Сучасні уявлення про механізми тертя

Фестиваль науки 2012 18 квітня 2012 р.

О.М. Браун Інститут фізики НАНУ (Київ) http://www.iop.kiev.ua/~obraun

Outline

- I. Definitions
- **II.** History
- **III.** Experiment
- IV. Solid lubricant
- V. Liquid lubricant
- VI. Inhomogeneous interface
- **VII.** Interaction between contacts
- **VIII. Self-healing crack**
- IX. Onset of sliding: Precursors
- X. Real earthquakes
- XI. Conclusion

I. Definitions

Kinetic friction — to keep the slider moving smoothly $Fv = power \rightarrow heating of atmosphere (20\% in car engine)$ (у США тертя забирає ~ 6% валового національного продукту ~700 мільярдів \$ /year)

Static friction — to start motion allows us to walk & drive; кріплення (болти і т.п.); clothes

При зупинці або початку руху, (майже) завжди відбувається режим приграничного змазування (lubricant solidifies)

трибологія: Greek "tribos" = терти

II.1. History

античний період (200,000 до н.е.)

— добування вогню за допомогою тертя дерева по дереву єгиптяни (2,400 до н.е.)

— використовували воду*, щоб змазувати сани, коли перевозили кам'яні плити при побудові пірамід

*note: nature uses water as a lubricant in body joints

II.2. History: да Вінчі, Амонтонс, Ейлер, Кулон

Leonardo da Vinci (1452-1519): friction is independent on the area of contact Guillaume Amontons (1663-1705): friction is proportional to the normal force (load) Leonard Euler (1707-1783): distinguish between the static and kinetic friction Charles Coulomb (1736-1806): friction is independent on the velocity

(1) $\mu = F_{\text{friction}}/F_{\text{load}} \approx \text{constant} < 1$ (2) $\mu_{\text{kinetic}} < a \delta o << \mu_{\text{static}}$, і $\mu_{\text{kinetic}} \in$ незалежним від v

note: these empirical laws enter to nowday textbooks ...

II.3. History: Bowden and Tabor 1950

Пояснення закону $\mu = F_{\text{friction}}/F_{\text{load}} \approx \text{constant} < 1$ (phenomenology)

Even a surface which appears to be flat on a millimeter scale may contain micrometer-scale asperities, i.e., **the surface is rough**

Справжня (фактична) область контакту є $A_{real} \sim F_{load}$, тому що справжні поверхні грубі, і A_{real} зростає доки зовнішня сила навантаження не буде урівноважена контактним тиском, інтегрованим по A_{real} .

Нехай $P_{\text{real load}} = P_{\text{load}} A / A_{\text{real}} \epsilon$ справжнім тиском в контакті. Тоді: при низькому $P_{\text{real load}} < P_{\text{yield}}$ (еластичний режим) число контактів зростає з F_{load} при високому $P_{\text{real load}} > P_{\text{yield}}$ (пластичний режим) площа одного контакту зростає

(Майже) завжди є мастило між твердими тілами ("треті тіла"):
 чи (спеціально вибрана) змащувальна плівка або жир (масло),
 або пил, або уламки, вироблені завдяки ковзанню, або вода,
 або тонкий шар вуглеводню і т.п. що адсорбуються з повітря.
 Тому сила тертя майже повністю визначається силою,
 що вимагається, щоб зсунути змащувальну плівку.

III.1. Experiment

The main problem: what occurs in the interface ?

III.2. atomic-scale: Friction Force Microscope

- STM: скануючий тунельний мікроскоп для металічних поверхонь
- AFM: мікроскоп атомної сили для діелектричних поверхонь
- FFM: мікроскоп тертя-сила (вимірює поперечні сили)

- може бути надвисокий вакуум
- типовий радіус є 10 ÷ 100 nm
- типова сила $F_{\rm load} \thicksim 10 \div 150~{\rm nN}$
- виміряє сили тертя $F < 10^{-11}$ N
- низькі швидкості (1 nm/s \div 1 μ m/s)

Top-down motion of the cantilever gives information on the topography of the sample
In the friction measurement mode the

- In the friction measurement mode the torsion of the cantilever is recorded
- In a real situation both forces are recorded simultaneously

