0(k))−1 exp [ik (ln1 − ln2)− iω0(k) t] , (7.75)

Gc
0(t < 0;n1,n2) =

∑

k

(2Niω0(k))−1 exp [−ik (ln1 − ln2) + iω0(k) t] , (7.76)

and

Gc
0(ω;n1,n2) =

{
1
N

∑

k

eik(ln1−ln2)
} {

1
2ω0(k)

[
1

ω − ω0(k) + iδ
− 1

ω + ω0(k)− iδ

]}

=
1
N

∑

k

eik(ln1−ln2) 1
ω2 − ω2

0(k) + iδ
. (7.77)

7.6.1 One-dimensional chain

For the infinite linear chain of atoms with the interaction of nearest neighbors (NN) only, we have
α(n, n) = −2α(n, n ± 1) [recall that

∑
n α(n) = 0]. Thus, from (8.14) we obtain the following

spectrum of the chain,
ω2

0(k) = ω2
m sin2(ak/2) , (7.78)

where ω2
m = 4α/ms and α = α(0)/2. Then,

Gc
0(ω; k) =

1
ω2 − ω2

0(k) + iδ
, (7.79)

and the spatial Fourier transform is defined as

Gc
0(ω; n) =

1
N

∑

k

eiklnGc
0(ω; k) , Gc

0(ω; k) =
∑
n

e−iklnGc
0(ω; n) . (7.80)

Thus, we have for the 1D system (let a = 1 in what follows)

Gc
0(ω;n) =

1
2π

∫ +π

−π
dk eikn 1

ω2 − ω2
0(k) + iδ

=
(

2
ω2

m

)
(−i)(−1)|n|

1√
1− x2

(
x− i

√
1− x2

)|n|
, (7.81)
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Figure 7.1: Green function for one-dimensional chain: Im (solid curve) and Real (dash curve)
(multiplied by ω2

m).

where
x =

(
ω2 − 1

2
ω2

m

)/ (
1
2
ω2

m

)
(7.82)

and
√

1− x2 = 2
∣∣∣∣

ω

ωm

∣∣∣∣

√
1−

(
ω

ωm

)2

, (7.83)

so that |x| < 1 inside the phonon zone, and 1 < x < +∞ outside it. Outside of the phonon
zone, |ω| > ωm, when |x| > 1, we have to take

√
1− x2 = −i sign(x)

√
x2 − 1 . (7.84)

The Green function for the one-dimensional chain is shown in Fig. 7.1.
The density of states of the chain is (ε = ω2)

g0(ε) = − 1
π

Im Gc
0(ω; 0) =

1
π

1√
ε(ω2

m − ε)
, (7.85)

ρ(ω) =
2
π

N
1√

ω2
m − ω2

. (7.86)

The function g0(ε) is shown in Fig. 7.2.

7.6.2 Two-dimensional lattice

...

7.6.3 Three-dimensional crystal

Using a general approach (not connected with a particular symmetry of the 3D lattice), one
may show (e.g., see []) that at the bottom of the acoustic phonon zone the density of phonon
states behaves as

ρ(ω) ∝ ω2, g(ε) ∝ √
ε . (7.87)
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Figure 7.2: Local density of phonon states for one-dimensional chain.

Near other zone boundaries, e.g. at the top of the acoustic zone, the phonon density has root-type
peculiarities,

ρ(ω) ∝ √
ωm − ω , g(ε) ∝

√
ω2

m − ε . (7.88)

Besides, topology reasons in the 3D case result in at least (?) two van-Hove (root-type) pecu-
liarities in a middle of every zone.

Debye model

In the simplest approximation, the phonon spectrum is assumed to be acoustic for all k,

ω2
0(k) = (sk)2, (7.89)

where s is the sound velocity, and also one assumes that the spectrum is artificially cut at the
maximum wavevector qD which is determined by the ...

q3
D = (2π)3

(
4
3
πΩ0

)−1

, (7.90)

where Ω0 = V/N is the volume of the simple elementary cell. Thus, the maximum phonon
frequency is ωm = sqD, or

ω3
m = 6π2s3/Ω0 . (7.91)

The sum over k in the isotropic system is reduces to

1
N

∑

k

. . . =
Ω0

(2π)3
4π

∫ qD

0
dk k2 . . . (7.92)

Additionally, we have to introduce the factor of 3 due to summation over three phonon modes.
Thus, the Green function is defined by the integral

Gc
0(0) =

4πΩ0

(2πs)3

∫ sqD

0
du

u2

ω2 − u2 + iδ
, (7.93)

which gives

ImGc
0(0) = − Ω0

4πs3
|ω| if |ω| < ωm (7.94)
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and ImGc
0(0) = 0 outside the zone,

ReGc
0(0) =

Ω0

2π2s3

[
ω

2
ln

∣∣∣∣
ω + ωm

ω − ωm

∣∣∣∣− ωm

]
, (7.95)

so that ReGc
0(0) ≈ ω−2 at ω →∞.

Simple cubic lattice

For the 3D crystal with a simple cubic lattice and interaction of nearest neighbors only, we have∑
n α(n) = α(0) + 6α(1) = 0, so that the phonon spectrum takes the following form,

ω2
0(k) =

1
3

ω2
m

[
sin2(akx/2) + sin2(aky/2) + sin2(akz/2)

]
, (7.96)

where ω2
m = 2α(0)/ms.

In the long-wave (low-frequency) limit, |k| ¿ π/a, the spectrum reduces to

ω2
0(k) ≈ s2k2, (7.97)

where s = aωm/2
√

3 is the sound velocity.
To find the local density of states analogously to the 1D case, we have to substitute ω2

m →
1
3 ω2

m and ω2 → ω2− 1
3 ω2

m[sin2(k1/2)+sin2(k2/2)] in the expressions (8.14), and to take addition-
ally the integral (2π)−2

∫ ∫ +π
−π dk1 dk2 . . . This can be done analytically near the zone boundaries

only. At the bottom of the phonon zone, ω ∼ 0, we have x = −1+ y, y ≈ 6ω2/ω2
m− (k2

1 +k2
2)/2,

thus obtaining

ImGc
0(0) ≈ −6

√
3

π

1
ω3

m

|ω| . (7.98)

Close to the top of phonon zone, ω ∼ ωm, we may change the integration variable, k → q = π−k,
so that x = 1− y, y ≈ [

6(ω2
m − ω2)/ω2

m

]− q2, and we obtain

ImGc
0(0) ≈ −3

√
3

π

1
ω3

m

√
ω2

m − ω2 . (7.99)

Note that the density of states has a root-type peculiarity at the top boundary.

7.7 Dyson Equation

The main advantage of using the Green function technique is that we may use the procedure
of sequent incorporation of perturbations. Namely, if two systems are characterized by different
matrices D0 and D,

(ω21−D0) Gc
0 = 1 and (ω21−D) Gc = 1 , (7.100)

then their Green functions are coupled by the Dyson equation

Gc = Gc
0 + Gc

0 δD Gc = Gc
0 + Gc δD Gc

0 , (7.101)

where
δD = D−D0 . (7.102)
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Proof :
(ω21−D) Gc + δD Gc = 1 + δD Gc, (7.103)

(ω21−D0) Gc = 1 + δD Gc, (7.104)

Gc = (ω21−D0)−1(1 + δD Gc) . (7.105)

Important note: the perturbation δD could not be small here, because the Dyson equation is
exact.

