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Abstract

An overview of the dynamics of one of the fundamental models of low-dimensional nonlinear physics, the
Frenkel—Kontorova (FK) model, is presented. In its simplest form, the FK model describes the motion of a chain of
interacting particles (“atoms”) subjected to an external on-site periodic potential. Physically important generalizations of
the FK model are discussed including nonsinusoidal on-site potentials and anharmonic (e.g., nonconvex, Kac—Baker,
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power-law) interactions between the particles. The results are summarized for the one-dimensional dynamics of kinks
— topological excitations, including the kink diffusion and effects of disorder, and also for nonlinear localized modes,
discrete breathers. A special attention is paid to the numerous applications of the FK model in the problems of low-
dimensional solid state physics. ( 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

Theoretical physics deals with physical models. Universal models which can be applied to
describe a variety of effects of different physical origin are rare and, therefore, they are of key
importance. Such models attract special attention and they can be employed to present the basic
physical concepts in the simplest way. A simple model which describes a chain of classical particles
(atoms) harmonically coupled with their nearest neighbors and subjected to a periodic on-site
(substrate) potential has become in recent years one of the fundamental and universal models of
low-dimensional nonlinear physics. In spite of the fact that a link with the classical model is not
often stated explicitly in many applications, many kinds of nonlinear problems involving the
dynamics of discrete nonlinear chains are in fact based on the classical formulation introduced in
the papers by Ya. Frenkel and T. Kontorova (see Frenkel and Kontorova, 1938, 1939; Kontorova
and Frenkel, 1938a, b) who suggested to use this kind of a nonlinear chain to describe, in the
simplest way, the structure and dynamics of a crystal lattice in the vicinity of the dislocation core.
As a matter of fact, this is one of the first examples in the solid state physics when the dynamics of
an extended two-dimensional defect in a bulk is modeled by a simple one-dimensional chain.

Simplicity of the Frenkel—Kontorova (FK) model, due to the assumptions of the harmonic
interatomic force and sinusoidal on-site (substrate) potential, as well as its surprising capability to
describe a broad spectrum of nonlinear, physically important phenomena, such as propagation of
charge—density waves, the dynamics of absorbed layers of atoms on crystal surfaces, commensur-
able—incommensurable phase transitions, domain walls in magnetically ordered structures, etc.,
have attracted a great deal of attention from physicists working in solid state physics and nonlinear
physics.

One of the important features which can explain why the FK model has attracted much attention
in different branches of solid state physics is the fact that in the continuum-limit approximation the
model reduces to the exactly integrable sine-Gordon (SG) equation which possesses nice properties
and allows exact solutions describing different types of nonlinear waves and their interaction. In
particular, the SG equation gives us an example of a fundamental nonlinear model for which we
know almost everything about the dynamics of nonlinear excitations. As is known, the SG system
describes simultaneously three different types of elementary excitations, namely phonons, kinks
(topological solitons), and breathers (dynamical solitons), whose dynamics determines the general
behaviour of the system as a whole. And, although the FK model is inherently discrete and not
exactly integrable, one may get deep physical insights and significantly simplify the understanding
of its nonlinear dynamics using the language of the SG quasi-particles as weakly interacting
nonlinear excitations. Discreteness of the FK model manifests itself in such a phenomenon as
the effective periodic potential, known as the Peierls—Nabarro relief, affecting the quasiparticle
motion.

The most familiar application of the FK model can be found in the theory of dislocations in metals
( Frenkel and Kontorova, 1938, 1939; Kontorova and Frenkel, 1938a,b; Frank and van der Merwe,
1949a,b; Seeger and Kochendörfer, 1951; Seeger et al., 1953; Atkinson and Cabrera, 1965; Flytzanis
et al., 1977). In such applications, the FK model has a simple physical origin. Indeed, let us consider
an additional semi-infinite plane of atoms inserted into a perfect crystal lattice. Then the layer of
atoms perpendicular to the inserted plane divides the crystal into two different parts and plays
a role of an interface layer. The atoms belonging to the interface layer can be treated as
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a one-dimensional chain subjected to an external potential produced by surrounding atoms
of the lattice. The interaction with these other atoms can be modelled by an effective periodic
potential. ¹his idea gives birth to the FK model. Similar models arise in the description of the
dynamics of plane defects such as twin boundaries (e.g., Suezawa and Sumino, 1976; Sugiyama,
1979) and domain walls in ferroelectrics (e.g., Döring, 1948; Becker, 1951; Cowley et al., 1976;
Bruce, 1981), and ferro- or antiferromagnetics (e.g., Enz, 1964; Mikeska, 1978; Bishop and Lewis,
1979; Kovalev, 1994). Importantly, the effective periodic potential can be justified via a
self-consistent microscopic model where only interparticle interaction is taken into account
(Christiansen et al., 1998).

The FK model can be also derived for the problem of crowdion in a metal (see Paneth, 1950;
Frenkel, 1972; see also more recent studies by Landau et al., 1993; Kovalev et al., 1993) when one
extra atom is inserted into a closely packed row of atoms in a metal with an ideal crystal lattice. In
many such cases the crystalline potential is organized in the way that the atoms can move only
along the row direction, and the inserted atom (together with the neighboring atoms) forms
a one-dimensional configuration which can be treated as a kink of the FK model.

More deeper background of the applications of the FK model can be found in the cases when the
atoms belonging to the chain and the atoms creating the external (substrate) potential have
a different physical origin. For example, in the so-called superionic conductors (see, e.g., Bishop,
1978; and also the review papers by Boyce and Huberman, 1979; Dieterich et al., 1980) an
anisotropic crystalline structure forms quasi-one-dimensional channels along which ions may
easily move, so that this kind of models may be also reduced to the analysis of a one-dimensional
chain subjected to an effective on-site potential.

Another similar example corresponds to a sub-monolayer film of atoms adsorbed on a crystal
surface (see, e.g., Lyuksyutov et al., 1988). In this case, adsorbed atoms (adatoms) play a role of the
atoms of the chain while the surface atoms produce an effective substrate potential. This type of
model can also be used to describe processes of crystal growth (e.g., Franzosi et al., 1988).

Besides, the same model is employed to describe the clean surface, if one treats the surface atoms
as the atoms from the effective FK chain, while the atoms of the first underlying layer are assumed
to produce an effective substrate potential. In particular, the FK model can be used to describe the
surface reconstruction phenomena (Harten et al., 1985; Mansfield and Needs, 1990) and the struc-
ture of the vicinal semiconductor surfaces (Yang et al., 1991).

We would like to mention also applications of the FK model to the theory of the proton
conductivity of hydrogen-bonded chains. The main idea of a general physical model describing
a chain with hydrogen bonds is based on the fact that protons move in double wells due to
hydrogen bonds with a heavy-ion lattice (oxygen lattice) which is deformable (e.g., Antonchenko
et al., 1983; Zolotaryuk, 1986). The local distortions of the oxygen lattice can lower the activation
barrier for the protons and thus promote their motion. In order to describe this phenomenon, one-
or two-component nonlinear models should include the proton sublattice which supports
topological solitons (kinks) while the oxygen sublattice can be modelled as the other sublattice or
as an effective external potential to the proton motion. Several models of this kind have been
proposed (Antonchenko et al., 1983; Zolotaryuk et al., 1984; Zolotaryuk, 1986; Peyrard et al., 1987;
Hochstrasser et al., 1988; Pnevmatikos, 1988) and they give a simple and effective description of the
proton mobility in hydrogen-bonded chains. Similar models may also play an important role in
interpreting certain biological processes like the DNA dynamics and denaturation (see Yomosa,
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1983; Homma and Takeno, 1984; Peyrard and Bishop, 1989; Dauxois et al., 1993; Gonzalez and
Martı́n-Landrove, 1994; and also review papers by Zhou and Zhang, 1991; Gaeta et al., 1994).

Last but not least, we mention more recent applications of the FK model in the theory of
Josephson junctions, where a discrete chain of effective particles appears when one considers the
flux flow in discrete parallel arrays of weak links between superconductors (see, e.g., Hontsu and
Ishii, 1988; Pagano et al., 1989; Ustinov et al., 1993, 1994; van der Zant et al., 1995; Watanabe
et al., 1996).

The present review paper has a purpose to describe, from a rather general point of view, different
kinds of physical problems and various results involving the analysis of the nonlinear dynamics of
the FK model and its generalizations. We do not restrict ourselves by specific applications but try
to present a panoramic view on general features of the dynamics of the FK model and summarize
the basic physical concepts and results based on this model. Section 2 makes a brief introduction
into the conventional (“classical”) FK model also referring to its continuum version described by
the exactly integrable SG equation. In Sections 3 and 4 we present some important generalizations
of the FK model which take into account more general types of the on-site substrate potential
(Section 3) as well as anharmonic interaction between particles in the chain (Section 4). Section 5
gives a brief overview of the kink diffusion dynamics in the FK chain. Nonlinear spatially localized
oscillating states (also called “intrinsic localized modes” or “discrete breathers”) are briefly dis-
cussed in Section 6, where we show that these nonlinear modes may be understood as a natural
generalization of the breather modes but existing in the lattices with strong discreteness effects.
Effects of disorder on the dynamics of kinks, and also on the structure and stability of nonlinear
impurity modes are discussed in Section 7. Section 8 concludes the paper with more examples of
the problems of different physical context where the basic concepts can be demonstrated with the
help of the FK model. Some more recent topics of research and important future directions are also
mentioned.

2. Classical model

2.1. Basic properties

A simple model describing a chain of particles (atoms) interacting with the nearest neighbors and
subjected to a periodic on-site (substrate) potential was firstly analytically treated, to the best of our
knowledge, by Dehlinger (1929) (for a brief history of early work on imperfections in crystals, see
Seeger, 1980a) and then introduced, as a dynamical discrete model, by Frenkel and Kontorova
(Frenkel and Kontorova, 1938, 1939; Kontorova and Frenkel, 1938a,b). The model is presented
schematically in Fig. 1, and it is characterized by the Hamiltonian,

H"K#º , (2.1)

where K is the kinetic energy,

K"

m
a

2
+
n
A
dx

n
dt B

2
, (2.2)
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Fig. 1. Schematic presentation of a chain of particles (atoms), interacting via harmonic springs with the elastic constant
g and subjected to an external sinusoidal potential with the period a

s
.

m
a
is the particle mass and x

n
is the coordinate of the nth particle in the chain. The potential energy

º consists of two parts,

º"º
46"

#º
*/5

, (2.3)

where the first term characterizes an interaction of the chain with an external on-site periodic
potential taken in the simplest form,

º
46"

"

e
s
2

+
n
C1!cosA

2nx
n

a
s
BD , (2.4)

with the amplitude e
s
and the period a

s
, while the second term in Eq. (2.3) takes into account the

harmonic interaction of the nearest neighbors in the chain,

º
*/5
"

g
2
+
n

(x
n`1

!x
n
!a

0
)2 , (2.5)

where g is the elastic constant and a
0

is the equilibrium distance of the interatomic potential. The
model introduced by Eqs. (2.2), (2.3), (2.4) and (2.5) can be justified under the following assump-
tions:

(i) The atomic motion is restricted by one direction only;
(ii) In the general expression for the substrate potential energy,

º
46"

"+
n

»
46"

(x
n
) , (2.6)

the function »
46"

(x) is expanded into the Fourier series, and only the first harmonic is kept;
(iii) The interparticle interaction energy takes into account only interactions between nearest

neighbors, i.e.