III.3. QCM; levitation

Кристалічний кварцовий мікробаланс атоми газу (Kr, Xe, Ar)

конденсують на поверхню кристалічного кварцового осцилятора, що покритий (111)орієнтованою плівкою благородного металу як, наприклад, Au або Ag. Додана маса адсорбата і загасання при *ковзанні* здвигає і розширює пік резонансу

- може бути надвисокий вакуум
- звичайно один чи два адсорбовані шари мастила

Метод фізичного маятника, підвішеного в магнітному полі О.А. Марченко, В.С. Кулик, Д.В. Стрижеус (ІФ НАНУ)

III.4. Experiments of Fineberg et al

III.4. Experiment: some results

Контакти:

- область справжнього атомного контакту мала
- контакти розповсюджені випадково
- типовий розмір контакту є 1÷10 µm (може бути вимірювано оптично)

Приклад (Bo Persson): для сталевого куба 10×10×10 сm³ на сталевій стелі,

- $A_{\text{visible}} = 100 \text{ cm}^2$; $P_{\text{real load}} \sim P_{\text{yield}} \sim 10^9 \text{ N/m}^2$, одержуємо $A_{\text{real}} \sim 0.1 \text{ mm}^2$
- $\sim 10^3 \div 10^5\,$ з'єднань в інтерфейсі (STM/AFM/FFM вивчає тільки єдиний контакт)

Сили мають значення атомного масштабу — близько до порогу пластичності:

- сила на атом $f \sim 1 \text{ eV} / 1 \text{ Å} = 10^{-19} \text{ J} / 10^{-10} \text{ m} = 10^{-9} \text{ N}$
- STM / AFM / FFM: $A \sim 3 \text{ Å}^2$; $P_{\text{yield}} \approx 0.2 \text{ GPa} (30лото) 100 \text{ GPa} (алмаз), одержуємо <math>F \sim P_{\text{yield}} A \sim 6 \cdot 10^{-12} 3 \cdot 10^{-9} \text{ N}$
- тому (майже) завжди в контактах відбувається (еластична та/або пластична) деформація (це також пояснює закон Амонтонса)

Тонка плівка (менш ніж 10 молекулярних діаметрів) майже завжди організована у шари, тому що підкладки індукують кристалічний порядок у плівці (затвердівання / замерзання мастила, Thompson et al 1995).

Коли товщина є менш ніж близько три шара, більшість плівок поводиться подібно твердому тілу

III.5. Summary (90th)

All laws are approximate, all theories are phenomenological

The simplest model: one atom in a periodic potential:

сила прикладається безпосередньо до атома рівняння руху Ланжевена зовнішнє тертя є низьким bistable Fb<F<Ff

locked

F<Fb

1D моделі: Модель Томлінсона

Модель Френкеля-Конторової

Molecular Dynamics (MD; the MD model must be three-dimensional !)

O.M.Braun & M.Peyrard, Phys. Rev. E 63 (2001) 046110

IV.1. Solid lubricant

МD: жорстке мастило ($V_{ll} >> V_{sl}$)

- змащувальна плівка залишається в твердому стані
- ковзання в інтерфейсі мастило/підкладка
- ідеальна кристалічна структура доскональне ковзання

Perfect sliding = "superlubricity" (hard lubricant, $T=0, \mu \ll 0.1$)

"Amorphous" lubricant structure (hard lubricant, T=0.3, $\mu=0.08$)

IV.2. Самовпорядкування мастила

O.M.Braun, M.Paliy, S.Consta, Phys. Rev. Lett. 92 (2004) 256103

V.1. Liquid lubricant

 $f_{\text{static}} = 0, \ \mu \sim 0.1$ heating \rightarrow phonons $f_{\text{kinetic}} \sim \text{viscosity}$ vacuum ($f_{\text{k}} > 0$ even at T=0) air (HDD) water (Egyptians, sliding over ice, nature – joints) But! squeezing \rightarrow oil

V.2. Liquid lubricant: Chain lubricant molecules

totally glued; 10% < than 2 layers (M=18)