7.8 Examples

7.8.1 Changing of one bond between the atoms

Let we change one bond between the n = 0 and n = 1 atoms in the 1D system, so that the
perturbation is

Vnew(x0 − x1) = Vold(x0 − x1) + δV (x0 − x1) . (7.106)

The only nonzero α’s in this case are α(0, 0) = α(1, 1) and α(0, 1). Therefore, the only nonzero
perturbations are

δD(0, 0) = δα(0, 0)/m0 , δD(1, 1) = δα(1, 1)/m1 , (7.107)

δD(0, 1) = δD(1, 0) = δα(0, 1)/
√

m0m1 . (7.108)

The Dyson equation to be solved, takes now the following form:

{1− Gc
0(0, 0) δD(0, 0)− Gc

0(0, 1) δD(1, 0)} Gc(0, 0)
= Gc

0(0, 0) + {Gc
0(0, 0) δD(0, 1) + Gc(0, 1) δD(1, 1)} Gc(1, 0)

×{1− Gc
0(1, 0) δD(0, 1)− Gc

0(1, 1) δD(1, 1)} Gc(1, 0)
= Gc

0(1, 0) + {Gc
0(1, 0) δD(0, 0) + Gc

0(1, 1) δD(1, 0)} Gc(0, 0) . (7.109)

The denominator of the Green function is the same for all its elements, and it is equal to

Z = 1− Gc
0(0, 0) δD(0, 0)− Gc

0(1, 1) δD(1, 1)− Gc
0(0, 1) δD(1, 0)− Gc

0(1, 0) δD(0, 1)
+ [Gc

0(0, 0)Gc
0(1, 1)− Gc

0(0, 1)Gc
0(1, 0)] [δD(0, 0) δD(1, 1)− δD(0, 1) δD(1, 0)] . (7.110)

Defining
G∗ = Gc

0(0, 0)Gc
0(1, 1)− Gc

0(0, 1)Gc
0(1, 0) , (7.111)

different elements of the Green function matrix are given by the following expressions:

ZGc(0, 0) = Gc
0(0, 0)−G∗δD(1, 1) ,

ZGc(1, 1) = Gc
0(1, 1)−G∗δD(0, 0) ,

ZGc(1, 0) = Gc
0(1, 0) + G∗δD(1, 0) , (7.112)

and

Gc(n, 0) = Gc
0(n, 0) + {Gc

0(n, 0) δD(0, 0) + Gc
0(n, 1) δD(1, 0)} Gc(0, 0)

+ {Gc
0(n, 0) δD(0, 1) + Gc

0(n, 1) δD(1, 1)} Gc(1, 0) ,

Gc(n, 1) = Gc
0(n, 1) + {Gc

0(n, 0) δD(0, 1) + Gc
0(n, 1) δD(1, 1)} Gc(1, 1)

+ {Gc
0(n, 0) δD(0, 0) + Gc

0(n, 1) δD(1, 0)} Gc(0, 1) , (7.113)

etc.
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7.8.2 “Surface” (a broken bond)

I. M. Lifshitz [] was the first who recognized that the technique described in the previous sub-
section, may be used to describe a surface of a crystal. Indeed, if we cut the bond between the
0-th and 1-th atoms, we obtain two semi-infinite chains, each having one “free” end.

When the bond 0–1 of the ideal chain is broken, we have V (0)(x0 − x1) = 1
2α(u0 − u1)2 and

V (x0 − x1) = 0, so that the perturbation is ∆V (x0 − x1) = −1
2 α(u0 − u1)2. Thus, the nonzero

α’s are
δα(0, 0) = δα(1, 1) = −δα(0, 1) = −δα(1, 0) = −α , (7.114)

and the nonzero elements of the matrix δD(. . .) = δα(. . .)/ms are the following,

δD(0, 0) = δD(1, 1) = −δD(0, 1) = −δD(1, 0) = −α/ms = −ω2
m/4 . (7.115)

Then, an idea is that because the bond 0–1 is broken, we have Gc(1, 0) = 0. But because of
Gc(1, 0) ∝ Gc

0(1)−G∗δD(0, 0), it follows that G∗δD(0, 0) = Gc
0(1). Now, using

Gc
0(0)− Gc

0(1) =
(

2
ω2

m

)
(−i)

1 + x− i
√

1− x2

√
1− x2

, (7.116)

we obtain for the denominator of the Green function the expression

Z = 1− 2 δD(0, 0) [Gc
0(0)− Gc

0(1)] = −i(1 + x)/
√

1− x2 . (7.117)

Also, because of ZGc(1, 1) = Gc
0(0)− Gc

0(1), we have for the “surface” Green function

Gc(1, 1) =
(

2
ω2

m

)
1 + x− i

√
1− x2

1 + x
. (7.118)

Thus, the “surface” spectrum is

g11(ε) = − 1
π

Im Gc(1, 1) =
2

πω2
m

√
1− x

1 + x
=

2
πω2

m

√
ω2

m − ω2

ω
, (7.119)

and
ν11(ω) ∝ ω g11(ω) ∝

√
ω2

m − ω2 . (7.120)

The function (8.14) is shown in Fig. 7.3.
Returning to the ω variable, we have for the “surface” Green function the following expres-

sion:

Im Gc
s(ω; 0, 0) =




− 2

ω2
m

√
ω2

m−ω2

|ω| inside the zone, |ω| ≤ ωm,

0 outside of the zone, |ω| > ωm,
(7.121)

Re Gc
s(ω; 0, 0) =





2
ω2

m
= Const inside the zone, |ω| ≤ ωm,

2
ω2

m

(
1−

√
x−1
x+1

)
outside of the zone, |ω| > ωm.

(7.122)

The surface Green function Gc
s(ω; 0, 0) is plotted in Fig. 7.4.

The technique described above, was used in a number of studies devoted to surface physics.
The technique may easily be generalized for the 2D and 3D cases, if the splitting of the crystal
into two semi-infinite parts can be done by cutting only the bonds between the “surface” atoms
of these two parts (fig: ... can ... cannot). These may be done for the (100) ... surfaces of simple
cubic, f.c.c., b.c.c. crystals. In other cases, this technique becomes essentially useless.
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Figure 7.3: “Surface” local density of phonon states in one-dimensional semi-infinite chain.
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Figure 7.4: “Surface” phonon Green function”.
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In particular, for the (100) surface of the 3D simple cubic lattice, repeating the calculations
described above in Sec. 8.14, for the local surface Green function we obtain near the zone bottom,
ω ∼ 0,

ImGc
s(ω; 0) ≈ −12

√
3

π

1
ω3

m

|ω| , (7.123)

and close to the top of phonon zone, ω ∼ ωm,

ImGc
s(ω; 0) ≈ −6

√
3

π

1
ω5

m

(ω2
m − ω2)3/2. (7.124)

Note that the peculiarity of the “surface” local density of phonon states (7.124) at the top
boundary is different from that in the bulk of the crystal.