º
*/5
"+

n

»
*/5

(x
n`1

!x
n
) , (2.7)

and, expanding »
*/5

(x) into the Taylor series, only the harmonic interaction is considered, so that

g"»A
*/5

(a
0
) . (2.8)
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In the dimensionless variables,

x
n
P(2n/a

s
)x

n
, (2.9)

tP(2n/a
s
)Je

s
/2m

a
t , (2.10)

the Hamiltonian (2.1)—(2.5) takes the form

H"

H

(e
s
/2)

"+
n
G
1
2A

dx
n

dt B
2
#(1!cosx

n
)#

1
2

g(x
n`1

!x
n
!a

0
)2H , (2.11)

where a
0
Pa

0
(2n/a

s
), and the dimensionless coupling constant changes to be

gPg
(a

s
/2n)2

(e
s
/2)

. (2.12)

In such a renormalized form, the Hamiltonian (2.11) describes a harmonic chain of atoms of unit
masses, subjected to the external sinusoidal potential with the period a

s
"2n and amplitude e

s
"2.

To calculate all the values in the corresponding dimensions, one should multiply the spatial
variables by (a

s
/2n), the frequencies by (2n/a

s
)Je

s
/2m

a
, the masses, by m

a
, and the energies, by (e

s
/2).

From the Hamiltonian (2.11) it follows the equation of motion,

d2x
n

dt2
#sin x

n
!g(x

n`1
#x

n~1
!2x

n
)"0 , (2.13)

and we notice that this equation does not include the parameter a
0
, the equilibrium lattice spacing

without the periodic potential. In the present survey we will consider the case of an infinite chain
with a

0
"a

s
when the ground state of the chain (i.e., a stationary state corresponding to the

minimum of the potential energy) is a commensurate structure of atoms. This means that each
minimum of the substrate potential is occupied by one atom, so that the “coverage” parameter h,
defined as a ratio of the number of atoms to the number of minima of the substrate potential, is
equal to 1. Therefore, it is convenient to introduce the variables u

n
defined through the relation,

x
n
"na

s
#u

n
. (2.14)

Here we discuss only the case of an infinite chain with “fixed ends”. Such a case can be treated also
as a finite chain of N atoms with periodic boundary conditions,

x
N`1

"x
1
#Na

s
Gppa

s
, (2.15)

where p is integer, equal to the number of kinks with the topological charge p (p"$1) which are
inserted into the chain, then considering the limit NPR.

When the atomic displacements u
n

are small, i.e. Du
n
D;a

s
, the linearized form of the motion

equation,

d2u
n

dt2
#u

n
!g(u

n`1
#u

n~1
!2u

n
)"0 , (2.16)

describes linear excitations, or phonons,

u
n
(t)JexpMiu

1)
(i)t!iinN ,
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which are characterized by the dispersion relation,

u2
1)

(i)"u2
.*/

#2g(1!cos i) , (2.17)

where i is the dimensionless wavenumber (DiD4n). Thus, the frequency spectrum of the FK chain
is characterized by a finite band with the gap

u
.*/

,u
1)

(0)"1 , (2.18)

and the cut-off frequency,

u
.!9

,u
1)

(n)"Ju2
.*/

#4g . (2.19)

When atomic displacements are not small, the linear approximation is not valid anymore, and
the primary nonlinear motion equation (2.13) has very rich dynamics supporting new types of
localized excitations. To show this, let us consider first the continuum limit approximation to the
FK model. A standard procedure to derive equations in the continuum limit starting from
a discrete lattice was proposed by Rosenau (1986), and such an approach can be applied to the
chains with arbitrary interparticle and substrate potentials. Indeed, from the Hamiltonian
(2.2)—(2.5) it follows that the motion equation can be rewritten in the form,

d2u
n

dt2
"F

*/5
(a

s
#u

n
!u

n~1
)!F

*/5
(a

s
#u

n`1
!u

n
)#F

46"
(u

n
) , (2.20)

where

F
*/5

(u)"!


u

»
*/5

(u) and F
46"

(u)"!


u

»
46"

(u).

Eq. (2.20) may be reduced to the equation

a
s

d2v
n

dt2
"![F

*/5
(a

s
#a

s
v
n`1

)#F
*/5

(a
s
#a

s
v
n~1

)!2F
*/5

(a
s
#a

s
v
n
)]

#[F
46"

(u
n
)!F

*/5
(u

n~1
)] , (2.21)

for the so-called nth bond lengths,

v
n
"(u

n
!u

n~1
)/a

s
. (2.22)

Now, expanding v
n`1

around v
n
, introducing the new variables x and v(x) by changing nPx"na

s
and

v
n
PK

u
xK

x/nas

, (2.23)

we obtain (Rosenau, 1986)

u
tt
#a

s
¸

A
MF

*/5
[a

s
(1#u

x
)]N

x
!F

46"
(u)"0 , (2.24)
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where the indices “t” and “x” stand for partial derivatives in respect to the corresponding variables,
and

¸
A
"1#

1
12

a2
s

2

x2
#2.

Then, acting by ¸~1
A

on Eq. (2.24), we obtain the continuum theory equation up to the order O(a4
s
),

u
tt
!

1
12

a2
s
u
xxtt

!F
46"

(u)#a
s


xGF*/5

[a
s
(1#u

x
)]!

1
12

a
s


x

F
46"

(u)H"0 . (2.25)

The method described above takes into account all the terms of the lowest order which are due to
the lattice discreteness, and, in particular, for the FK model considered here this method leads to
the perturbed SG equation,

u
tt
#sin u!d2u

xx
"ef (u) , (2.26)

where d"a
s
Jg and the function

ef (u)" 1
12

a2
s
[u

xxtt
#u2

x
sin u!u

xx
cos u] (2.27)

describes, in the first order, the effects produced by the chain discreteness.

2.2. The sine-Gordon equation

If we neglect the discreteness effects in the standard FK model, the equation of motion reduces to
the sine-Gordon (SG) equation,

u
tt
!d2u

xx
#sin u"0 , (2.28)

where

d"a
s
Jg and g"»A

*/5
(a

s
) . (2.29)

Changing the spatial scale by introducing xPx/d, one can transform Eq. (2.28) to its canonical
form,

u
tt
!u

xx
#sin u"0 . (2.30)

As a matter of fact, Eq. (2.30) was the first partial differential equation whose multi-soliton
properties were recognized. Indeed, in its transformed form Eq. (2.30) was originally considered by
Enneper (1870) in the differential geometry of surfaces of a constant negative Gaussian curvature.
The study of Eq. (2.30) in the context of the differential geometry revealed very interesting
properties, including the possibility to generate from one known solution of Eq. (2.30) a new
unknown solution by means of the Bäcklund transformation (Bäcklund, 1882).

In physics, Eq. (2.30) found its first applications in dislocation models (see Seeger, 1948; see also
Seeger, 1980a for historical details), and kink—antikink and breathers of the SG equation have
been first introduced by A. Seeger and co-workers more than 40 years ago (Kochendorfer and
Seeger, 1950; Seeger and Kochendörfer, 1951; Seeger et al., 1953; see also Seeger, 1980b; Döttling
et al., 1990). The original German names for the kinks and breathers were “translatorische and
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oszillatorische Eigenbewegungen”, and from a historical point of view it is interesting to note that
this preceded the discovery of the solitonic properties of the Korteweg—de Vries equation (Zabusky
and Kruskal, 1965; Gardner et al., 1967) by more than a decade. Independently, Perring and
Skyrme (1962) introduced the SG equation as a simple one-dimensional model of the scalar field
theory modelling a classical particle. Almost simultaneously, the SG equation appeared in the
theory of weak superconductivity to be the main nonlinear equation describing the so-called long
Josephson junctions (see, e.g., Josephson, 1965), where the kink solution describes a quantum of
magnetic field, a fluxon. The two next important steps of the history of the SG equation were the
emphasis of its pedagogical power by use of the very simple chain of coupled pendulums (the
mechanical analog of the FK chain) made by Scott (1969), and the solution of the related inverse
scattering transform problem obtained by Ablowitz et al. (1973).

Later, the SG equation (2.30) was proved to be completely integrable with the canonical
variables introduced through the auxiliary scattering data, and its properties have been described
in many survey papers and books (see, e.g., Zakharov et al., 1980). Here we only mention the main
properties of Eq. (2.30) and its solutions, which are necessary for us to discuss properties of
solutions of a discrete FK model.

As is well known, elementary excitations of the SG system are phonons, kinks, and breathers.
Phonons, or continuous waves in the linear limit take the standard form, u(x, t)Jexp(iut!ikx),

and they are characterized by the dispersion relation, the dependence of the wave frequency on its
wave number, u2

1)
(k)"1#k2, which is a long-wave expansion of Eq. (2.17).

Kinks, or topological solitons, appear due to a degeneracy of the system ground state. Indeed,
a kink can be understood as the solution connecting two nearest identical minima of the periodic
on-site potential,

u
,
(x, t)"4 tan~1 exp[!pc(v)(x!vt)]. (2.31)

Here p"$1 stands for the so-called topological charge, and we call the solution (2.31) kink, for
the case p"#1, and antikink, for p"!1. The kink’s velocity v is measured in units of the sound
velocity c, and it determines the kink’s width, c(v)"1/J1!v2, the latter result follows from the
relativistic invariance of the SG model and it may be treated as a Lorentz contraction of the kink
width. Here we are interested in “nonrelativistic” kink motion when v2;c2, so that the factor c is
approximately 1.

The kink’s energy, expressed in the dimensionless units, is

E
,
(v)"mc2c(v)+mc2#1

2
mv2 , (2.32)

allows to introduce the rest mass of the kink, which in dimensionless units may be written as

m"2/(n2Jg) , (2.33)

and the kink’s rest energy, as

e
,
"mc2"8Jg . (2.34)

The energy of the repulsion between two neighboring static kinks is shown to be equal to (see, e.g.,
Hsu, 1980)

v
*/5

(R)+e
,
sinh~2(R/2d) ,
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while the kink and antikink attract each other with the interaction potential,

v
*/5

(R)+!e
,
cosh~2(R/2d).

Thus, the energy of the interaction between two static kinks with topological charges p
1

and
p
2

separated by the distance R (R<d) may be approximately presented as

v
*/5

(R)+32p
1
p
2
Jg exp(!R/d) . (2.35)

A breather, or a dynamical soliton, has the form

u
"3
(x, t)"4 tan~1GA

J1!X2

X B
sin (Xt)

cosh(xJ1!X2)H. (2.36)

Eq. (2.36) describes a nonlinear oscillating state with the internal frequency X lying within the gap
of the linear spectrum, 0(X(u

.*/
, with the amplitude, u

.!9
"4 tan~1(J1!X2/X), oscillation

being localized on the spatial scale,

b"d/J1!X2 . (2.37)

The breather energy is

e
"3
"2e

,
J1!X2 , (2.38)

so that 0(e
"3
(2e

,
. In the limit of low frequencies, X;1, the breather can be qualitatively treated

as a coupled kink—antikink pair.
In the framework of the model described by the SG equation, kinks and breathers move freely

along the chain without loss of their energy for dissipation (the solution for a moving breather can
be easily obtained from Eq. (2.36) applying the Lorentz transformation). The SG equation is
exactly integrable, i.e. it allows elastic interactions between all the excitations, and the only effect of
such collisions is a phase shift (see, e.g., Zakharov et al., 1980, for more details). That is why kinks
and breathers can be treated as nonlinear quasi-particles of the SG model, and such an approach is
still valid for nearly integrable modifications of the SG equation, when the model includes small
perturbations like those which appear when deriving the SG equation from the primary FK model
in the quasi-continuum approximation, assuming the effects of the model discreteness small. In
fact, being perturbed by small (conservative or nonconservative) perturbations, kinks behave like
deformable quasi-particles, i.e. they may also change their shapes. Besides that, some new features
may appear even in the presence of small perturbations, e.g. kink and antikink may collide
inelastically producing a long-lived breather mode, the total topological charge of the system being
conserved.