The atoms within molecule are coupled, additionally to the LJ potential, by the "FENE" potential $V_{\text{CH}}(r) = -C \ln [1 - (r/R_{\text{CH}})^2].$

movies for L=5, v_s =0.25, Δt =1

O.M. Braun, N. Manini, E. Tosatti, Phys. Rev. B 78 (2008) 195402

V.3b. Chain molecules: Experiment

СТМ-зображення плівок на реконструйованій поверхні Au(111)

п-октантіол (С₈H₁₆SH)

п-октанова кислота (С₈H₁₆O₂)

bond

 $\mu = 0.08$

 $\mu = 0.24$

V.3a. Chain molecules: Experiment friction coefficient (levitation method)

Молекули *n*-октантіолу і *n*-октанової кислоти на Au(111) формують **подібні щіткоподібні структури** ($\sqrt{3} \times \sqrt{3}$)R30°, промодульовані надструктурою (4 × 2)

Незважаючи на співпадіння структур, коефіцієнти тертя для моношарів *n*-октантіолу і *n*-октанової кислоти відрізняються в ~3 рази

Значна відмінність коефіцієнтів тертя пояснюється більш сильною взаємодією SH-груп з поверхнею Au(111), що забезпечує цілісність моношарів *n*-октантіолу в процесі ковзання

О.А. Марченко, В.С. Кулик, Д.В. Стрижеус

V.4. Liquid lubricant: Fullerenes

$$\mu_{\text{rolling}}$$
 / $\mu_{\text{sliding}} \sim 10^{-2} \div 10^{-3}$

Question: may a rolling friction work at a microscopic scale? i.e., may a ball-shape molecules (C_{60} — fullerenes) work as a "molecular bearing"?

 $v_{\text{drive}} = 1$: stick-slip; stick due to jamming

O.M.Braun, Phys. Rev. Lett. 95 (2005) 126104

V.5. Micro rolling – cogwheel model

the chord distance between the cogs $R_{11}^*=2R^*\sin(\pi/L)$

external radius $R^* = R_m + h$ perfect rollin is expected at $R_{11} = R_s / n, n = 1, 2, ...;$ assume: $h = \beta R_{s1}$ R_{II}* primitive radius $R_{\rm m} = 1 + \frac{2h}{R_{\rm g}} \sin\left(\frac{\pi}{L}\right)$ L=13, $R_s/R_{11}=1.37$, $v_s=0.0003$, $\mu=2.3\cdot10^{-5}$: perfect rolling

Rolling friction of spherical lubricant molecules may be effective $(\mu=0.01 \text{ or even } 0.0001)$ if:

cogwheel ingraining between fullerene and substrate

- \succ the substrates are rigid (to reduce deformation losses)
- → there are no jams (concentration $\theta < 0.3$)

O.M.Braun & E.Tosatti, Phil. Mag. Lett. 88 (2008) 509

VI.1. Nonhomogeneous frictional interface: $P_{c}(x)$

dry friction: contact of rough surfaces (fractal – self-affine)

0.5

0.4

0.3

0.2

0.1

0.0

Ľ

dry or lubricated friction: contact of polycrystalline substrates lubricated friction: Lifshitz-Slözov coalescence

t=1

t = 10

t=100

t=1000

10

O.M. Braun & M. Peyrard; O.M. Braun & N. Manini

VI.2. The earthquakelike (EQ) model

 $P_{c}(x_{s})$ – probability distribution of the thresholds $x_{si} = f_{si}/k_{i}$ at which the contacts break

Q(x;X) – distribution of the stretchings x_i when the top substrate is at a position X

As the top stage moves, the surface stress at any junction increases, $f_i(t)=k_i x_i(t)$, where $x_i(t)$ is the shift of the *i*-th junction from its unstressed position. A single junction is pinned whilst $f_i(t) < f_{si}$, where f_{si} is the static friction threshold for it. When the force reaches f_{si} , a rapid local slip takes place, during which the local stress drops. Then the junction is pinned again, and the whole process repeats itself.

Numerics: cellular automaton algorithm

VI.3. The master equation (ME) approach

Q(x;X) - the distribution of the stretchings x_i when the bottom of the slider is at *X*. $P_c(x_s)$ - probability distribution of values of the thresholds x_{si} at which contacts break. R(x) - probability distribution of values of the displacements *x* for "newborn" contacts.

