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Nonhomogeneous frictional interface

dry friction:
contact of rough surfaces

dry or lubricated friction:
contact of polycrystalline substrates

lubricated friction:
Lifshitz-Slözov coalescence



I. EQ model & ME approach
The earthquakelike (EQ) model

Numerics: cellular automaton algorithm

As the top stage moves, the surface stress at any junction increases,  fi(t)=kixi(t),
where  xi(t) is the shift of the i-th junction from its unstressed position.
A single junction is pinned whilst  fi(t)<fsi, where  fsi is the static friction threshold for it.
When the force reaches  fsi,  a rapid local slip takes place, during which the local stress drops.
Then the junction is pinned again, and the whole process repeats itself.

Pc(xs) – probability distribution of 
the thresholds xsi= fsi/ki
at which the contacts break

Q(x;X) – distribution
of the stretchings xi when the top 
substrate is at a position X

O.M. Braun & M. Peyrard



The master equation (ME) approach
I. EQ model & ME approach

P (x) = Pc(x)
.R∞

x
dξPc(ξ)

Q(x;X) - the distribution of the stretchings xi when the bottom of the slider is at X.
Pc(xs) - probability distribution of values of the thresholds xsi at which contacts break.
R(x) - probability distribution of values of the displacements x for “newborn” contacts.

Consider a small displacement  ΔX > 0  of the bottom of the solid block.
It induces a variation of the stretching  xi of the asperities which has the same value  ΔX.
The displacement  X leads to three kinds of changes in the distribution Q(x;X):

(1) the first term is just the shift due to the global increase of the stretching;
(2) some contacts break because the stretching exceeds the maximum that they can stand:

(3) those broken contacts form again after a slip:

∆Q−(x;X) = P (x)∆XQ(x;X),

∆Q+(x;X) = R(x)
R∞
−∞ dξ∆Q−(ξ;X)

Finally, with ΔX→0 we get the integro-differential equation:

∂Q(x;X)
∂x + ∂Q(x;X)

∂X + P (x)Q(x;X) = R(x)
R∞
−∞ dξ P (ξ)Q(ξ;X)

Q(x;X +∆X) = Q(x−∆X;X)−∆Q−(x;X) +∆Q+(x;X)

the number of contacts 
to be broken =NcPc(x)ΔX the number of still

unbroken contacts (/Nc) 
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I. EQ model & ME approach

F (X) = Nchki
R
dx xQ(x;X)

Pc(x) = Gauss (x̄s = 1, σs = 0.05), Qini(x) = Gauss (x̄ini = 0, σini = 0.025)

Solution:
short times                             long times

smooth
sliding !

O.M. Braun & M. Peyrard



II.  Elastic instability

K* = − max F'(X) ≈ Nk (fs−fb) /Δfs

O.M. Braun & M. Peyrard

The force at the substrate/lubricant interface
F = K(Xd −X) (*) must be equal to
the force F (X) from friction contacts.
When Xd and X increase, the substrate
remains stationary as long as dXd/dX > 0.

dXd/dX = 0, or F 0(X) ≡ dF (X)/dX = −K (**)
just defines the maximal displacement Xm which
the contacts can sustain; a larger displacement
will break all the contacts simultaneously,
and at this moment all contacts will reform.

OR:

The total potential energy of the sliding
interface plus the elastic substrate is

V (X) =
RX
0
dX0 F (X0) + 1

2K(X −Xd)2;
then Eq.(*) ↔ V 0(X) = 0;
it is stable if V 00(X) > 0, so that
the unstable displacement is defined by
V 00(X) = 0 ↔ Eq.(**)



II.  Elastic instability

K < K*: stick-slip                       K > K*: smooth sliding

smooth sliding:

fk(v) increases at small v due to temperature

fk(v) decreases at large v due to aging

O.M. Braun & M. Peyrard



K = F/ΔX = 
[E/2(1+σ)](LxLy/H)

Ks = Nk = 
(LxLy/a2) (Erc) (rc/h)3

K/Ks = 0.16 (a2/Hrc) (h/rc)3

a ~ 102 μm
rc ~ 1 μm
H ~ 1 cm
h ~ rc

K/Ks ~ 0.1

II.  Elastic instability Estimation



dry friction: contact
of rough surfaces

II. Elastic instability ? Pc(x)
dry or lubricated
friction: contact

of polycrystalline
substrates

φ = 0

φ = 15°

φ = 30°

lubricated friction:
Lifshitz-Slözov
coalescence

O.M. Braun & M. Peyrard; O.M. Braun & N. Manini



III. Interaction between contacts EQ simulation

The interaction between the contacts works roughly in the same way as the dispersion Δfs:
the stronger is the interaction, the wider is the range of model parameters where stick-slip occurs. 
System kinetics with increasing interaction ξ ∼ fint / fs : 
the system quickly goes to smooth sliding for noninteracting contacts (a), 
but demonstrates stick-slip for a strong interaction (d). 