For the integrable SG model, any localized excitation can be presented as an asymptotic
superposition of elementary excitations of three kinds, i.e. kinks, breathers, and phonons. The
nonlinear periodic solutions of the SG equation can also be found explicitly, for example, a chain of
kinks is given by the following solution,

u(x, t)"!sin~1 [cn(x/k; k)] , (2.39)
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where cn is the Jacobi elliptic function. Eq. (2.39) describes a periodic sequence of kinks with the
widths, kd (k(1), separated by the distance,

¸"4dkK(k) , (2.40)

K(k) being the complete elliptic integral of the first kind. The nonlinear interaction of a SG kink
and large-amplitude (anharmonic) phonons is also elastic, and it is described by an exact solution
of the SG equation (Zadrodziński and Jaworski, 1982; Jaworski, 1987). In the small-amplitude
limit, this general kink-phonon interaction describes a phase shift in the elastic scattering of linear
phonons by a SG kink (Rubinstein, 1970; see also Martinez Alonso, 1986).

As has been mentioned above, in the framework of the exactly integrable SG model collisions of
solitons are elastic, i.e. their shapes, velocities and energies remain unchanged after collisions and
the only effect produced by the interactions is the phase shifts of the colliding solitons. For example,
if we take the initial kink at rest and another kink coming from infinity with the initial velocity v

*/
,

then after collision the first kink will remain at rest but the kinks’ coordinates will be shifted by
a constant value, for example, the coordinate of the first kink will be shifted on the value Dx

1
, where

(see, e.g., Zakharov et al., 1980)

Dx
1
"

d
c
lnA

c#1
c!1B, c"J1!v2

*/
/c2 .

Analogously, collisions of any nonlinear excitations (phonons, kinks, and breathers) in the frame-
work of the SG model are accompanied by phase shifts only. One of the main features of such
collisions is their two-particle nature: When several solitons collide, a shift of any soliton involved
into the interaction is equal to a sum of the shifts caused by its independent interaction with other
solitons. Such a two-particle nature of the soliton interactions is a specific property of integrable
systems. When the primary SG system is modified by external (even conservative) perturbations,
many- (in particular, three-) particle effects emerge (Kivshar and Malomed, 1989).

2.3. The Peierls—Nabarro potential

Kinks are the only excitations of the FK model which can exist in a static state due to their
topological origin. In the framework of the discrete FK model a kink (antikink) is defined as
a minimally possible topologically stable compression (expansion) of the initially commensurate
ground state of the chain, when the configuration of atoms far from the localized region coincides
with the ground state configuration.

Indeed, the existence of kinks (and even their main properties) do not depend crucially on the
discreteness of the primary model, so that the SG model considered above looks often as an
acceptable approximation of the FK model which allows to keep the basic features of the system
dynamics. However, the very specific property of a discrete lattice such as the FK chain is the
existence of the so-called Peierls—Nabarro (PN) periodic potential, »

PN
(X), to the kink motion,

X being the coordinate of the kink’s center. First, the PN potential and the topics related to its
existence, have been discussed in the context of the theory of dislocations in crystals (see, e.g.,
Peierls, 1940; Nabarro, 1947; Indenbom, 1958; Indenbom and Orlov, 1962). To understand the
origin of the PN potential to the kink motion, first we note that in the continuum limit
approximation the system is invariant to any translation of the kink along the chain (and such
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Fig. 2. Stationary configurations of particles in the FK model which correspond to a single kink in the chain: (a) stable,
corresponding to a minimum, and (b) unstable, corresponding to a saddle point.

translations are characterized by the existence of the so-called Goldstone mode). On contrary, in
the discrete model this invariance is absent, and only the translation for the lattice spacing a

s
and its

integer multipliers are allowed. The smallest energy barrier to overcome for a kink to move
through a lattice is called the PN barrier, E

PN
. In that case, the zero-frequency translational

Goldstone mode is replaced by a finite-frequency localized mode known as the PN frequency
mode. The value E

PN
is equal to the difference between two values of the kink’s potential energy

defined for two stationary configurations, stable and unstable (saddle) ones (see Fig. 2). The first
state, Fig. 2a, describes the stationary state corresponding to a minimum of the energy of the chain
with one kink situated at the minimum of the potential relief »

PN
(X), while the second state, shown

in Fig. 2b, is the unstable configuration when the kink is placed on the top of the effective PN
barrier.

The potential energy of the chain with one kink,

º(2, u
n~1

, u
n
, u

n`1
,2) ,

is a function of the coordinates of all atoms of the chain. The state shown in Fig. 2a corresponds to
one of the minima of the function º, whereas the state shown in Fig. 2b corresponds to a saddle
point of the function º, which is situated just between two nearest minima in the N-dimension
coordinate (configuration) space, N being the number of atoms in the chain (NPR). The saddle
and nearest minima points can be connected by an “adiabatic trajectory”, i.e. by a curve which is
a solution of the following system of coupled differential equations,

du
n
(q)

dq
"!


u

n

º(2, u
n~1

, u
n
, u

n`1
,2) , (2.41)

where q is a parameter along the trajectory. Such a trajectory is a curve with the steepest descent,
and it describes the adiabatically slow motion of the kink through the chain. Note that when the
system is subjected to a thermostat with low temperature, the kink will predominantly move along
the adiabatic trajectory. Of course, at a finite velocity, the kink’s motion slightly differs from the
adiabatic trajectory.

Thus, the PN potential of the kink moving along the chain can be presented in the form,

»
PN

(X)"º(2, u
n~1

, u
n
, u

n`1
,2)D

x|!$.53.
. (2.42)
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To introduce the collective coordinate describing the motion of the kink’s center, X, we present the
atomic coordinates as

u
n
"f (na

s
!X) , (2.43)

where the function f (x) describes the kink’s shape. In the continuum limit approximation, i.e. when
g<1, the function f (x) coincides with the function (2.31) for the SG kink. In the discrete case, the
function f (x) differs from the SG shape,

f (x)"u(SG)
,

(x)#Du
!$

(x) . (2.44)

The function Du
!$

(x) is usually called “adiabatic dressing” of the kink. Using Eq. (2.43), the
coordinate of the kink’s center can be defined as (see Bergman et al., 1983)

X"!

p
a
s
Pdxxf @(x!X) , (2.45)

where f @(x)"df (x)/dx. For numerical simulations with N(R, it is more convenient to define
X integrating Eq. (2.45) by parts to obtain

X"p+
n

u
n
#C . (2.46)

An integration constant C is defined to have the point X"0 corresponding to the kink position at
the bottom of the PN potential (at n"0).

The amplitude E
PN

of the PN potential was calculated in a number of papers for the quasi-
continuum limit (Hobart, 1965b, 1966; Pokrovsky, 1981; Ishimori and Munakata, 1982; Ishibashi
and Suzuki, 1984; Willis et al., 1986; Lazutkin et al., 1989; Flach and Kladko, 1996), for the
weak-bond limit (Joos, 1982; Furuya and Ozorio de Almeida, 1987), as well as by numerical
simulations (see, e.g., Hobart and Celli, 1962; Hobart, 1965a; Currie et al., 1977; Sugiyama, 1979;
Joos, 1982; Stancioff et al., 1986; Flach and Willis, 1992, 1993; Flach and Kladko, 1996). To
estimate the value of the PN potential, we substitute Eq. (2.43) into the expression for the potential
energy º and neglect the adiabatic dressing term for the SG kink shape, i.e. take f (x)"u(SG)

,
(x).

Then, approximating u
n`1

as

u
n`1

+u
n
#a

s
f @
n

f @
n
"

df (z)
dz K

z/nas~X

, (2.47)

using Poisson summation formulae and keeping only terms corresponding to the first harmonic,
we finally obtain (Pokrovsky, 1981)

»
PN

(X)+
=
+
l/0

B
l
cos(lX)+

1
2
E

PN
(1!cosX) , (2.48)

where

B
l
"16n2

lg

sinh(ln2Jg)Al2#
1

2n2gB, l51 , (2.49)
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so that the “bare” PN potential for the case g<1 is given by the expression

E(0)
PN

"32n2
g

sinh(n2Jg) A1#
1

2n2gB+64n2ge~n2Jg . (2.50)

For a kink slowly moving with the velocity v,dX/dt;c along the adiabatic trajectory, the
kink’s kinetic energy can be calculated as

K
,
"

1
2

+
n
A
du

n
dt B

2
"

1
2

mA
dX
dt B

2
, (2.51)

where the effective kink’s mass is defined as

m(X),+
n
A
du

n
dXB

2
"+

n

( f @)2 . (2.52)

Substituting the SG profile f (x)"u(SG)
,

(x) into Eq. (2.52), we obtain (see Willis et al., 1986 in the
case g<1 the following result:

m(X)+m(SG)#
=
+
l/1

A
l
cos(lX) , (2.53)

where

A
l
"4l/sinh(ln2Jg) . (2.54)

The contribution of the discreteness effects to the kink’s shape was investigated numerically, by
Currie et al. (1977), Ishimori and Munakata (1982), Willis et al. (1986), Flach and Kladko (1996),
and analytically, by Stancioff et al. (1986), De Lillo (1987), Flach and Willis (1993), and Flach and
Kladko (1996).

In the case of strong springs, i.e. for g<1, the method proposed by Rosenau (1986) leads to the
following equation in the first order in the discreteness parameter j" 1

12
(a

s
/d)2;1,

sin u!u
xx
"j(u2

x
sin u!u

xx
cos u) . (2.55)

A localized solution of this equation can be easily found by the perturbation theory (see, e.g.,
Kivshar and Malomed, 1989), and such a correction has the form

Du
!$

(z)+!jp
(3 tanh z!z)

cosh z
. (2.56)

Thus, the discreteness effects reduce the kink’s width, dPd
%&&

"d(1!j). This result coincides with
the results of numerical simulations by Currie et al. (1977) and Willis et al. (1986). It is clear that
such narrowing of the kink’s width should lead to an increasing of the value E

PN
with respect to

that given by Eq. (2.50) which can be estimated as

DE
PN

+

2dDd
a2
s

dE(0)
PN

dg
"!2jg

dE(0)
PN

dg
. (2.57)

Analytical calculation of E
PN

in the continuum limit is a subtle problem, because the kink
dressing contributes to E

PN
through all orders of perturbation in the standard perturbation theory
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scheme (Flach and Willis, 1993). An original approach to the problem was proposed by Flach and
Kladko (1996). It consists in rewriting the difference equation on discrete variables u

n
,

g(u
n`1

#u
n~1

!2u
n
)!»@

46"
(u

n
)"0 , (2.58)

as the differential equation on the continuous function u(x),

ga2
s
u
xx
!»@

46"
(u)"[o(x)!1]»@

46"
(u) , (2.59)

where

o(x)"
=
+

n/~=

d(x!na
s
)"a

sA1#2
=
+
k/1

cos(2nkx/a
s
)B , (2.60)

and then considering the right hand part of Eq. (2.59) as a small perturbation of the SG equation.
The result of the first-order perturbation theory is that the kink shape can be obtained by solving
the SG equation obtained with the actual substrate potential »

46"
being replaced by an effective

potential

»
%&&
"»

46"
!