In model calculations where the surface phonon spectrum is used, the surface phonon Green
function may be approximated by the function

ImGc
s(0) = − 16

ω6
m

|ω|(ω2
m − ω2)3/2. (7.125)

The function (7.125) is normalized by the condition π−1
∫ ω2

m
0 d(ω2) {−ImGc

s(ω; 0)} = 1, and
also it correctly describes the behavior near the zone boundaries. The real part of the phonon
function in this case may be determined by the Kramers-Kronig relation,

ReGc
s(ω; 0) =

32
πω2

m

f

(
ω

ωm

)
, (7.126)

where

f(ξ) = P
∫ 1

0
dt

t2(1− t2)3/2

ξ2 − t2
, (7.127)

so that f(1) = π/16 and f(0) = −3π/16.

7.8.3 A mass impurity in the chain

Let a mass of one of atoms in the chain, say the atom with the number n = 0, is changed,

m0 = ms + ∆m . (7.128)

The nonzero perturbations in this case are:

δD(0, 0) = α(0, 0)
(

1
m0

− 1
ms

)
,

δD(n, 0) = δD(0, n) = α(n, 0)

(
1√

m0ms
− 1

ms

)
, n 6= 0. (7.129)

The Dyson equation takes the following form,

1− Gc

0(0, 0) δD(0, 0)−
∑

n 6=0

Gc
0(0, n) δD(n, 0)


 Gc(0, 0)

= Gc
0(0, 0) +

∑

n6=0

Gc
0(0, 0) δD(0, n) Gc(n, 0) , (7.130)
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Gc(n, 0) = Gc
0(n, 0) +


Gc

0(n, 0) δD(0, 0) +
∑

n1 6=0

Gc
0(n, n1) δD(n1, 0)


 Gc(0, 0)

+
∑

n1 6=0

Gc
0(n, 0) δD(0, n1) Gc(n1, 0) . (7.131)

After long but straightforward calculations we obtain finally in this case:

ZGc(0, 0) = Gc
0(0, 0) , (7.132)

ZGc(n, 0) = Gc
0(n, 0) +

∑

n1 6=0

[Gc
0(0, 0)Gc

0(n, n1)− Gc
0(n, 0)Gc

0(0, n1)] δD(n1, 0) , (7.133)

where the denominator Z is equal to

Z = 1− Gc
0(0, 0) δD(0, 0)−

∑

n6=0

[δD(0, n) Gc
0(n, 0) + Gc

0(0, n) δD(n, 0)]

−
∑

n 6=0

∑

n1 6=0

δD(0, n) [Gc
0(0, 0)Gc

0(n, n1)− Gc
0(n, 0)Gc

0(0, n1)] δD(n1, 0) . (7.134)

Mass impurity in the ideal chain

When the mass of the atom with the number n = 0 is changed in the ideal chain, we have

δD(0, 0) = −α(0) ∆m/m0ms and δD(n, 0) = α(n)
(√

ms
m0
− 1

)/
ms. Using ... , we obtain

Z =
ms

m0

[
1 + ω2Gc

0(0, 0)
∆m

ms

]
. (7.135)

As is known, the equation
Re Z = 0 (7.136)

determines the frequencies of phonon states. Presenting the real part of the Green function as

ReGc
0(ε; 0, 0) = Re

1
N

∑

k

1
ε− ω2

0(k)
=

∫
dε′ g0(ε′)

1
ε− ε′

, (7.137)

equation (7.130) may be rewritten as

F (ε) = − ms

∆m
, where F (ε) = ε

∫ ω2
m

0
dε′

g0(ε′)
ε− ε′

. (7.138)

Note that F (ε) > F (∞) = 1 (?).
In the case of the acoustical phonon zone, Eq. (7.138) has a solution outside the zone at

ω = ωloc > ωm (the high-frequency mode) if and only if the impurity atom is light, ∆m < 0,
and, moreover, if

∆m < −ms/F (ω2
m) . (7.139)

When the spectrum has also an optical branch, a local mode may split out from the top of zone
(if the impurity is light), or it may split out from the bottom of the optical zone (for a heavy
impurity). The amplitude of local vibrations as a function of the distance from the impurity
atom decays exponentially, un ∝ exp(−n/aloc), where

aloc ≈
(

ωmax − ωmin

ωloc − ωmax/min

)1/2

. (7.140)
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7.8.4 Adsorbed atom

Let we have separately a substrate and a free atom, and let |A〉 be the wavefunction of the
atom, and |0〉 be the wavefunction of the adcenter. The Green function of the free atom is
G(0)(ω; A,A) = (ω2 + iδ)−1. Let we know also the Green function of the substrate: Gs(ω) ≡
G(0)(ω; 0, 0). When the atom and the substrate are not coupled, we have G(0)(ω;A, 0) =
G(0)(ω; 0, A) = 0.

Now let the atom and the substrate became coupled by the potential V (xA − x0). This
potential produces the perturbation

∆α(0, 0) = ∆α(A,A) = −∆α(A, 0) = −∆α(0, A) =
d2V (u)

du2

∣∣∣∣
u=u(0)

≡ ∆α . (7.141)

Denoting by mA the mass of the adatom, and by ms, the mass of the substrate atoms, for the
nonzero elements of the matrix δD we obtain

δD(0, 0) = ∆α/ms , δD(A,A) = ∆α/mA , δD(A, 0) = δD(0, A) = −∆α/
√

msmA . (7.142)

The denominator of the Green function in this case is given by the following expression,

Z = 1− Gs(ω)
(

∆α

ms

)
− 1

ω2 + iδ

(
∆α

mA

)
. (7.143)

The function Z(ω) has poles at the frequencies which are solutions of the equation

ω2 =
(
ω

(0)
A

)2
{

1 +
mA

ms
ω2 Gs(ω)

}
, (7.144)

where ω
(0)
A =

√
∆α/mA is the frequency of adatom vibrations on the rigid substrate (i.e. in the

limit ms →∞).
Let us define now ω0 and δ0 by the equations

ω2
0 =

(
∆α

mA

) {
1 +

mA

ms
ω2

0 Re Gs(ω0)
}

(7.145)

and
δ2
0 = −

(
∆α

ms

)
ω2

0 Im Gs(ω0) > 0 . (7.146)

Now one can see that the coupling (8.14) results in the destroying the zero-frequency pole
corresponded to the free atom, and the emerging of a new pole characterized by the frequency

ωA =
(
ω4

0 + δ4
0

)1/4
cos(φ) ≈ ω0 (7.147)

and the half-width at the half-peak (HWH?)

γA =
(
ω4

0 + δ4
0

)1/4
sin(φ) ≈ δ2

0/2ω0 , (7.148)

where
φ =

1
2

tan−1
(
δ2
0/ω2

0

)
. (7.149)

Thus, if ωA lies within the zone of the substrate phonons, we have the quasilocal (virtual)
vibration,

Gc(t) ∝ eiωAt−γAt. (7.150)
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Otherwise, when ωA lies outside of the phonon zone, the vibration is local .
The Green functions themselves in this case are the following:

Gc(ω; A,A) =
[
1− ∆α

ms

]/
ZA(ω) , (7.151)

Gc(ω; 0, 0) = Gs(ω)
[
ω2 − ∆α

mA

]/
ZA(ω) , (7.152)

and
Gc(ω; A, 0) = − ∆α√

mAms
Gs(ω)

/
ZA(ω) , (7.153)

where
ZA(ω) = ω2 − ∆α

mA

[
1 +

mA

ms
ω2 Gs(ω)

]
. (7.154)

Notice also that (
1 +

mA

ms

)/
mA =

ms + mA

msmA
=

1
mreduced

. (7.155)



Chapter 8

Diagram Technique

...