O.M. Braun & E. Tosatti



III. Interaction between contacts

O.M. Braun & D. Stryzheus

The law of interaction

γ1= k /(Ea) = 0.06



III. Interaction between contacts

O.M. Braun & D. Stryzheus

Contacts act on the top substrate by the forces fi ≡ {fix, fiy, fiz}.
They produce displacements u

(top)
i of the (bottom) surface of the top substrate.

The vectors U(top) ≡ {u(top)i } and Ft ≡ {fi} are coupled by U(top) = G(top)Ft.
Elastic Green tensor G(top) for a semi-infinite substrate (Landau and Lifshitz):

Gix,jx = g(rij)[2(1− σ) + 2σx2ij/r2ij ]
Gix,jy = 2g(rij)σxijyij/r

2
ij

Gix,jz = −g(rij)(1− 2σ)xij/rij
Giz,jx = −Gix,jz
Giz,jz = 2g(rij)(1− σ) ,

(1)

where xij = xi − xj , g(r) = (1 + σ)/(2πEr), and σ and E are the Poisson ratio
and Young modulus of the top substrate, respectively.

In equilibrium, the forces that act from the contacts on the bottom sub-
strate, must be equal to −Ft according to third Newton law. These forces
lead to displacements of the (top) surface of the bottom substrate, U(bottom) =
−G(bottom)Ft. Thus, the relative displacements at the interface due to elastic
interaction between the contacts are determined by the relation
U ≡ U(top) −U(bottom) = −GF, where F = −Ft and G = G(top) +G(bottom).

Formulas



O.M. Braun & D. Stryzheus

III. Interaction between contacts Formulas
The forces and displacements are coupled by the diagonal matrix (the con-

tacts’ elastic matrix) K, Kiα, jβ = kiαδijδαβ (α, β = x, y, z): F = K (U0 +U),
where U0 defines a given stressed state. The total force at the interface,
f =

P
i fi, must be compensated by external forces applied to the substrates,

e.g., by the force f (ext) = f applied to the top surface of the top substrate if the
bottom surface of the bottom substrate is fixed.

Combining, we obtain F = K (U0 −GF), or

F = BKU0 , where B = (1+KG)−1.

If one changes the contact elastic matrix, K → K + δK, then the interface
forces should change as well, F→ F+ δF. Then, δF = (δB)KU0 +B(δK)U0,
δBmay be found from the equation δ[B (1+KG)] = (δB)(1+KG)+B(δK)G =
0. Therefore, finally we obtain:

δF = B δK (1−GBK)U0 .

Now, if we remove the i∗th contact by putting δkiα = −kiαδii∗ and then
calculate the resulting change of forces on other contacts, we can find a response
of the interface to the break of a single contact as a function of the distance
r = ri − ri∗ from the breaking contact.



III. Interaction between contacts

Elastic correlation length:
r < λc:  δf(r) ~ r –1

rigid slider
MF 

γ1 = k / (Ea)
γ2 = rc / a

λc = a (Ea / k)
r > λc: δf(r) ~ r –3

deformable slider
solitonic wave

C. Caroli & Ph. Nozieres, Eur. Phys. J. B 4 (1998) 233
O.M. Braun & D. Stryzheus, unpublished

Results:



IV. Mean Field (MF) ME Near zone: EQ simulation

1. In the steady state, the interaction results in shrinking
of the final distribution Qs(x). At high values of κ, 
the distribution approaches to a narrow Gaussian one.

2. At the onset of sliding, the rate of F(X) decreasing grows
with κ; therefore, the elastic instability becomes
stronger due to contact-contact interaction.

3. For large enough strength of interaction, κ > κc ~ 0.1,
many contacts break simultaneously at the onset
of sliding, and the force F(X) drops abruptly.