1
24gA

a
s

2n
»@

46"B
2

. (2.61)

As is known, Eq. (2.58) for the stationary configurations can be reduced to the Taylor—Chirikov
standard map for an auxiliary two-dimensional dynamical system, so that static solutions of
Eq. (2.58) correspond to trajectories (manifolds) of that system. In particular, kink solutions
correspond to two homoclinic orbits of the standard map (the stable and unstable manifolds). In
the exactly integrable SG model these manifolds overlap. But in the discrete FK system they
intersect and are characterized by different energies. The difference between these energies is just
the PN energy, and it is determined by the angle of intersection in the point closest to the middle of
distance between the fixed points. This angle was calculated by Lazutkin et al. (1989) in the gPR

limit, and it results in the PN energy

E
PN

"Age~n2Jg , (2.62)

where the numerical prefactor is A"712.267842 Comparing this exact result with the “bare” PN
energy (2.50), we see that in the strong coupling limit the kink dressing leads to increasing of the PN
energy in 1.13 times only.

In the opposite case of a weak coupling, g;1, the kink’s parameters in the lowest approxima-
tion can be calculated if we neglect the atomic displacements from the bottoms of the substrate
potential wells for all the atoms except those in the kink’s core. This leads to the following
expressions (Joos, 1982; Braun et al., 1990),

m+1 , (2.63)

e
,
+2n2g(1!2g) , (2.64)

E
PN

+2!n2g . (2.65)

Furuya and Ozorio de Almeida (1987) have used the standard map technique to calculate the
energies e

,
and E

PN
in the case g(1. They demonstrated that the minimum energy state shown in
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Fig. 3. The maximum (height) of the Peierls—Nabarro potential E
PN

vs. the normalized kink width d/a
s
"Jg. Solid

curve is the numerical results of Joos (1982) and Stancioff et al. (1986), the dashed curve presents the result of the weak
coupling analytical approximation, and dashed-dotted curve show the results of the continuum limit approximation.

Fig. 2a, is characterized by the energy

e
,
+2C1!cosA

2ng
1#3gBD#

g
2 C2n

(1#g)
(1#3g)D

2
. (2.66)

The “saddle state” shown in Fig. 2b has the energy

e
4!$$-%

"e
,
#E

PN
+2(2!cosb)#

1
2

gCn2#Ab#
1
b

sin bB
2

D , (2.67)

where

b"
2ng

(1#2g)#J1#4g
.

The dependencies of E
PN

and e
,

on the parameter d/a
s
,Jg are shown in Figs. 3 and 4,

respectively.
The effect of the chain discreteness on the interaction between two kinks was analyzed numer-

ically by Joos (1982), and the exponential law of such an interaction,

v(FK)
*/5

(R)"Ae~cR@d , (2.68)
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Fig. 4. The kink’s rest energy e
,

shown as a function of the parameter d/a
s
"Jg. Solid curve corresponds to the

numerical results Joos (1982), the dashed curve presents the results of the weak-coupling approximation, and the
dashed-dotted curve, shows the results of the continuum limit approximation.

Fig. 5. The ratio A/A
SG

(where A
SG

"32Jg) and the parameter c which determine, according to Eq. (2.63), the
kink—kink interaction in the FK chain, as the functions of the kink width d. The numerical curves are based on the data
obtained by Joos (1982).

was shown to be valid at R'3a
s
and at any value of the parameter g, although the coefficients

A and c at g(5 depend on g (see Fig. 5); in particular, for gP0, A(g)+4n2g. Notice also that
the presence of a kink in the chain changes the density of the phonon states in the system
(Theodorakopoulos et al., 1980).

2.4. Discreteness effects

2.4.1. Kink’s equation of motion
In general, there exists no steady-state solutions for a moving kink in the discrete FK model. Due

to the lattice discreteness, a moving kink radiates linear waves (phonons). This is one of the main
physical effects which explains radiative losses of dislocations calculated for various (more realistic)
discrete models (see, e.g., Al’shitz, 1969; Celli and Flytzanis, 1970; Al’shitz et al., 1971; Ishioka, 1973;
to cite a few).

For the FK chain, the similar effects were observed numerically by several groups. Here we
follow the results by Currie et al. (1977) which allow to make a conclusion about general properties
of the FK kink dynamics. If one starts from an initial configuration with kink-type boundary
condition, u

n?~=
"0 and u

n?`=
"!pa

s
(as an initial state, a single kink of the SG equation with

some initial velocity is taken usually), such a configuration decays into phonons and a single
“dressed” kink, i.e. a kink with the shape modified by the lattice discreteness. Then the FK kink
propagates through the chain not freely but with an oscillating velocity, the oscillations being
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caused by the lattice discreteness. Moving with a variable velocity, such a kink loses its kinetic
energy emitting phonons, so that the kink will be trapped by the PN potential below a certain
critical velocity v

PN
. The kink trapped by the PN potential oscillates near a minimum of the

potential well continuously emitting phonons, and finally it reaches a stationary state correspond-
ing to a static configuration. Such a behavior can be easily understood in the framework of a simple
physical picture of an effective particle with the mass m moving in the periodic PN potential when
the total particle’s energy is defined as

E"

m
2 A

dX
dt B

2
#»

PN
(X) . (2.69)

When the energy E is larger than the PN energy, the particle propagates along the chain and
a change of its coordinate is described by the equation,

X(t)"2 am (u
PN

t/k; k) , (2.70)

where k"JE
PN

/E is the modulus of the Jacobi elliptic function, and the particle’s velocity is
varying periodically around its mean value with the frequency

u
53!7

(E)"
u

PN
2kK(k)

"T
dX
dt UA

2n
a
s
B (2.71)

caused by the periodic PN relief. In the opposite case, when 0(E(E
PN

, the effective particle
(kink) gets trapped at a minimum of the PN potential, and the particle’s coordinate changes
according to the law

X(t)"2 sin~1 [k sn(u
PN

t; k)] , (2.72)

where this time the modulus of the elliptic function is kI "JE/E
PN

"k~1 and the frequency of the
kink oscillations is given by the expression

u
53!1

(E)"
nu

PN
2K(kI )

, (2.73)

so that 0(u
53!1

(E)(u
53!1

(0),u
PN

, where

u2
PN

"

1
m

d2»
PN

(X)
dX2

D
X/0

+

E
PN

2m
(2.74)

is the frequency of harmonic oscillation of the kink near the bottom of the PN potential, the PN
frequency.

For the discrete FK chain, the total kink’s energy E is not a conserved quantity because of
a nonlinearity-induced coupling between different eigenmodes, including phonons. This means
that motion of a kink through a chain can be described with the help of an effective particle only
approximately, and in reality such a dynamics should be modified by exciting phonon modes. In
fact, a kink moving through the lattice with a varying velocity, or a kink trapped by the lattice
discreteness and oscillating near the bottom of the PN potential, acts as an effective force on the
phonon subsystem with the frequencies nu

53!7
or nu

53!1
(n"1, 2,2). Such an oscillating force leads
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Fig. 6. Evolution of the velocity of a free kink with the initial velocity v
0
"0.8c in the FK chain with Jg"0.95. Arrows

show the disappearance of the resonances k
1
"k

2
"1 (at t"t

1
) and k

1
"5, k

2
"1 (at t"t

2
) (Peyrard and Kruskal,

1984).

to a generation of phonons, and the kink’s energy decreases, being transformed into the energy of
the excited phonon modes. As a result, the phenomenology of an effective particle introduced
above should be modified by including an effective friction force,

F(&3)"!mg
dX
dt

, (2.75)

which causes the final trapping of the kink by the PN potential.
Adiabatic dynamics of a kink in a discrete FK chain was analysed analytically by Ishimori and

Munakata (1982) by applying the perturbation theory for solitons developed earlier by McLaugh-
lin and Scott (1978) for the case when the parameter responsible for the discreteness effects is small,

j"
1
12A

a
s

dB
2
;1 .

Ishimori and Munakata (1982) calculated the effective friction produced by radiation of phonons
and they showed that the moving kink radiates phonons predominantly to the backward direction.
A more careful study of the kink’s dynamics in the discrete chain was carried out by Peyrard and
Kruskal (1984) and Boesch et al. (1989) with the help of extended numerical simulations. They
showed that the effective friction coefficient g of the kink is a complicated function of the system
parameters. Several results are presented in Figs. 6 and 7, which show variations of the kink
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Fig. 7. Simulation results for (a) oscillation of the kink’s coordinate X(t) and (b) instantaneous Poynting’s flux of phonon
radiation away from the kink trapped by the PN potential well, for the FK chain with g"0.791. Arrows indicate the
appearance of new resonances with k

5
"k

2
"1 (at t"t

1
) and k

1
"4, k

2
"1 (at t"t

2
) (Boesch et al., 1989).

velocity in the moving and trapped states. Before discussing the features observed in numerical
simulations in detail, let us introduce the density of the phonon states o(u) in the one-dimensional
lattice (see, e.g., Kosevich, 1972)

o(u)"
2
n

u

J(u2!u2
.*/

)(u2
.!9

!u2)
, (2.76)

where the normalization

P
u.!9

u.*/

duo(u)"1

has been used. One can see that the function o(u) tends to infinity at the edges of the phonon
spectrum band, u

.*/
and u

.!9
. Besides, the anharmonicity of the lattice vibrations is known to

produce higher-order harmonics in the phonon spectrum. As a result, it is clear that the energy
exchange between the kink translational or trapped motion is possible provided the following
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resonance condition is fulfilled,

k
1
u

,
"k

2
u

1)
(i) , (2.77)

where u
,

is equal to u
53!7

or u
53!1

depending on the type of the kink motion, and the integer
numbers k

1
and k

2
stand for the order of the resonance. The maximum of the radiative damping

produced by the resonant energy transfer to the phonon subsystem is realized for the case
k
1
"k

2
"1 and u

1)
being close to the edges of the phonon spectrum where the phonon density

takes a maximum value. Below we discuss in more detail the numerical simulation results for the
propagating and trapped kink regimes.