Consider a small displacement $\Delta X > 0$ of the bottom of the solid block. It induces a variation of the stretching x_i of the asperities which has the same value ΔX . The displacement X leads to three kinds of changes in the distribution Q(x;X):

$$Q(x; X + \Delta X) = Q(x - \Delta X; X) - \Delta Q_{-}(x; X) + \Delta Q_{+}(x; X)$$

(1) the first term is just the shift due to the global increase of the stretching; (2) some contacts break because the stretching exceeds the maximum that they can stand: $\Delta Q_{-}(x; X) = P(x) \Delta X Q(x; X), \qquad P(x) = \frac{P_{c}(x)}{\int_{x}^{\infty} d\xi P_{c}(\xi)}$ (3) those broken contacts form again after a slip: the number of contacts to be broken = $N_{c}P_{c}(x)\Delta X$ the number of still $\Delta Q_{+}(x; X) = R(x) \int_{-\infty}^{\infty} d\xi \Delta Q_{-}(\xi; X)$ the number of still unbroken contacts (/ N_{c})

Finally, with $\Delta X \rightarrow 0$ we get the integro-differential equation:

 $\frac{\partial Q(x;X)}{\partial x} + \frac{\partial Q(x;X)}{\partial X} + P(x) Q(x;X) = R(x) \int_{-\infty}^{\infty} d\xi P(\xi) Q(\xi;X)$

- Steady-state: analytical solution
- Aging of the contacts + nonrigid substrates: stick-slip to smooth sliding transition
- Temperature effects; dependence on the sliding velocity

O.M.Braun & M.Peyrard, Phys. Rev. Lett. 100 (2008) 125501

VI.6. Stick-slip vs smooth sliding

O.M. Braun & M. Peyrard

VI.5. Elastic instability

The force at the substrate/lubricant interface $F = K(X_d - X)$ (*) must be equal to the force F(X) from friction contacts. When X_d and X increase, the substrate remains stationary as long as $dX_d/dX > 0$.

 $dX_d/dX = 0$, or $F'(X) \equiv dF(X)/dX = -K$ (**) just defines the maximal displacement X_m which the contacts can sustain; a larger displacement will brake all the contacts simultaneously, and at this moment all contacts will reform.

OR:

The total potential energy of the sliding interface plus the elastic substrate is $V(X) = \int_0^X dX' F(X') + \frac{1}{2}K(X - X_d)^2;$ then Eq.(*) $\leftrightarrow V'(X) = 0;$ it is stable if V''(X) > 0, so that the unstable displacement is defined by $V''(X) = 0 \leftrightarrow \text{Eq.}(**)$

O.M. Braun & M. Peyrard

$$K^* = -\max F'(X) \approx Nk \left(f_s - f_b\right) / \Delta f_s$$

VII.1. Interaction between contacts

The law of interaction

Руйнування області зсуву на поверхні розділу

Зміна напруження на контактах при руйнуванні центрального стрижня

O.M. Braun & D.V. Stryzheus

VII.2. Interaction: Method

Модельну систему в матричному вигляді можна описати за допомогою рівняння:

$\partial \mathbf{F} = \mathbf{B} \partial \mathbf{K} (1 - \mathbf{G} \mathbf{B} \mathbf{K}) \mathbf{U}_0$

де $\mathbf{B} = (1 + \mathbf{K}\mathbf{G})^{-1}$,

 $\partial \mathbf{F}$ – зміна сили;

К – діагональна матриця зсув,

∂К – зміна матриці зсуву;

 \mathbf{U}_{0} – визначає напруження в початковому стані

 G – пружний тензор Гріна для напівнескінченної ізотропної підкладки.