Force versus displacement                     The steady state distribution of stretchings
Δfij= κ kxc (uj – ui) / |rj – ri|



IV. Mean Field ME Near zone: smooth sliding

Pc(x) = βPc0[β(x – αxc)],  R(x) = Gauss (x – αxc, γxc)



IV. Mean Field ME Near zone: onset of sliding

Δxs /xc= 0.5

Δxs /xc= 0.25

The effective interface stiffness K∗eff
(normalized on the noninteracting
value K∗/Ks = 0.179) as a function

of the strength of interaction κ
for a realistic threshold distribution

Pc0(x) ∝ x3 exp(−x2/x2c)

Pci(x) = N xεPc0[β0(x – α0xc)]



V.  Crack as a solitary wave
Idea: domino effect

mode II crack

(a) Fracture

shear

load
(b) Friction

driving

self-healing crack

interfacelubricated

(c) EQ model

kink
(d) FK model

relaxed stressed

(e) The model



V.  Crack as a solitary wave FK: simulation

1D model: sawtooth interaction



V.  Crack as a solitary wave FK: formulas

müi +mηu̇i − g(ui+1 + ui−1 − 2ui) + Fs(ui) +Kui = f(t) = Kvdt
Define the function F(u) = Fs(u) +Ku− f

Boundary conditions: right part is unrelaxed, uR = f/(k +K)
left is relaxed, uL = (f + kuc)/(k +K)
Continuum approximation (i→ x = ia):

mηut − a2guxx + F(u) = 0, F(u)|x→±∞ = 0
Look for a solution in the form of a wave of stationary profile

(the solitary wave) u(x, t) = u(x− vt)
Solution: fmin =

¡
1
2k +K

¢
uc, fmax = (k +K)uc

Kink velocity as a function of the driving force: at low velocities

v ≈ (f − fmin)/mkη , mk = m

Á
4a

uc

s
g

k

µ
1 +

K

k

¶
(1)

at high velocities

v ≈ c0
Ás

1 +
mη2(fmax − f)
k(k +K)uc

(2)



V.  Crack as a solitary wave FK: v(f)

“PN” barrier

simulation versus analytics



FK generalizations

Using analogy with the FK model:
1. A role of disorder and defects: (a) defects may stimulate kinks creation; 

(b) kink's propagation may be slowed down up to its complete arrest due to pinning on the defects.

2. The driven FK model exhibits hysteresis when the force increases/decreases.

3. T>0: the sliding kinks will experience an additional damping,
while the immobile kinks will slowly move (creep) due to thermally activated jumps.

4. The fast driven kink begins to oscillate due to excitation of its shape mode,
and then, with the further increase of driving, the kink is destroyed.

5. If the interaction between the atoms is nonlinear and stiff enough,
the FK model admits the existence of supersonic kink.

6. A large number of works is devoted to different generalizations of the FK model to 2D system.
For example, if kinks attract one another in the transverse direction, they unite into a line (dislocation)
which moves as a whole (or due to secondary kinks).

7. Nonuniform shear stress: for given boundary conditions (which depend on the experimental setup)
one has to calculate the stress field → the driving force f(x,y) in the FK-EQ model.
Thus, finally we come to a self-consistent problem:
the whole system is described by elastic-theory equations with complex boundary conditions –
at the frictional interface they are determined through solution of the FK-EQ model
(where the driving term comes from the elastic equations in turn).

V.  Crack as a solitary wave



Simulation:
Onset of sliding

F
mmm m

F
mmm m

Bars set up a correspondence between
the colors and the force in Newton  (b)
and the fraction of detached contacts in % (c, d).

(a) loading curve
F(t)

(c) distribution of
fraction of 
attached contacts
as a function of
the block number j
and time t. 
The regions with
attached contacts =

blue color,
detached = red color. 

(b) distribution of 
elastic forces in the slider
as a function of 
the block number j
and time t.
The unstressed and 
stressed regions are 
displayed by blue 
and red colors. 

(d) enlarged view
of the fast detachment
front from (c) 
showing an excitation
of a secondary 
Rayleigh front 
by the slow fronts

V.  Crack as a solitary wave

experiment: S.M. Rubinstein, G. Cohen & J. Fineberg, Nature 430 (2004) 1005; prl 98, 226103 (2007)
simulation: O.M. Braun, I. Barel & M. Urbakh, Phys. Rev. Lett. 103 (2009) 194301



VI. Conclusion

1. Interaction: elastic correlation
length λc= a2E / k

2. Near zone – shrinking, 
enhancing of elastic instability

3. Far zone – collective modes
(solitonic waves)
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