2.4.2. Moving kinks
As is seen in Fig. 6 (Peyrard and Kruskal, 1984), a fast kink launched at some velocity, v

0
(c,

loses immediately its velocity up to the “critical” value v
1

depending on the initial velocity v
0
, say

during the time interval t
1
. For t(t

1
, the inequality

u
.*/

(u
53!7

(u
.!9

(2.78)

is fulfilled, so that this condition does explain a very high rate of the energy losses observed in
numerical simulations. However, at the moment t"t

1
the first-order resonance disappears and the

radiation-induced damping is now caused by the second-order resonance (k
1
"2, k

2
"1), so that

the value of the effective friction g is abruptly lowered (see Fig. 6). Correspondingly, the kink
radiation becomes drastically smaller, and the mean velocity of the kink translational motion
decreases now much slower. At the moment t

2
, when v

,
"v

2
, the second-order resonance condition

becomes not valid, and for t't
2
the velocity decreases even more slowly but subsequently the kink

will get trapped by the PN relief at a certain t"t
53!1

when its kinetic energy reaches the value
corresponding to the PN energy, E"E

PN
. The numerical simulations show that the time interval

t
53!1

is indeed extremely large for the case g<1. Nevertheless, this time t
53!1

becomes much smaller
for narrow kinks, for example, for Jg"0.75 a kink with the initial velocity v

0
"0.8c cannot

propagate through the lattice more than for two lattice spacings and, as a result, it becomes
immediately trapped by the lattice discreteness. Very similar behavior of a kink was observed by
Combs and Yip (1983) for the so-called /4 model when simulating the kink propagation in
a discrete lattice.

2.4.3. Trapped kinks
The evolution of a trapped kink analyzed numerically by Boesch et al. (1989) and shown in Fig. 7

can be explained in a similar way, taking into account the structure of the phonon spectrum and
the density of the phonon states. First of all, we note that the oscillation frequency of a trapped
kink, u

53!1
, increases from zero to its maximum value u

PN
. When increasing the frequency u

53!1
, the

order of the resonance is lowered, and for a certain harmonic it becomes possible to cross
eventually the edge frequency of the phonon spectrum to satisfy a resonance condition even if this
condition was not satisfied earlier. Consequently, emission of phonons by a kink should increase.
Besides, the value of the PN frequency,

u
PN

+G
2n6

3
gJg

sinh(n2Jg)A1#
1

2n2gBH
1@2

, (2.79)
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is usually much smaller than the edge phonon frequency u
.*/

"1, and thus a kink may radiate
phonons only due to an excitation of higher-order harmonics, i.e. those corresponding to a large
resonance number. For example, at g"1 the PN frequency is calculated to be u

PN
+0.18 [the

rigorous procedure to calculate u
PN

was suggested by Boesch and Willis (4); see also Braun (1990)]
so it is necessary to satisfy the condition k

2
56 in Eq. (2.77) to get a resonant generation of

phonons. Slowly changing its frequency, the kink emits suddenly large burst of radiation when its
frequency (or frequencies of higher-order harmonics) passes the edges of the phonon spectrum
where the density of the phonon states is maximum. This gives peculiarities in the temporal
dynamics of the kink’s coordinate shown in Fig. 7.

Analytical results to evaluate the radiation-induced friction coefficient g are rather lengthy to be
presented here in detail. However, we should mention that the first analytical calculations were
made by Ishimori and Munakata (1982) on the basis of the first-order approximation of the soliton
perturbation theory, but finally such results did not reproduce well the features of the kink
dynamics observed in direct numerical simulations. The rough estimates made by Peyrard and
Kruskal (1984) did agree with the corresponding simulation results and they are therefore more
satisfactory. The rigorous procedure was proposed by Willis et al. (1986) [see also Boesch et al.
(1988), where a projection-operator technique was developed to find the value of the effective
friction g, and also the work by Igarashi and Munakata (1989)]. The main idea of this approach is
to look for the kink solution in a discrete case in the form

u
n
(t)"f [na

s
!X(t)]#q

n
(t) (2.80)

and develop a Hamiltonian formalism for the kink coordinate X(t) and its conjugated momentum
P(t)"m(t)(dX/dt) which are treated as canonical variables extracted from the full set of the
variables of the discrete FK model. The variables q

n
(t) and the corresponding momenta

p
n
(t)"dq

n
/dt describe the radiation field as well as the deviation of the kink’s shape from its

analytical solution calculated in the continuum limit approximation. Introducing the two new
canonical variables requires two constraints,

C
1
,+

n

f @
n
q
n
"0 and C

2
,+

n

f @
n
p
n
"0 , (2.81)

and modifying of the Poisson brackets,

MX,PN"1 and Mq
n
, p

n{
N"d

n,n{
. (2.82)

The equations of motion are then obtained according to the Hamiltonian formalism,

dh
dt

"Mh,HN ,

h stands for the canonical variables X, P, q
n
, and p

n
, and the PN frequency is then found by

linearizing those equations for small-amplitude oscillations. The procedure described does give an
excellent agreement with numerical simulations taking effectively a renormalization of the kink
shape due to a strong discreteness of the model.

2.4.4. Multi-kinks
For a weak interatomic interaction, e.g., g4g

4n+0.2025, a repulsion between kinks is weak,
and it competes with attractive forces acting from the effective PN potential. Thus, two (or even
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Fig. 8. Velocities v
4n (solid curve) and v

6n (dashed curve) of the 4n- and 6n-kinks as functions of the parameter Jg"d/a
s

in the FK model (Peyrard and Kruskal, 1984).

more) kinks can be trapped by the lattice discreteness to create a bound state propagating as
a single 4n-kink. Moreover, at high velocities, v&c, such multi-kinks remain stable even for
g<g

2Nn, where g
2Nn is the critical value which depend on the order of such a multi-kink, N being

the number of the simple 2n kinks in the multi-kink. The understanding of the existence of this kind
of multi-kink is still an open problem, however, it is clear that they become possible due to
a Lorentz contraction of the kink’s width for large velocities.

Such 4n-kinks, and also 6n-kinks, were discovered numerically by Peyrard and Kruskal (1984),
and such multi-kink structures are rather stable to be easily detected in numerical simulations. The
results of the numerical simulations for the velocity of 4n-kink and 6n-kink are shown in Fig. 8.
Surprisingly, an effective friction coefficient for such types of multi-kink solutions becomes almost
negligible allowing them to propagate in the lattice without visible radiative losses. As we have
mentioned, there exists no clear analytical explanation of this phenomenon yet.

2.4.5. Breathers
Even a weak discreteness does not allow oscillating breather modes exist as dynamical eigen-

states of the chain, because it acts as an external perturbation and breaks the integrability of the SG
model. As a result, the breathers radiate linear waves and slow decay. In the systems with a very
weak coupling between particles in the chain, nonlinear oscillating states are strongly modified due
to discreteness. Such “discrete breathers”, or nonlinear localized modes, are briefly discussed in
Section 6, where is shown that these modes can be strongly localized involving only a few particles
into the oscillating dynamics.

For strong coupling between the particles, the breather dynamics can be still considered in the
framework of the perturbed SG equation which takes into account the discreteness effects. Then,
the breather dynamics and the corresponding lifetime depend on the input energy, and are different
for the breathers of small and large amplitudes (see, e.g., Kivshar and Malomed, 1987). In the
small-amplitude limit, when the breather width is much larger than the lattice spacing, the effects of
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discreteness are almost negligible, and the radiation-induced losses of the breather energy can be
neglected. These losses are usually exponentially small in the parameter defined as a ratio between
the lattice spacing and the breather’s width, and it is “beyond of all order”. Neglecting radiation, we
can find approximate periodic solutions for the breathers by means of multi-scale asymptotic
expansion. The rigorous procedure to find such high-frequency breather modes for general models
with on-site potential (arbitrary substrate potential) was suggested by several authors [see, e.g.,
Kosevich and Kovalev (1974a); Remoissenet (1986), and references therein].

For g41, a low-frequency breather may survive as two separate kink and antikink trapped in
the corresponding wells of the PN potential. The effect of discreteness of the breather dynamics and
the calculation of the effective PN potential can be found in a paper by Boesch and Peyrard (1991).
We will outline some essential ideas here, but the reader is referred to the original work (Boesch
and Peyrard, 1991) for the calculational details.

To describe a breather in a discrete chain, we use the ansatz [cf. Eq. (2.36)],

u("3)
n

"4 tan~1C
sinh(k

"
Z)

cosh[k
"
(n!X)]D , (2.83)

where X is the center of the breather, which is treated as a parameter, 2Z(t) represents the distance
between two subkinks which form the breather, and the breather’s frequency is defined as
u

"
"J1!k2

"
. The ansatz (2.83) should be used to calculate the Hamiltonian of the FK chain

(Boesch and Peyrard, 1991) which consists of two parts describing, independently, internal and
translational dynamics of the breather. If we choose the initial breather profile (2.83) at the time
t"0 when the subkinks are at their maximum separation Z(t)D

t/0
"Z

0
, this yields the initial

profile condition

tanh(k
"
Z

0
)"k

"
. (2.84)

Then, the breather’s total energy can be simplified keeping the first two terms in the Fourier series
[since the coefficients decay exponentially as 1/sinh(n2/k

"
)], so that the total energy becomes

E"3(Z
0
,X)"16k

"C1#
2n2/k

"
sinh(n2/k

"
)
cos(2nZ

0
) cos(2nX)D . (2.85)

Eq. (2.85) must be considered simultaneously with the condition (2.84) which changes the value
of k

"
for each Z

0
. Note that for high-frequency (i.e., small-amplitude) breathers where discreteness

effects are small, k
"
P0 and we recover the well known continuum expression for the SG breather

energy, E"3"16k
"
. For large-amplitude breathers, Eq. (2.83) indicates there are two PN potentials,

one for X and the other for Z
0
, and it defines the positions where the initial breather profile will be

trapped if started from rest.

3. On-site potential of a general shape

3.1. General properties

The standard FK model (2.1)—(2.5) assumes a sinusoidal shape of the one-site substrate potential.
However, in realistic physical models the shape of the substrate potential may deviate from the
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sinusoidal one. Indeed, the on-site substrate potential in the FK model is in fact an effective
potential produced by the coupling of the atoms in the chain with other degrees of freedom, e.g.
with substrate atoms. Then, only in the lowest approximation, i.e., when (i) the substrate atoms
constitute a simple lattice with one atom per elementary cell, and (ii) in the Fourier expansion of the
interaction potential the main approximation is given by the first harmonic, the simple sinusoidal
potential can be derived in a rigorous way. In all other physical situations, the periodic potential
»

46"
(x) deviates from the sinusoidal form. For example, for atoms adsorbed on metal surfaces the

substrate potential is usually characterized by sharp bottoms and flat barriers (Braun, 1989).
Moreover, if the underlying substrate is characterized by a complex unit cell, the potential »

46"
(x)

should have a quite complicated shape with several minima and maxima.
In the present chapter we discuss a general case when the substrate potential »

46"
(x) is periodic

with the period a
s
"2n and for x3(0,a

s
) it has at least one minimum, say at x"x

0
[with

»
46"

(x
0
)"0], and one maximum, at x"x

.
[with the normalization »

46"
(x

.
)"e

s
"2]. As above,

we consider only the commensurable case when the ground state has only one atom per one period
a
s
of the substrate potential.
The deviation of the substrate potential from the sinusoidal shape changes the parameters of

both linear and nonlinear excitations and, this may lead to appearance of new kink solutions and
phonon branches. Nonsinusoidal substrate potential drastically modifies breather solutions. Let us
first discuss the problems related to such a modification of the substrate potential from a general
point of view.