8.1 Perturbation Series

The perturbation theory for interacting particles is based on the dynamical perturbation theory
described above in Sec. 8.14.

It is convenient to introduce the operator

S′δ ≡ S(+∞,−∞) = S(+∞, 0)S(0,−∞) . (8.1)

Because for the perturbation (8.14) we have S(0,−∞) = S(0, +∞), Eqs. (8.14) may simply be
rewritten in terms of S′δ:

|Ψ0〉 =
Sδ|Φ0〉[〈Φ0|S′δ|Φ0〉

]1/2
(8.2)

and

∆E =
1
2

lim
δ→+0

ih̄δg
∂

∂g
ln〈Φ0|S′δ|Φ0〉 . (8.3)

Besides, analogously we can obtain the expression for the T = 0 causal Green function,

〈〈A(t)|B(t′)〉〉 =
1
i

〈Φ0|Tch [Aint(t) Bint(t′) S′δ] |Φ0〉
〈Φ0|S′δ|Φ0〉 . (8.4)

The main trick in the diagram approach is to introduce the normal product and then to
apply the Wick theorem.

The normal product N (AB) of two operators A and B is defined so that all creation operators
are arranged to the left of all annihilation operators. Then, define the pairing as

︷︸︸︷
AB = Tch(AB)−N (AB) . (8.5)

Define also: (???) (∑

i

Ai

) (∑

k

Ak

)
=

∑

ik

︷ ︸︸ ︷
AiBk , (8.6)

N (PQRST . . . XY Z) = ηP
︷︸︸︷
QS

︷︸︸︷
RY N (PT . . . XZ) . (8.7)
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Then, the Wick theorem says that

Tch(A1A2 . . . An) = N (A1A2 . . . An) +N (
︷ ︸︸ ︷
A1A2 . . . An) + . . . + all paired. (8.8)

Then the main idea is that 〈Φ0|N (A1A2 . . . An)|Φ0〉 6= 0, only if all operators are paired, be-
cause otherwise an annihilation operator acts on |Φ0〉 and gives zero. Finally, we get that
〈Φ0|Tch(A1A2 . . . An)|Φ0〉 is equal to the sum of all completely paired terms. Because the pairing
is connected with Green functions, we obtain diagram rules. Then, from topology consideration
one can show that if one uses only the connected diagrams, the logarithm in Eq. (8.14) and
denominator in Eq. (8.14) both go out being cancelled:

∆E =
1
2

lim
δ→+0

ih̄δg
∂

∂g
〈Φ0|S′δ|Φ0〉connected, (8.9)

〈〈A(t)|B(t′)〉〉 =
1
i
〈Φ0|Tch

[
Aint(t)Bint(t′)S′δ

] |Φ0〉connected. (8.10)

The main advantage of the diagram perturbation theory is that the sum is over intermediate
virtual particles instead of over intermediate states; this reduces the number of terms in n! times.
Below we consider the diagram technique for Green functions only. The perturbation series for
the causal T = 0 Green function (either Bose or Fermi) is

G(t) =
(

1
i

)

︸ ︷︷ ︸
a

∞∑

n=0

(
1
n!

)

︸ ︷︷ ︸
b

∫ +∞

−∞
dt1 . . .

∫ +∞

−∞
dtn

︸ ︷︷ ︸
c

×〈0|Tch





(AB)︸ ︷︷ ︸
d

[−iHint(t1)] . . . [−iHint(tn)]︸ ︷︷ ︸
e




|0〉 , (8.11)

and the technique described above leads to the following diagram rules, following letters in
Eq. (8.11):
(a) is the general factor for the Green function (for the polarization operator it is absent);
(b) this factor is absent when only topologically inequivalent diagrams are considered;
(c) or P ∫ +∞

−∞
dω
2π after Fourier transform; for the loop we have to integrate along the O− contour;

(d) corresponds to the external lines (they are absent for the polarization operator);
(e) the vortices give the factors (−iV...), and the lines give the factors iG... or iD.../

√
mm .

The standard rules are:
− energy should be conserved in the vortices,
− Fermi loops give the factor “−1” each,
− lines should be labelled, and then one has to sum over all free indexes.

The Dyson equation is valid for any Green function:

G = G0 + G0ΠG, (8.12)

or

iD

iG =
iD0

iG0 // +
iD0

iG0 // −iΠ_^]\XYZ[WVUTPQRS
iD

iG

where Π is the irreducible polarization operator. Namely, the polarization operator (called
also as the self-energy part) is the diagram without external lines, which can be inserted into
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the (Fermion) line; and the irreducible polarization operator is the polarization operator which
cannot be split into two unconnected parts by removing of one (Fermion) line.

For the T 6= 0 Matsubara Green functions, the diagram technique is (β0 = 1/T ):

G(β) = (−1)︸ ︷︷ ︸
a

∞∑

n=0

(
1
n!

)

︸ ︷︷ ︸
b

∫ β0

0
dβ1 . . .

∫ β0

0
dβn

︸ ︷︷ ︸
c

×〈0|Tm





[Am(β)Bm(0)]︸ ︷︷ ︸
d

[−Hint(β1)] . . . [−Hint(βn)]︸ ︷︷ ︸
e




|0〉 , (8.13)

and the rules now are the following:
(a) is the general factor for the Green function (for the polarization operator it is absent);
(b) this factor is absent when only topologically inequivalent diagrams are considered;
(c) or T

∑
over the frequencies;

(d) the external lines (absent if the polarization operator is calculated);
(e) the vortices give the factors (−V...), and the lines give the factors −G... or −D.../

√
mm .

The standard rules are the same as above.
The Dyson equation is:

G = G0 + G0πG, (8.14)

or

−G = −G0 // +
−G0 // −πONMLHIJKGFED@ABC −G

8.2 Phonon System

For the interacting phonons the Hamiltonian is

Hphonon =
1
2!

∑
n1n2

λn1n2un1un2 +
1
3!

∑
n1n2n3

λn1n2n3un1un2un3 + . . . , (8.15)

and the vertices are described by the diagrams

λn1n2 λn1n2n3

HHHHHHHHHHH λn1n2n3n4

• •

xxxxxxxxxx

IIIIIIIIII •

vvvvvvvvvvv

KKKKKKKKKKKsssssssssss

The rules of the standard diagram technique are the following:
• construct topologically nonequivalent diagrams (but only the “connected” ones – any piece of
the diagram must be connected with at least one external line);
• put two indexes, e.g. n1 and n2, on each solid line, and then sum over these indexes,

∑
n1 n2

;
• associate an energy ωi with each solid line, and the energy ω with the external lines; at vortices
the energy must be conserved;
• to each solid line, put in correspondence the factor 〈Tchun1un2〉 = (i/

√
m1m2)Dn1n2(ωi);

• to each vertex, put in correspondence the factor −iλ... ;
• the factor −i

√
m1m2 should be applied to the whole diagram (it follows from the definition of
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the Green function);
• make integration over all free energy parameters,

∫ +∞
−∞ dωi ;

• finally, apply the Dyson equation,

D = D0 +D0ΠD, (8.16)

where Π = 76540123 is the polarization diagram.