Розрахункова система:кластер IФ НАНРешітка:89×89Розмір розрахункових матриць:8,559×8,559Об'єм операційної пам'яті:15 ГбЧас одного розрахунку:91,890 сек = 26 годин

VII.3. Interaction: Results

C. Caroli & Ph. Nozieres, *Eur. Phys. J. B* **4** (1998) 233 O.M. Braun, M. Peyrard, D.V. Stryzheus, E. Tosatti, *Tribology Letters* (2012)

VIII.1. Self-healing crack

VIII.2. Self-healing crack: solitary wave

VIII.3. Self-healing crack: FK

 $m\ddot{u}_i + m\eta\dot{u}_i - g(u_{i+1} + u_{i-1} - 2u_i) + F_s(u_i) + Ku_i = f(t) = Kv_dt$ Define the function $\mathcal{F}(u) = F_s(u) + Ku - f$ Boundary conditions: right part is unrelaxed, $u_R = f/(k+K)$ left is relaxed, $u_L = (f + ku_c)/(k + K)$ Continuum approximation $(i \rightarrow x = ia)$: $m\eta u_t - a^2 g u_{xx} + \mathcal{F}(u) = 0, \quad \mathcal{F}(u)|_{x \to \pm \infty} = 0$ Look for a solution in the form of a wave of stationary profile (the solitary wave) u(x,t) = u(x-vt)Solution: $f_{\min} = (\frac{1}{2}k + K) u_c, f_{\max} = (k + K) u_c$ Kink velocity as a function of the driving force: at low velocities $v \approx (f - f_{\min})/m_k \eta$, $m_k = m / \frac{4a}{u_c} \sqrt{\frac{g}{k} \left(1 + \frac{K}{k}\right)}$ at high velocities $v \approx c_0 \bigg/ \sqrt{1 + \frac{m\eta^2(f_{\max} - f)}{k(k+K)u_c}}$

O.M. Braun & M. Peyrard, *Phys.Rev.* E 85 (2012) 026111

IX. Onset of sliding: Precursors

(b) distribution of
elastic forces in the slider
as a function of
the block number *j*and time *t*.
The unstressed and
stressed regions are
displayed by blue
and red colors.

(d) enlarged view
of the fast detachment
front from (c)
showing an excitation
of a secondary
Rayleigh front
by the slow fronts

experiment: S.M. Rubinstein, G. Cohen & J. Fineberg, *Nature* **430** (2004) 1005; *prl* **98**, 226103 (2007) simulation: O.M. Braun, I. Barel & M. Urbakh, *Phys. Rev. Lett.* **103** (2009) 194301

X. Real earthquakes

Conclusion

- MD model: Langevin equation with $\eta(r,v)$
- MD results: V_{11} soft vs hard lubricant
 - ➢ soft (traditional) LoLS, may be melting/freezing
 - ➤ hard remain in the solid state during slips
- MD results:
 - crystalline lubricant perfect sliding (superlubricity)
 - "amorphous" lubricant structure high friction
 - > liquid lubricant intermediate friction ($\mu \sim 0.1$)
- Optimal parameters self-ordering of the lubricant (superlubricity)
- Role of lubricant molecule shape (linear / spherical; additives)
- Microscopic stick-slip to smooth sliding high $v_c \sim 10$ m/s
- Macroscopic stick-slip to smooth sliding EQ model
- Friction on a mesoscale: the master equation approach

Summary

- 1. The complex problem of behavior of the tribological system is split into two independent subproblems: (*I*) dynamics of the friction contact, if the distribution of static thresholds $P_c(x)$ is known, and (*II*) to find this distribution for a given system (a separate problem for MD)
- 2. Interaction: elastic correlation length $\lambda_c = a^2 E / k$
- 3. Far zone collective modes (solitary waves)

Problems & perspectives

- Control/modify friction:
 - chemical methods (additives)
 - ➤ artificial (meta)-materials
 - external vibrations
- Water-based lubricants
- Nanomanipulations at interfaces
- Molecular bearings

more info: http://www.iop.kiev.ua/~obraun

O.M.Braun & A.G.Naumovets, Surf. Sci. Reports 60 (2006) 79-158

Співавтори & подяки

Alan Bishop & Joanna Röder (Theoretical Division, LANL, Los Alamos, USA)
Michel Peyrard & Thierry Dauxois (Lab.de Physique, ENS de Lyon, France)
Maxim Paliy (Dept. of Chemistry, University of Western Ontario, Canada)
Erio Tosatti (ICTP & SISSA, Trieste, Italy)
Nicola Manini (Universita degli Studi di Milano, Italy)
Virginio Bortolani & Andrea Vanossi (Universita di Modena, Italy)
Bo Persson (Juelich, Germany)
Michael Urbakh (Tel-Aviv University, Israel)
Martin Muser (UWO, Canada)

. . .