Phonons in the FK model are characterized by the dispersion relation [see Eq. (2.17)]

u2
1)

(i)"u2
.*/

#2g(1!cosi), DiD(n , (3.1)

where the minimum frequency u
.*/

is defined as

u2
.*/

"»A
46"

(x
0
) , (3.2)

and it corresponds to the vibration of an isolated atom at the minimum of the substrate potential
(recall m

a
"1). In the standard FK model this frequency is u

.*/
"1. Thus, in the case of sharp

wells, one has u
.*/

'1, while for the flat bottoms, u
.*/

(1. Note that in a generalized FK model it
might exist more than one branch in the phonon spectrum if the potential »

46"
(x) has more than

one minimum per the potential period (see below, Section 3.3).
Kinks can be easily described in the continuum limit approximation which is valid provided

g<1. If the discreteness effect are negligible, the motion equation becomes

u
tt
!d2u

xx
#»@

46"
(u)"0 . (3.3)

Eq. (3.3) is Lorentz invariant and, therefore, it always has a stationary solution u(x, t)"/(y),
y"c[x!X(t)]/d, c"(1!v2/c2)~1@2, where the kink coordinate is defined as X(t)"X

0
#vt and

its velocity, v"dX/dt is within the interval DvD(c (recall, in the notations we adopted c"d).
Equation for the function /(y),

d2/
dy2

"»@
46"

(/) , (3.4)

looks like the equation of motion of an effective particle with the coordinate / in the potential
º(/)"!»

46"
(/). The periodic oscillation of the particle near the bottom of the potential º(/)
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corresponds to linear waves, the rotation of the particle corresponds to the so-called cnoidal waves,
and the separatrix trajectory generates the kink solution, which has the boundary conditions,

/(y)Px
0
(mod2n), d/(y)/dyP0 as yP$R . (3.5)

Thus, Eqs. (3.4) and (3.5) yield

A
d/
dyB

2
"2»

46"
(/) , (3.6)

and the shape of the kink can be expressed as

y"GP
((y)

x.

d/

J2»
46"

(/)
. (3.7)

Here the upper sign corresponds to a kink solution (local contraction of the chain) and the lower
sign corresponds to an antikink, and the value x

.
is the coordinate of the substrate potential

maximum. Thus, the kink (antikink) solution connects two nearest neighboring minima of the
substrate potential, say x

0
and x

0
#2n. If the substrate potential has more than two minima per

period, one may expect to find more than one type of the kink solutions (see below Section 3.3).
The shape of a stationary kink can be characterized by its asymptotics at infinities. If u(x)Px

0
for xP#R or xP!R, then

Du
,
(x)!x

0
DJexp(!u

.*/
DxD/d), DxDPR . (3.8)

The tails of the kink define the character of interaction between kinks. Therefore, the strength of the
kink—kink interaction is weaker in the case u

.*/
'1 (i.e. for the substrate potential with sharp

bottoms) than is in the case of the SG model. The “core” of the kink is determined by the
expression,

u
,
(x)+x

.
!A

px
d BJ2»

46"
(x

.
)A1!

x2

6d2
%&&
B , (3.9)

for Du
x
(x)!x

.
D;d, so that the kink’s effective width becomes

d
%&&
"

d

J!»A
46"

(x
.
)
. (3.10)

According to Eq. (2.53), the kink rest mass can be found as

m"

1

4n2JgP
xA

0

x@
0

d/J2»
46"

(/) , (3.11)

where x@
0

and xA
0
are the positions of two adjacent successive minima of the substrate potential. The

energy associated with a single kink at rest is e
,
"mc2, where in our notations c"d, and the kink’s

kinetic energy K
,

is defined as K
,
"mc2(c!1)+1

2
mv2.

Unlike the SG kink, a kink in the chain with a nonsinusoidal one-site potential may have
internal degrees of freedom, the so-called “shape modes” (see, e.g., Segur, 1983; Campbell et al.,
1983; Braun et al., 1997). To explain the existence of such modes, let us linearize the motion

28 O.M. Braun, Yu.S. Kivshar / Physics Reports 306 (1998) 1—108



equation (3.3) around the kink’s shape substituting u(x)"u
,
(x)#W(x)e*ut. The function W(x)

satisfies the linear Schrödinger—type equation

!d2
d2W
dx2

#¼(x)W(x)"u2W(x) , (3.12)

where

¼(x)"K
d2»

46"
(u)

du2 K
u/u,(x)

. (3.13)

Eqs. (3.12) and (3.13) always admit a continuum of the plane wave solutions (phonons) with the
frequencies u'u

.*/
, and also the so-called Goldstone mode W(x)"du

,
/dx with u"0. In

a discrete FK model the latter mode has a nonzero eigenvalue u
PN

. Besides the modes mentioned
above, Eq. (3.12) may have one or more eigenfunction with discrete eigenfrequencies within the gap
(0,u

.*/
) or, depending on the shape of the substrate potential, with frequencies u'u

.!9
(see

details in Braun et al., 1997a). Such modes are localized around the kink and they may be treated as
“internal” oscillations of the kink’s shape. Such shape modes can be excited during collisions
between kinks, or due to interaction of the kinks with impurities, so that they play an important
role in the kink dynamics.

Breathers. The important feature of the nonsinusoidal generalization of the FK model is the
absence of the exact solutions for the breather modes (dynamical oscillating solitons). In the same
time, the breather modes do exist as long-lived nonlinear spatially localized vibrations of the chain,
and they may be calculated using an asymptotic procedure (see, e.g., Kosevich and Kovalev, 1974a;
Remoissenet, 1986). Let us look for a solution of the nonlinear motion equation in the limit of small
amplitudes using the asymptotic expansion,

u
"3
(x, t)"kU(x, t)e*Xt#c.c. , (3.14)

where k"(u2
.*/

!X2)1@2 is a small parameter of the asymptotic procedure. Substituting Eq. (3.14)
into the discrete motion equation and expanding the substrate potential for small u

n
,

»@
46"

(u)+u2
.*/

u#bu2#bI u3 , (3.15)

we may derive an effective evolution equation for the wave envelope U assuming that the latter is
changing slowly of the scales of order of the lattice spacing (see details, e.g., in the paper by
Remoissenet, 1986),

2iU
t
!QU

zz
#GDUD2U"0 , (3.16)

where the variable z is connected with a reference frame moving with the wave group velocity, and
the parameters Q and G are functions of the parameters of the effective potential (see Remoissenet,
1986). Eq. (3.16) is the nonlinear Schrödinger (NLS) equation and it has localized soliton solution
provided QG'0, the latter condition is that for breathers to exist.

The effective NLS equation (3.16) describes a breather for any type of the substrate potential.
However, due to the presence of higher-order harmonics, only the SG model will support
nonradiating breathers because the integrability of the SG model implies a cancellation of this kind
of higher-order effects. For other type of the substrate potential, it has been rigorously shown that
exact breather solutions do not exist (see, e.g., Denzler, 1993; Birnir, 1994) and a breather, being
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excited in a chain, radiates slowly energy. This kind of long-lived radiation process has been
recently estimated for the breather of the /-model (Geike, 1994).

As will be shown below, the breathers and kink’s shape modes play a very important role in
kink—antikink collisions. In particular, collision of kinks with internal degrees of freedom may
display resonances (Campbell et al., 1983). In a nonintegrable FK model, a breather may be excited
in a result of inelastic (destructive) collision between a kink and antikink.

In the sections which follow below, we consider several examples of the non-sinusoidal substrate
potential »

46"
(u). One of the examples is the so-called double SG potential (see Frank and van der

Merwe, 1949b; Condat et al., 1983)

»(DSG)
46"

(x)J![cosx#s cos(2x)] . (3.17)

The potential (3.17) is topologically similar to the SG model for DsD(1/4, but it is characterized by
flat bottoms for 1/4(s(0 or by sharp wells for 0(s(1/4. Besides, the shape of the potential
(3.17) has a double well (DW) structure for s(!1/4 and a double-barrier (DB) form for s'1/4.
We would like to mention also more general on-site potentials proposed by Peyrard and Remois-
senet (1982) (see also Remoissenet and Peyrard, 1984) which will be also analysed below.

3.2. Nonsinusoidal on-site potential

A convenient shape of the on-site potential which describes a realistic situation, e.g., for systems
of adsorbed atoms, was suggested by Peyrard and Remoissenet (1982) (in the original paper the
parameter r"!s was used),

»(NS)
46"

(x)"
(1#s)2(1!cosx)
(1#s2!2s cosx)

, DsD(1 . (3.18)

The parameter s describes different shapes of the on-site potential at the unchanged amplitude,
including the case of flat bottoms or flat tops (see Fig. 9).

The phonon spectrum for the model (3.18) is characterized by the minimum (gap) frequency

u
.*/

"

(1#s)
(1!s)

, (3.19)

the kinks, by a characteristic width,

d
%&&
"u

.*/
d , (3.20)

and the kink mass is equal to (see Fig. 10)

m"m(SG)A
u

.*/
u* BG

tanh~1u* if s(0 ,

tan~1u* if s'0 ,
(3.21)

where u*,JDu2
.*/

!1D. The shape of the kink was found numerically in the work by Peyrard and
Remoissenet (1982). The kink is narrow, for the case of flat bottoms (s(0), and it is wide, for the
opposite case of sharp wells (s'0). The kink rest mass m

,
tends to zero provided sP!1, i.e.

kinks will be more easy to create in the systems with flat bottom potential.
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Fig. 9. Schematic presentation of the one-dimensional chain with the variable substrate potential (3.18) for different
values of the parameter s (Peyrard and Remoissenet, 1982).

Fig. 10. Relative kink mass as a function of the parameter s determined by the shape of the substrate potential (3.18)
(Peyrard and Remoissenet, 1982).

Considering properties of the discrete chain with the substrate potential (3.18), we may naturally
expect that the change of the potential shape will lead to a change of the PN barrier. This has been
confirmed in numerical simulations made by Peyrard and Remoissenet (1982) and it is shown in
Fig. 11. Analytically, the value E

PN
for this model was estimated by Ishibashi and Suzuki (1984).

They used the kink shape corresponding to the continuum approximation to calculate the system
energy for the discrete lattice. The result is given by the following expressions,

E
PN

E(SG)
PN

JG
exp(2n2Jg@s@

1`J@s@
) if s(0 ,

Dcos(2n2Jgs
1`s

)Dexp(2n2sJg
1`s

) if s'0 .
(3.22)

It is interesting that in the case s'0 (sharp wells) the amplitude of the PN potential E
PN

depends
nonmonotonically on the elastic constant g. We should note here that such a nonmonotonic
dependence of the PN energy vs. a variation of the coupling in the lattice had been discovered
earlier (Kurosawa, 1962; Sanders, 1962; Kratochvil and Indenbom, 1963; Hobart, 1965b; Ishioka,
1974) for a simplified periodic potential composed of a sequence of pieces of a shifted parabola. In
the standard FK model with the sinusoidal substrate potential the PN relief »

PN
(X) to the kink

motion has its minimum at, e.g., X"0, i.e. for the atoms arrangement with two central particles at
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Fig. 11. Ratio of the height of the PN potential, E
PN

, to the kink rest energy, e
k
, as a function of the kink width, d, for

different values of the parameter s (!0.8, 0, and #0.8) (Peyrard and Remoissenet, 1982).