When integrating, one may use the following useful formulas:
if Gi(ω) =

(
ω2 − ω2

0 + i0
)−1, then

∫ +∞

−∞
dω G0(ω) =

∮

O+

dω . . . =
∮

O−
dω . . . = − iπ

ω0
, (8.17)

so that ∫ +∞

−∞
dω ReG(ω) = 0 , (8.18)

and also ∫ +∞

−∞
dω G2

0(ω) = +
2πi

4ω3
0

, (8.19)

∫ +∞

−∞
dω G1(ω)G2(ω) = +

2πi

2ω1ω1(ω1 + ω2)
, (8.20)

∫ +∞

−∞
dω G1(ω)G2(ω)G3(ω) = − 2πi(ω1 + ω2 + ω3)

2ω1ω2ω3(ω1 + ω2)(ω2 + ω3)(ω1 + ω3)
, (8.21)

∫ +∞

−∞
dω G3

0(ω) = − 6πi

16ω5
0

. (8.22)

Besides,

δ(ω2 − ω2
0) =

1
2|ω0| [δ(ω − ω0) + δ(ω + ω0)] . (8.23)

In Matsubara technique, the following trick is used:
if h(ω) is a function such that h(ω) ≤ 1/|ω|2 at ω →∞, then

∮

O+

dω h(iω)fB(ω) =
∮

O−
dω h(iω)fB(ω) = −2πi

∑

m=all

(−T )h(ω)iω=i(2m)πT , (8.24)

where O+ is the closed circle in the clockwise direction so that it encloses the poles of fB(ω)
only, and O− is the closed circle in the anticlockwise direction so that it encloses the poles of
h(iω) only. Therefore, for the Bose case it follows

T
+∞∑

m=−∞
[DmDmDm . . .]ωm=(2m)πT = −1

i

∮

Õ−

dω

2π
fB(ω)DmDmDm . . . (iω) , (8.25)

where the contour Õ− goes out of all poles of the function fB(ω), i.e. out of all points ω =
i(2m)πT , but encloses all poles of the function DmDmDm . . . (iω).
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8.3 Electron–Electron and Electron–Phonon Interaction

The electron-electron interaction is
Hel−el = ... ; (8.26)

the corresponding vertex is

out
left

out
right

•

1
^^========

•

2
??~~~~~~~

in
left

3

@@¢¢¢¢¢¢¢¢
in

right

4

__@@@@@@@

The electron-phonon interaction is

Hint =
∑

mij

λmijumc∗i cj + . . . , (8.27)

with the vertices

___ •
i

??ÄÄÄÄÄÄÄ

j

__???????

The standard diagram technique rules are now the following:
• when fermion lines (here solid lined) met at a vertex, they must preserve the direction of
arrows;
• the whole diagram is multiplied by the factor (−1)L, where L is the total number of Fermi
loops;
• each phonon line (dashed here) corresponds to the factor D = 〈Tchuu〉;
• the electron line

i j // corresponds to the factor iG
(0)
ij (ω) = Fourier of 〈Tchci(t)c∗j (0)〉 (we

assume that index i incorporates spin);
• the el-ph vertex gives the factor −iλ...ij ;
• the el-el vertex gives the factor −iv1234 ;
• energy and spin must be conserved at vertices;
• make the sum over indexes (and spins);
• over free energy parameters, make P ∫ +∞

−∞ dω/2π.

Note 1 : for the two loops (and only for these two loops)

•g̀afbecd_______ • •___________
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we have to use
∮
O− dω, (or t = −0); in other cases the contour may be closed in any way (?).

Note 2 : In the vertex (loop?),

ω0 ___ •
ω

??ÄÄÄÄÄÄÄ

ω−ω0

__???????

where ω0 > 0, the Kramers-Kronig relation gives

−
∫ +∞

−∞
dω G1(ω) G2(ω − ω0) = +

∫ ω0

0
dω Im G1(ω) ImG2(ω − ω0) + (1 ⇔ 2) . (8.28)

In Matsubara technique for Fermi systems, the following trick is used: if h(ω) is a function
such that h(ω) ≤ 1/|ω|2 at ω →∞, then

∮

O+

dω h(−iω)fF (ω) =
∮

O−
dω h(−iω)fF (ω) = −2πi

∑

n=all

(−T )h(ω)iω=i(2n+1)πT , (8.29)

where O+ is the closed circle in the clockwise direction so that it encloses the poles of fF (ω)
only, and O− is the closed circle in the anticlockwise direction so that it encloses the poles of
h(iω) only. Therefore, for the Fermi functions it follows

T
+∞∑

n=−∞
[GmGmGm . . .]ωn=(2n+1)πT = +

1
i

∮

Õ−

dω

2π
fF (ω)GmGmGm . . . (iω) , (8.30)

where the contour Õ− goes out of all poles of the function fF (ω), i.e. out of all points ω =
i(2n + 1)πT , but encloses all poles of the function GmGmGm . . . (iω).



Chapter 9

Applications

9.1 Atom He

Hamiltonian:

H =
∑
σ

Eanaσ + Uana↑na↓ . (9.1)

Diagram perturbation theory: four times the Coulomb dumb-bell plus two times the loop

g̀afbecd• •g̀afbecd_______ • •___________

give the GS energy

E0 = 2Ea + Ua . (9.2)

Green function technique: a Zubarev chain

G = 〈〈caσ|c∗aσ〉〉 =
1− na,−σ

ω − Ea
+

na,−σ

ω −Ea − Ua
, (9.3)

Γ = 〈〈caσna,−σ|c∗aσ〉〉 =
na,−σ

ω −Ea − Ua
. (9.4)

Note: this decoupling is exact (?). Self-consistency:

na,σ =
∫ εF

−∞
dω [(1− na,−σ) δ(ω − Ea) + (na,−σ) δ(ω − Ea − Ua)] . (9.5)

Thus, the system has two levels at ω = Ea and ω = Ea + Ua and two electrons; therefore, both
levels are occupied, na,σ = na,−σ = 1,

G = Γ = (ω − Ea − Ua)−1, (9.6)

and the GS energy E0 is the same.
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9.2 Hubbard Model: Molecule A–B

Let us consider the molecule A–B as in Sec. 8.14, but now let us take into account the repulsion
of electrons occupying the same atomic orbital. The Hamiltonian describing this system, is
known as the Hubbard Hamiltonian:

H =
∑
σ

[Eanaσ + Ebnbσ + (Vabc
∗
aσcbσ + h.c.)] + Uanaσna,−σ + Ubnbσnb,−σ . (9.7)

In the Hartree-Fock approximation the electron-electron interaction term is treated as

naσna,−σ → naσna,−σ ,

and the Green functions take the same form as in Sec. 8.14, but with the substitution

Ea → εaσ = Ea + Uana,−σ . (9.8)

The dissociation energy is now equal to

D = Uanaσna,−σ + Ubnbσnb,−σ + Ea + Eb −
∑
σ

∫ εF

−∞
dε ε (ρσ

a + ρσ
b ) . (9.9)