Fig. 12. Kink structure for the substrate potential with sharp wells (see text).

the same potential well (see Fig. 12a), while a maximum of the PN potential is at X"n for the
atomic configuration shown in Fig. 12c when one of the atoms is at the top of the substrate
potential. Let us call this situation as the N- (i.e. normal) relief. The case s(0 in the nonsinusoidal
substrate (3.18) always corresponds to the N-relief. However, the case s'0 is more complicated.
Apart from the N-relief, the so-called I- (i.e. inverse) relief may be observed when the configuration
shown in Fig. 12a corresponds to a potential maximum, and that shown in Fig. 12c, to a minimum
of the function »

PN
(X). Such a situation is realized for certain values of g, and the cases of the

N- and I-reliefs alternate. In addition, between the regions of the N- and I-relief there exist
intermediate regions where both the configurations shown in Fig. 12a and 12c correspond to
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maxima of »
PN

(x) but a minimum is realized at some intermediate configuration (see Fig. 12b) with
0(X(n. As a result, the dependence E

PN
vs. g in the intermediate regions has well pronounced

local minima (see Fig. 11). It is interesting to note that if the substrate potential consists of
a sequence of parabolic, the value E

PN
in these intermediate regions vanishes (Kratochvil and

Indenbom, 1963; Ishioka, 1974). It is rather clear that in the limit gP0 the features of the PN
potential disappear, and it approaches the function »

46"
(X).

Dynamics of the FK model with nonsinusoidal substrate potential is qualitatively similar to that
of the standard FK model described above. The motion of a FK kink is accompanied by radiation
of phonons caused by the model discreteness (see, e.g., Peyrard and Remoissenet, 1982). An effective
radiation-induced friction coefficient g increases with increasing of DsD due to an increase of the PN
barrier, E

PN
. The collisions of kinks with phonons and kink—kink collisions are almost elastic, but

the effective phase shift of the kinks now depends on the parameter s. Nevertheless, the FK model
with a nonsinusoidal substrate potential displays at least two novel features in the kink dynamics,
comparing with the standard FK model. The first feature is the existence of small-amplitude
breathers only for a certain interval of the parameter s, namely, the breathers (described approxim-
ately by an effective NLS equation for the slowly varying wave envelope) exist for the values lying
within the interval s

0
(s(1, where s

0
"J24!5+!0.1. The second new feature of the model

is the existence of the internal (shape) modes of the kinks for s'0. These two main features of the
nonlinear waves in the generalized FK model with nonsinusoidal substrate significantly modify the
dynamics of the kink—antikink collisions.

For the nonsinusoidal potential with s(0 there exists a critical kinetic energy, K
#3
, such that fast

kink and antikink with the initial kinetic energy larger than K
#3

pass through each other almost
without changes of their energies. Otherwise, the collision is inelastic and generally the kink and
antikink cannot escape from the effective (attractive) interaction potential because of a loss of
a part of their energy for radiation. Therefore, the kink and antikink form a bound state as
a large-amplitude (LA) breather which loses its energy transforming into a small-amplitude (SA)
breather. However, the further evolution of such a bound state differs for the cases s's

0
and

s(s
0
, s

0
is defined above. In the former case, the LA breather slowly evolves into a SA breather

(according to a power law). Otherwise, i.e. for !1(s(s
0
, when the LA breathers are not

possible in the system, the SA breather decays much more rapidly radiating two bumps (wave
packets). Thus, in the latter case the kink—antikink collisions are destructive.

In the case when the substrate potential has sharp wells (s'0), the kink—antikink collisions
exhibit novel phenomena caused by the kinks’ internal modes. Namely, the final state of the
kink—antikink collision below the threshold K

#3
depends on the initial value of the relative kink

velocity, so that such a collision may produce either a breather, as a final state which slowly decays,
or it may result in a resonant (nondestructive) collision when the kinks do not annihilate. The
resonant elastic interaction between a kink and antikink is due to the resonant energy exchange
between the kink translational mode and its internal mode, and such type of resonances has been
analysed first for the /4 model by Campbell et al. (1983) [see also Anninos et al. (1991) and
references therein], and later, for the potential (3.18), by Peyrard and Campbell (1983). They found
that the regions where the trapping into a decaying bound state takes place (the so-called resonant
velocity “windows”), and the regions characterized by almost elastic transmission of kinks,
alternate. Numerical simulations showed that if the initial value of the relative kink velocity is
selected in the resonant velocity “window”, then kink and antikink become coupled just after the
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first collision and they start to oscillate. However, after a few oscillations the kinks escape to
infinities. The explanation proposed by Campbell et al. (1983) is based on the so-called resonant
energy exchange mechanism. Indeed, in this case both kinks possess internal (shape) modes which
are excited just after the first collision provided the relative kink velocity is not large enough. When
the shape modes are excited, they remove a part of the kinks’ kinetic energy from the translational
motion of the kinks. The kinks turn back because of a mutual attractive interaction, so that they
interact with each other again. The energy stored in the kinks’ shape modes may be now realized
provided certain resonant conditions are satisfied,

u
B
¹

12
+2nn#d , (3.23)

where u
B

is the shape mode frequency, ¹
12

is the time between the first and the second kink
collisions, and d is the offset phase. The integer number n plays a role of the number of the
resonance, and it determines a sequence of the resonant velocities for the kink escape below the
critical value of the relative velocity for the capture. In fact, the total number of the resonances
(i.e. windows) is limited by radiation. The phenomenological explanation of the resonant effects
proposed by Campbell et al. (1983) accurately describes the resonance structures in the kink
collisions observed in direct numerical simulations, and the existence of such resonances has been
shown for several nonlinear models, including the DSG model and the /4 model.

Finally, it should be noted that the properties of the FK model with nonsinusoidal substrate
potential are rather general. For example, analogous types of the nonlinear dynamics may be
observed for the DSG model (Campbell et al., 1986) for DsD(1/4, in particular, the LA breather
modes exist provided s'!1/16, and the kink shape mode appears for s'0.

To conclude this section, we note that there exist some “exotic” shapes of the substrate potential
»

46"
(x) which produce an exactly vanishing PN potential to the kink motion, i.e., E

PN
"0.

A systematic procedure for obtaining these exotic cases was developed by Speight and Ward (1994).
In particular, above we have mentioned that such an effect may take place for the substrate
potential composed of a sequence of parabolas but only for certain values of the model parameters.
Another example was given by Bak (1982), and this potential is defined by its first derivative, as
follows:

»@
46"

(x)"4 tan~1A
j sinx

1!j cosxB , (3.24)

where j"tanh2(a
s
/d). For the potential (3.24) the discrete motion equation has an exact discrete

kink solution which coincides with the shape of the SG kink,

u
n
(t)"4 tan~1exp[!(na

s
!X)/d] .

This solution is exact, and the kink moves freely along a discrete chain, so that the kinks energy
does not depend on its effective coordinate X. Notice, however, that this model still remains
nonintegrable unlike the SG one.

3.3. Multiple-well potential

In this section we investigate the FK model with the substrate potential which possesses more
than one absolute minimum per period a

s
"2n. As a consequence of this shape of the potential,
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Fig. 13. Schematic presentation of a double-well substrate potential (3.25).

more than one type of kink solutions are possible, and more than one phonon spectrum branch is
observed. As a typical example, let us consider the double-well (DW) potential proposed by
Remoissenet and Peyrard (1984) (see Fig. 13)

»
46"

(x)"
(1!s)4[1!cos (2x)]
(1#s2#2s sinx)2

, (3.25)

where 04s4#1. This potential has two distinct minima, one at x
01
"0 and another at x

02
"n,

at which the energy values coincide, »
46"

(x
01

)"»
46"

(x
02

)"0. The minima are separated by two
barriers, at x

m1
and x

m2
, where the first maximum depends on the parameter s,

»
46"

(x
m1

)"2A
1!s
1#sB

4
, (3.26)

while the second barrier has the fixed value, »
46"

(x
m2

)"2.
The FK model with the DW substrate potential has two types of ground states (see Fig. 14). In

the “left ground state” (LGS) shown in Fig. 14a, all the atoms in the chain occupy the “left” minima
of the DW potential, x

n
"x

01
#2nn (n"0,$1,2), and in the “right ground state” (RGS) shown

in Fig. 14b, they occupy only the “right” minima, i.e. x
n
"x

02
#2nn. Both the ground states are

characterized by the same phonon spectrum (3.1) with

u
.*/

"2
(1!s)2
(1#s2)

. (3.27)

The standard 2n kink, which connects two equivalent ground states, say LGS and LGS-2n, now
splits into two separate subkinks. One subkink connects LGS and RGS (see Fig. 14c), and it is
called large kink (LK) because it overcome the largest barrier. Another subkink, small kink (SK),
connects the states RGS and LGS-2n, and it overcome the lower energy barrier (see Fig. 14f).
Analogously, large and small antikinks may be defined in the system, LK and SK shown in
Fig. 14d and e.

It is clear that the chain can support a single LK and single SK which are, as a matter of fact,
independent topological excitations of the chain. The LKs and SKs have the properties similar to
those of the kinks in the standard SG model, however, their parameters are naturally different from
the corresponding parameters of the SG kink (see Remoissenet and Peyrard, 1984). For example,
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Fig. 14. Structures of the ground states and kinks in the FK model with the double-well substrate potential: (a) “left” GS,
(b) “right” GS, (c) large kink, (d) large antikink, (e) small antikink, and (f) small kink.

the kink masses coincide at s"0 and tends to zero for sP#1, but generally they are different so
that m

SK
(m

LK
. Besides, these two types of the kinks are different, namely the SK has an internal

(shape) mode whereas the LK has no such an extra degree of freedom. The latter difference makes
some dynamical effects related to the kink collisions different for SKs and LKs as well.

The standard FK model allows an arbitrary sequence of the kinks and/or antikinks. In the DW
model, however, some of the kink combinations are forbidden due to topological constrains. For
example, in a periodic train of kinks SKs and LKs should alternate because the situation when one
“extra” atom is installed into the chain corresponds to a pair LK#SK. In fact, the DW model
allows only four sequences of the kink and antikink combinations, SK#LK, SK#LK,
LK#LK, and SK#SK. Therefore, only collisions between those kinks is possible in the DW
model.

SK#LK (or SK#LK) kink collision. As usual, two kinks of the same topological charge repel
each other, and in the present case two different kinks cannot pass through each other because of
topological constrains. Therefore, the kink collision should display a reflection, and such a reflec-
tion is almost elastic for g<1 (Remoissenet and Peyrard, 1984).

LK#LK collision. Numerical simulations by Remoissenet and Peyrard (1984) have shown that
this type of kink and antikink pass through each other transforming into a pair SK#SK as should
follow from the viewpoint of topological constrains. Such an effect of the kink transformation was
analysed earlier by Maki and Kumar (1976) and Schiefman and Kumar (1979) in the framework of
the DSG equation. The difference in the kink rest energies, De"2(m

LK
!m

SK
)c2'0, is converted
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into the kinetic energy of the small kinks according to the energy conservation which, as has been
verified, holds with a good accuracy even when the effect of radiation is not taken into account.
However, in a highly discrete chain when g&1, the energy excess De may be taken out by radiation
leading to a decay of the kink—antikink pair with formation of a breather state.