In particular, in the symmetric case, Ea = Eb and Ua = Ub = U , from the symmetry reasons
we may put

naσ = nb,−σ = nσ . (9.10)

The energy levels are

E1,2 =
(

Ea +
1
2
U

)
∓

√
1
4
U2∆n2

σ + V 2 , (9.11)

where
∆nσ = nσ − n−σ . (9.12)

When N = 2, then nσ + n−σ = 1, E1 < εf < E2, and

nσ = ασ
a =

1
2

+
1
4

U ∆nσ√
1
4U2∆n2

σ + V 2
. (9.13)

Equation (9.13) should be solved self-consistently. At small U , when U < 4|V |, it has a single
solution nσ = 1

2 , which corresponds to the dissociation energy

D = 2|V | − 1
2
U . (9.14)

For a strong electron-electron repulsion, U > 2|V |, Eq. (9.13) has two solutions

nσ =
1
2


1±

√
1− 4V 2

U2


 . (9.15)

This magnetic solution, when it exists, always corresponds to lower energy. The dissociation
energy for the magnetic solution is

D = 2
V 2

U
. (9.16)

put fig!
With the diagram technique, the HF GS is (4 × dumb-bell + 2 × loop)
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º¹¸·³´µ¶ ___ º¹¸·³´µ¶ + • ___ // •oo

this gives the contribution = U .
The second order perturbation theory is (4 × left + 2 × right)

•

²²

•

²²

•

²²

•

²²•

OO

•

OO

•

??~~~~~~~ •

__@@@@@@@

gives the contribution = U2
12ex/(E2 − E1).

9.3 Interacting Electron Gas

9.3.1 The ground state energy

The Hamiltonian of the system of interacting electrons is

H = H0 + V, (9.17)

where H0 was described above in Sec. 8.14, and the operator of interaction V is

V =
1
2

∑

i6=k

v(ri, rk) =
1
2

∑

iklm

Viklm c∗i c
∗
kcmcl , (9.18)

Viklm = 〈ik|v|lm〉 =
∫

dr dr′ v(r, r′) φ∗i (r) φ∗k(r
′) φl(r)φm(r′) , (9.19)

φi(r) being the spin-orbitals. When the electron-electron interaction is independent of spins, we
may use orbitals instead of spin-orbitals, and V takes the form

V =
1
2

∑

iklm

∑

σσ′
Viklm c∗iσc∗kσ′cmσ′clσ (9.20)

=
1
2

∑

ik, σσ′
Vkiki niσnkσ′(if i = k then σ 6= σ′)︸ ︷︷ ︸

Coulomb repulsion

−1
2

∑

i 6=k, σ

Vkiik niσnkσ︸ ︷︷ ︸
exchange

(9.21)

+
1
2

∑

ikm(k 6=m)

∑

σσ′
Vkiminiσ′c

∗
kσcmσ (if i = k or i = m then σ 6= σ′) (9.22)

−1
2

∑

ikm, σ

Vkiimniσc∗kσcmσ (i 6= k 6= m 6= i) (9.23)

+
1
2

∑

iklm, σσ′
Viklm c∗iσc∗kσ′cmσ′clσ (all indexes 6=). (9.24)

In the basis of plane waves the interaction takes the form

〈k1k2|v|k3k4〉 =
1

Vvol
δk1+k2,k3+k4v(k1 − k3) , (9.25)

so that for the Coulomb electron-electron repulsion v(r) = e2/r we obtain

V =
1
2

∑

k1k2q

∑

σσ′
Vq c∗k1+q, σc∗k2−q, σ′ck2, σ′ck1, σ , Vq =

4πe2

Vvol

1
q2

. (9.26)

The lowest approximation is the Hartree-Fock one. For the T = 0 GS the energy is deter-
mined by two diagram, the Coulomb repulsion diagram
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pwqvrust• •pwqvrust_________

and the exchange diagram,

• •

The GS energy is
EHF

0 = ... (9.27)

9.3.2 Collective excitations: Plasmons

el-el interactions → plasmons: Lipkin motion equation approach
Interaction of an external charge with the electron gas: Overhauser
Diagram technique: Loop (RPA approximation)
ε(k, ω) – optics
friction, conductivity, superconductivity

9.3.3 Nonzero temperature

Fermi statistics → specific heat

9.4 Interacting Phonons

The density of phonon states was described in detail in Sec. 8.14. Because phonons are Bose
particles, at T 6= 0 they follow the Bose-Einstein statistical function fB. Therefore, the system
energy (omitting the zero phonon energy) is

E0(T ) =
∑

k

h̄ω0(k)fB(ω0(k)) =
∫

dω ωρ(ω)fB(ω) . (9.28)

Thus, the average number of phonons excited at T > 0, is equal to

n =
1
V

∫
dω ρ(ω)fB(ω) , (9.29)

and it behaves in the following way:
at T ¿ ωm, for acoustical phonons n ∝ (T/ωm)3, so that E0(T ) ∼ (T/ωm)3T , i.e. the mean
energy of the phonon is T ;
at T ¿ ωm, for optical phonons n ∝ exp(−ωopt/T );
at T À ωm, for acoustical phonons n ∝ T , so that E0(T ) ∼ T (the Dulong-Petit law), and the
average phonon energy is ωm.

...
specific heat
ph-ph interactions: phonon loop!
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9.5 Electron–Phonon Interaction

9.5.1 Hamiltonian

...

9.5.2 Local polaronic model: Exact solution

... Braun and Volokitin ...

9.5.3 Variational solution

... Braun and Volokitin ...

9.5.4 Polaron

...

9.5.5 Interaction with acoustic phonons

...

9.5.6 Interaction with optical phonons

...

9.6 Impurity: Anderson Model

...

9.7 Nozieres Approach

...

9.8 Impurity: Lifetime of Local Vibrations

Recall (see Sec. 8.14): a mass of the impurity may be either lighter or heavier → the vibrations
will be either localized or virtual. Now let us consider the same problem (for local vibrations),
using the diagram technique

First, we obtain the old results, but in a much simpler way. Let ua and us be the dis-
placements of the adatom and the surface atom of the substrate respectively, and introduce
u = ua − us. When these atoms are isolated (does not interact), the phonon Green function is

Γ00(ω) ≡ Fourier 〈Tchu(t)u(0)〉 =
i

ma

1
ω2 + iδ

+
i

ms
Ds . (9.30)

Now, introducing the interaction V (u), the interaction Hamiltonian is

Hint =
1
2!

λ2u
2 +

1
3!

λ3u
3 +

1
4!

λ4u
4 + . . . (9.31)
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In particular, for the Morse potential

V (u) = D
(
e−2γu − 2e−γu

)
(9.32)

the coefficients in Eq. (9.31) are

λn =
∂n

∂un
V (u) = (−1)n2Dγn

(
2n−1 − 1

)
, (9.33)

so that λ2 = 2Dγ2 = maω
2
a, λ3 = −6Dγ3 = −3ω3

a

(
m3

a/2D
)1/2, etc. Now, taking the interaction

in the lowest (harmonic) approximation, we have Π = −iλ2, and the Dyson equation Γ0 =
Γ00 + Γ00 ΠΓ0 gives the Green function obtained in Sec. 8.14:

Γ0(ω) =
i

ma

1 + ma
ms

ω2Ds

ω2 − ω2
a

(
1 + ma

ms
ω2Ds

)
+ iδ

. (9.34)

decay of local vibration to phonons ...
phonon loop ...
SCF theory ...
decay to e-h pairs ...
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Definitions and Useful Formulas

11.1 Delta- and theta-Functions

Define everywhere:
δ → 0 , δ > 0 . (11.1)

Θ(z) =

{
1 if z > 0 ,
0 if z ≤ 0 .

(11.2)

δk =

{
+δ if εk > εF ,
−δ if εk < εF .

(11.3)

Thus
1

ε± iδ
=

1
ε
∓ iπδ(ε) (11.4)

(proof: e.g., see Reims p.298)
dΘ(z)

dz
= δ(z) (11.5)

δ(t) =
1
2π

∫ +∞

−∞
dx e−ixt =

1
2πi

(
1

t− iδ
− 1

t + iδ

)
(11.6)

Θ(z) =
∫ z

−∞
dt eδtδ(t) =

i

2π

∫ +∞

−∞
dx

e−ixt

x + iδ
(11.7)

f(x)δ(x) = f(0)δ(x) (11.8)

11.2 Many-Particle Problem

η = ±1 for

{
Bose
Fermi

}
particles (11.9)

[A,B]η = AB − ηBA . (11.10)

Define:
Φ0 is the exact normalized wave function of the ground state of the system of N noninteracting
fermions;
Φn is the exact normalized wave function of an excited state of the system of N noninteracting
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fermions;
H0 is the Hamiltonian of noninteracting fermions,

H0Φ0 = E0Φ0 , H0Φn = EnΦn ; (11.11)

Ψ0 is the exact normalized wave function of the ground state of the system of N interacting
fermions;
H = H0 + V is the Hamiltonian of interacting fermions,

HΨ0 = Eexact
0 Ψ0, Eexact

0 = E0 + ∆E ; (11.12)

Ψ(N)
n is the exact normalized wave function of an excited state of the system of N interacting

fermions,
HΨ(N)

n = Eexact
n Ψ(N)

n , h̄ωn0 = Eexact
n − Eexact

0 , (11.13)

Eexact
n = En + ∆En, (11.14)

and Ecorr = Eexact
0 − EHF

0 is called by the correlation energy .
The evolution operator is defined as

U(t− t0) = U(t, t0) = e−i H
h̄

t. (11.15)

It satisfies the equation

ih̄
∂U(t, t0)

∂t
= HU(t, t0) , U(0) = 1 . (11.16)

The evolution operator is the unitary operator,

U∗(t, t0) = U−1(t, t0) = U(t0, t) , (11.17)

and also
U(t3, t2)U(t2, t1) = U(t3, t1) . (11.18)

Formal solution of the Schrödinger equation can be written in the following form,

|ψ(t)〉 = U(t, t0)|ψ(t0)〉 . (11.19)

Define the averaging 〈. . .〉 for the T = 0 case as

〈. . .〉 = 〈Ψ0| . . . |Ψ0〉 (11.20)

(the case of T > 0 will be described below).
The chronological operators are defined as follows,

Pch[A(t1)B(t2)] =

{
A(t1)B(t2) if t1 > t2 ,
B(t2)A(t1) if t1 < t2 ,

(11.21)

Tch[A(t1) B(t2)] =

{
A(t1)B(t2) if t1 > t2 ,
ηB(t2)A(t1) if t1 < t2 .

(11.22)

For Fermi operators

Tch{A1(t1) . . . An(tn)} = (−1)pAα1(tα1) . . . Aαn(tαn) , (11.23)

where tα1 > . . . > tαn , and p is the number of permutation made.
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Table 11.1: Atomic units

type h̄ aBohr mel e unit of energy kin. energy pot. en. c mproton

I 1 1 1 1 2 Ry = 27.2 eV 1
2p2 = −1

2∇2 ∓1/r 137.2 1836
II 1 1 1/2

√
2 1 Ry = 13.6 eV p2 = −∇2 ∓2/r 918

Normal product N : reordering so that all creation operators are at the left of all annihilation
operators, multiplied by the factor (−1)p,

Tch(AB) = N (AB) +
︷︸︸︷
AB , (11.24)

Equation (11.24) is the definition of
︷︸︸︷
AB .

Tch[A(t) A∗(t)] = −A∗(t)A(t) . (11.25)

Also for the electron gas:
r0 is defined as Vvolume = N 4

3πr3
0,

rs is defined as rs = r0/aBohr, it is dimensionless, for metals rs ∼ 2− 6

kF =
1

0.52r0
=

3.64
rs

Å−1
, (11.26)

εF =
3.68
r2
s

Ry. (11.27)

11.3 Atomic System of Units

There are two popular system of units described in Table 11.1.

11.4 Representations

Heisenberg representation
A(G)(t) = e

iHt
h̄ A(S)e−

iHt
h̄ (11.28)

11.5 Statistical Mechanics

Averaging for T > 0 (the Great Canonical Ensemble)

〈. . .〉 = Q−1 Sp
(
e−βH . . .

)
(11.29)

where β = (kBT )−1,
Q = Sp

(
e−βH

)
(11.30)

H = H − µN (11.31)

and Sp is the sum over the number of particles in the system, and over all possible states of the
system for a given number of particles.
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11.6 Solid State

Because many examples are taken from Solid State Theory, let us summarize here its main
issues. For more details, see textbooks of Ziman (the best), Kittel (3 books).

11.6.1 Definitions

Let us define:
V is the volume.

Direct lattice:
a1, a2 and a3 are the primitive vectors,
Wigner-Seitz cell is the elementary cell,
Bravais cell if there is only one atom in the elementary cell,
Bravais lattice consists of Bravais cells,
l = l1a1 + l2a2 + l3a3, where li are integers,
Ω0 = a1 · [a2 × a3] is the cell volume.

Inverse lattice:
b1, b2 and b3 are the primitive vectors of the inverse lattice defined by

b1 = 2π
a2 × a3

Ω0
, ai · bk = 2πδik, (11.32)

Brillouin zone is the WignerSeitz cell in the inverse lattice,
g = g1b1 + g2b2 + g3b3, where gi are integers,
Ω∗0 = (2π)3/Ω0,
Miller indexes (h, k, l) of a given plane are the inverse values of the sections cut by the plane
from the axes,
if g1 : g2 : g3 = h : k : l, then g is perpendicular to the plane (h, k, l),
the distance between two nearest neighboring planes is

d(h, k, l) =
2π

|ghkl| . (11.33)

Cyclic boundary conditions:
Discrete case:

qr = N−1/2 ∑
k Qk exp(ikra), where r = 1, 2, . . . , N ,

Qr = N−1/2 ∑
s qs exp(−iksa),

cyclic: qr+N = qr, therefore exp(ikNa) = 1, or

k =
2π

Na
n, where n = 0,±1, . . . ,±

(
N

2
− 1

)
, +

N

2
. (11.34)

Continuous case:
q(x) = L−1/2 ∑

k Qk exp(ikx), where −1
2L < x < +1

2L,

Qk = L−1/2
∫ + 1

2
L

− 1
2
L

dx q(x) exp(−ikx),

cyclic: q(x + L) = q(x), therefore exp(ikL) = 1, or

k =
2π

L
n, where n = integer. (11.35)
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Fourier series:
if f(x) = f(x + l), then f(x) =

∑
g ag exp(igx), where ag = Ω−1

0

∫
cell dx f(x) exp(−igx).

Note:
∫
cell dx f(x) exp(iKx) = 0 if K 6= g.

Approximations: When electronic states are considered, usually one uses
(i) the adiabatic approximation, and
(ii) the one-electron approximation, i.e. V (r) should be self-consistent (although the energies

may be calculated rather accurate, wavefunctions cannot, typically).

Schemes:
reduced zones: quantum numbers k and n, where −π < k ≤ π and n = 0, 1, 2, . . .
repeated zones: quantum numbers k and n, where −∞ < k < ∞ and n = 0, 1, 2, . . . (this

scheme is overcomplete);
extended zones: quantum number k, where −∞ < k < ∞.
In the scheme of reduced zones the number of k values in the Brillouin zone is equal to the

number of elementary cells in the unit of volume in the direct lattice,

∑

k,σ

. . . → 2(spin)
V

(2π)3

∫
d3k . . . = 2(spin)

N

Ω∗0

∫
d3k . . . (11.36)

Useful formulas: ∫

V
dx eikx = V δk,0 (11.37)

∑

l

e−ikl = Nδk,g,
∑

k

e+ikl = Nδl,0 (11.38)

1
|r| =

4π

V

∑
q

1
q2

e+iqr. (11.39)

Ewald method of calculation of a lattice sum:

∑

l

eiql

|l− r| =
∑

l

eiql

|l− r| erfc (a|l− r|)
︸ ︷︷ ︸

direct lattice

+
π

Ω0

1
a2

∑
g

ei(q+g)·re−|q+g|2/4a2

|q + g|2/4a2

︸ ︷︷ ︸
inverse lattice

, (11.40)

where a is arbitrary and erfc(x) = 2√
π

∫∞
x du e−u2

.

11.6.2 Density of states

The density of states N (ε) is defined so that N (ε) dε is equal to the number of states with
energies between ε and ε + dε per unit volume of the crystal (the sum over spin is omitted),

N (ε0) =
d

dε0

1
(2π)3

∫∫∫

ε(k)<ε0

d3k =
1

(2π)3

∫∫

ε(k)=ε0

dS

|∇ε(k)| . (11.41)

The function N (ε) is continuous, but it derivative has peculiarities at the points where
∇ε(k) = 0. Near such a point k0 the energy may be expanded as

ε(k) = ε(k0) + α1(k1 − k01)2 + α2(k2 − k02)2 + α3(k3 − k03)2 + . . . , (11.42)

where k1, k2 and k3 are the principal axes. The function N (ε) may have the following peculiar-
ities:
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(1) maximum, when α1 < 0, α2 < 0 and α3 < 0. From the analytical geometry (volume of
ellipsoidal) it follows that a neighboring of the point k0 gives the contribution into the density
of states, equal to

∆N (ε) =
1

4π2

Θ(ε(k0)− ε)√|α1α2α3|
√

ε(k0)− ε (11.43)

(2) minimum (a local minimum as well), α1 > 0, α2 > 0 and α3 > 0, gives the contribution

∆N (ε) ∝
√

ε− ε(k0) (11.44)

(3) saddle type s1, α1 > 0, α2 < 0 and α3 < 0, gives the contribution

∆N (ε) ∝ −
√

ε− ε(k0) (11.45)

(4) saddle type s2, α1 > 0, α2 > 0 and α3 < 0, gives the contribution

∆N (ε) ∝ −
√

ε(k0)− ε. (11.46)

van-Hove theorem:
(1) any spectrum must have at least one s1-type peculiarity and at least one s2-type peculiarity,
(2) at the top boundary of the spectrum we always have dN (ε)/dε = −∞.

Besides, N (ε) has also a cusp peculiarity when a surface of constant energy touches the
Brillouin zone.

11.6.3 Electrodynamics

Maxwell equations

Denote by:
q is the charge (1 C = 3 · 109 CGSE),
ϕ is the potential (1 V = 1

300 CGSE),
p is the dipole (1 C·m = 3 · 1011 CGSE);
ρext and jext are the density of external charge and current respectively (1 A/m2 = 3·105 CGSE);
E is the macroscopic (averaged over the elementary cell) electric field (1 V/m = 1

3 ·10−4 CGSE);
P is the polarization (dipole momentum of a volume unit) (1 C/m2 = 3 · 105 CGSE);
D is the electrical induction (displacement) (C/m2);
H is the macroscopic (averaged over the elementary cell) magnetic field (1 A/m = 4π · 10−3 Er-
sted);
M is the magnetization (magnetic momentum of a volume unit);
B is the magnetic induction (1 Tesla = 104 Gauss);
ε is the dielectric permittivity, and σ is the conductivity (conditional division on displacement
current and real current);
µ is the magnetic permeability;
χel, mag is the susceptibility.
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The Maxwell equations in a solid state have the following form:

CGSE SI

D = E + 4πP
= εE
= (1 + 4πχel)E
where P = χelE
(definitions)

D = ε0E + P
= ε0(1 + χel)E
= ε0εE

∇ ·D = 4πρext

(follows from ∇ · P = −ρpolarization)
∇ ·D = ρext

∇× E = −1
c

∂B
∂t

(the same as in vacuum)
∇× E = −∂B

∂t

B = H + 4πM
= µH
= (1 + 4πχmag)H
where M = χmagH
(definitions)

B = µ0(H + M)
= µ0(1 + χmag)H
= µµ0H

∇ ·B = 0
(the same as in vacuum)

∇ ·B = 0

∇×H = 4π
c jext + 1

c
∂D
∂t

where jext = σE
(follows from jpolarization = ∂P

∂t )

∇×H = jext + ∂D
∂t

density of energy
= 1

8π

(
εE2 + µH2

)

= 1
8π (E ·D + H ·B)

density of energy
= 1

2

(
ε0εE

2 + µ0µH2
)

vacuum:
ε = 1
σ = 0
µ = 1
χel = χmag = 0

vacuum:
ε0 = 107

4πc2
= 1

4π·9·109 F/m
µ0 = 4π · 10−7 Henry/m

Boundary condition: D and B must be continuous at the boundaries.
The permeability introduced above is not a scalar but a tensor. For example, the electrical

one is defined as (Landau X part III):

Ei =
[
ε−1

]
ik

Dk. (11.47)

If a solid is (i) homogeneous, (ii) isotropic, and (iii) optically inactive (?), then the perme-
ability may be presented as

εik(qω) = εl(qω)
qiqk

q2
+ εt(qω)

(
δik − qiqk

q2

)
. (11.48)

Here:
εl(qω) is the longitudinal permeability , it describes a response to an external charge, i.e. if the
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field is potential, E = −∇ϕ, then D = εlE, and
εt(qω) is the transverse permeability , it describes a response to an external electromagnetic field,
i.e. if the field is solenoidal, ∇ · E = 0, then D = εtE.
Both these functions are generalized susceptibilities (but different!) and are described in Sec. 8.14.

Metals

...

Semiconductors

...

Dielectrics

...