SK#SK collision. When the initial kinetic energy K
*/

of small kinks is large enough, namely
K

*/
'2(m

LK
!m

SK
)c2, they can pass through each other converting into a slowly moving

LK#LK pair. Otherwise, small kinks behave similar to those of the /4 model, i.e. they may be
trapped into a breather state provided the initial velocity is smaller than a certain critical value.

Campbell et al. (1986) have studied in detail the kink collisions in the DSG model (3.18), which
has the DW shape for s(!1/4. Unlike the model with the potential (3.25) considered above, the
DSG subkinks have different amplitudes, Du

SK
(Du

LK
, where Du"Du

,
(#R)!u

,
(!R)D, so

that the SK disappears when the lower barrier vanishes, i.e. for sP!1/4. Besides, SK in the DSG
model has an internal (shape) mode. Therefore, the SK#SK collisions at small kinetic energies
exhibit resonance phenomena caused by the energy exchange between the kinks translational
modes and their internal modes similar to the case described in the previous section (see Campbell
et al., 1983, 1986; Peyrard and Campbell, 1983).

Model with a more general shape of the substrate potential has been introduced in the theory of
solitons in hydrogen-bonded chains, where topological solitons characterize different types of
defects in such a system (Zolotaryuk and Pnevmatikos, 1990),

»a,b(x)JC
cosx!a

1!b(cosx!a)D
2

. (3.28)

Here the parameter a (DaD(1) describes a relative width of two barriers as well as it controls the
distance between the neighboring minima of the substrate potential. The second parameter
b describes the relative height of the barriers. The potential reduces to the sinusoidal form for the
case a"b"0, and to the DSG potential, for b"0. For the potential (3.28), a mass of the “small”
kink may be larger than that of a “large” kink.

The discussion presented above has involved only the case of a symmetric substrate potential.
However, in a general case the substrate potential may have wells with different curvatures. As
a consequence, there exist more than one branch of the phonon spectrum in the model. For
example, for the asymmetric double-well (ADW) potential proposed by Remoissenet and Peyrard
(1984) (see Fig. 15),

»
46"

(x)"
(1!s2)2[1!cos (2x)]

(1#s2#2s cos x)2
, (3.29)

where 04s41, the LGS has the minimum phonon frequency gap

u(L)
.*/

"

(1!s)
(1#s)

(1 , (3.30)

while the RGS is characterized by the gap

u(R)
.*/

"

(1#s)
(1!s)

'1 . (3.31)
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Fig. 15. Schematic presentation of the asymmetric substrate potential (3.29) proposed by Remoissenet and Peyrard
(1984).

In this system, there are two subkinks, the “left kink” (LK), which links the LGS and RGS, and the
“right kink” (RK) which is just reverse, so that the kinks may be transformed to each other by
a mirror transformation. The shape of a kink is asymmetric (i.e. such a kink is oriented) because its
tails lie in the wells of different curvatures. For example, the LK has the long-range left-hand tail,

u
,
(xP!R)J!exp(!u(L)

.*/
DxD/d) ,

and the sharp right-hand tail,

u
,
(xP#R)J!n#exp(!u(R)

.*/
x/d) .

The kink’s mass is the same for both the kinks,

m"m(SG)
(1!s2)

4s
lnA

1#s
1!sB ,

and it varies from m(SG)/2, at s"0, to zero, at s"1.
A kink in the FK model with ADW potential (3.29) possesses a shape mode with the frequency

u
B
. Remoissenet and Peyrard (1984) have found an interesting phenomenon: For 0(s(0.4 the

value of u
B
lies between the frequencies (3.30) and (3.31). Therefore, when the shape mode is excited,

e.g., during the kinks collision, it rapidly decays due to radiation of the phonons around the LGS
toward the more smooth kink tail. As a natural result, resonance structures may be observed only
for RK#RK or LK#LK collisions, when kink and antikink collide by their smooth tails (the
“soft” collision), and the chain outside the collision region is in the RGS which is characterized by
the phonon frequencies u5u(R)

.*/
'u

B
. Numerical simulations by Remoissenet and Peyrard (1984)

demonstrated the existence of the reflection velocity windows for this kind of the kink collisions.
It is clear that each the GS (LGS or RGS) may support its own breather mode in the ADW

model. Remoissenet and Peyrard (1984) have shown that the RGS (sharp wells) always supports
a SA breathers, while the LGS (flat bottoms) supports LA breather mode provided 0(s(s*,
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Fig. 16. Structure of the kink in the FK model with the double-barrier substrate potential.

where s*"2!J3+0.268. Therefore, for s*(s(1 a LA breather cannot be excited in a result of
the hard-core kink—antikink collisions (i.e., in collisions LK#LK or RK#RK when kinks collide
from the side of their short-range tails), and the kinks are destroyed emitting phonons. Other cases
of the kink collisions are similar to the standard SG-type model, and such collisions may be treated
as those of quasi-particles. However, due to asymmetry of the kink shape, a kink and antikink may
collide from the side of by their long-range tails (“soft” collision) and the chain outside the collision
region is in the RGS, or the kink and antikink may collide from the side of by their short-range tails
(the so-called “hard” collision). As a matter of fact, the soft collisions are almost perfectly elastic,
while the hard collisions are inelastic and they are accompanied by strong emission of phonons
(Remoissenet and Peyrard, 1984).

3.4. Multiple-barrier potential

In some cases when the FK model is used to describe realistic physical object, e.g., those briefly
discussed in the Introduction, the substrate potential may have a complicated structure with
additional local minima, for example, the double-barrier (DB) structure as shown in Fig. 16. In this
case the system may be observed in a “metastable ground state” (MGS) when all the atoms of the
chain occupy the local minima of the substrate potential. Similar to the DW model considered in
the previous subsection, the 2n-kink of the DB model will split to give two subkinks connecting
GS—MGS and MGS-(GS-2n) which repel each other. However, unlike the case of the DW
potential, now the atoms in the region between the subkinks are in the metastable (excited) state
(see Fig. 16). This leads to an attraction between two subkinks because the energy of the 2n-kink
increases with an increase of the distance between the subkinks, i.e. with a number of atoms
occupying the MGS. As a result of a competition of this attraction and the conventional repulsion
of the subkinks of the same topological charge, there exists an equilibrium distance R

0
which

realizes a minimum of the 2n-kink energy. Thus, the DB kink may be considered as a “molecule”
(2n-kink) composed of two “atoms” (subkinks or n-kinks) coupled together by a nonlinear
potential º

DB
(R) which has a minimum at R"R

0
. It is clear that the DB kink should always have

a shape mode with the frequency u
B
, with a natural physical interpretation: Such a mode

corresponds to an internal oscillation of the “atoms” in the “molecule”.
As an example, let us consider one of the most frequently occurring substrate potentials, the

double SG potential (3.17), which has the double-barrier structure provided s'1/4. Introducing
the new parameter r according to the relation s"(1

2
sinh r)2, r'ln(1#J2)+0.881, the DSG

potential can be presented as

»
r
(x)"

4 sinh2 r
cosh4 r G(1!cosx)#

1
4

(sinh2 r)(1!cos 2x)H . (3.32)
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The potential (3.32) has a minimum, at x
0
"0, and two maxima, at x

m
"n$cos~1(cosh2r),

»
r
(x

m
)"2, and a relative minimum at x

"
"n, »

r
"8 sinh2r/cosh4r, per one period a

s
"2n.

In the continuum limit approximation, when g<1, the static DB kink (antikink) has a simple
form,

u(DB)(x)"G2 tan~1C
sinh(y)
cosh(r)D , (3.33)

where

y"2(x!X)/d (3.34)

The mass of the kink is defined as

m(DB)(r)"m(SG)
sinh r
cosh rC1#

2r
sinh(2r)D'm(SG) . (3.35)

It is interesting to mention that the static kink (3.33), (3.34) of the DSG equation can be exactly
expressed as a sum of the single kink solutions of the standard SG equation (Giachetti et al., 1984;
Campbell et al., 1986),

u(DB)(x)"G[un(RI #y)!un(RI !y)] , (3.36)

where un(y)"2 tan~1exp(y), RI "r and y is determined by Eq. (3.34). Thus, the parameter X can be
considered as the coordinate of the kink center of mass, and the parameter R"RI d, as the distance
between two subkinks of the DB kink. Willis et al. (1987) have analysed a complete Hamiltonian
dynamics of a DB kink in the DSG model introducing two collective variables X(t) and R(t), and
the corresponding conjugate momenta as canonical variables. Analogously to the Hamiltonian
formalism for the SG model, in the present case one should add one more degree of freedom
(internal oscillations) and to modify the Poisson brackets. After some lengthy calculations, Willis
et al. (1987) have proved that the energy of the DSG kink in such an approach may be presented in
the form,

H
DB

"

1
2

m(DB)A
dX
dt B

2
#

1
2

m(R)A
dR
dt B

2
#º

DB
(R) , (3.37)

where m(DB) is determined by Eq. (3.35),

m(R)(r)"P
=

~=

dx
2nA

u(DB)

R B
2
"

1
4
m(SG)

sinh r
cosh rC1!

2r
sinh(2r)D , (3.38)

º
DB

(R)"m(SG)c2
sinh r

2cosh rG1#
tanh2 r
tanh2RI

#2RI C
1

sinh(2RI )
#

cothRI
cosh2 r

!

tanh2r cothRI
2 sinh2RI DH , (3.39)

where RI ,R/d. For small-amplitude internal oscillations, the energy º
DB

(R) may be expanded to
be

º
DB

(R)+m(DB)#1
2
m(R)u2

B
(r)(R!R

0
)2 , (3.40)
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where R
0
"rd and u

B
(r) is the frequency of the internal oscillation,

u2
B
(r)"

1
m(R)(r)A

d2º
DB

dR2 BK
R/R0

. (3.41)

The value u
B

can be calculated from Eqs. (3.38), (3.39) and (3.41) and also can be found as an
eigenvalue of the Schrödinger equations (3.12), (3.13). The latter method leads to the result (Sodano
et al., 1986),

u
B
+u

.*/
J1!b2 , (3.42)

where

b"
1
2CA1#

8
a2

tanh2rB
1@2

!1D , (3.43)

a"
tanh2r sinh(2r)
[sinh(2r)!2r]

. (3.44)

The potential º
DB

(R) defined by Eq. (3.39) is anharmonic. Thus, as the amplitude of the
“molecule” oscillations increases going to a nonlinear regime, anharmonicity of the potential
º

DB
(R) becomes important, and higher-order harmonics of the fundamental frequency will mani-

fest themselves important in nonlinear dynamics of the kink. However, a coupling of the internal
oscillations to the phonons is extremely weak because it is caused only by higher-order resonances.
Numerical simulations carried out by Burdick et al. (1987) have shown that an effective damping of
the internal oscillations is negligible even when the oscillation become nonlinear.

In the limit rPR, the DSG potential (3.32) reduces to the SG one with the period a"n, the
DB kink (3.36) splits into two separate SG n-kinks, and u

B
P0. We note also that in the discrete

case the Hamiltonian (3.37) should include the PN potential for the subkinks.
Campbell et al. (1986) have studied numerically the DSG kink—antikink collisions, and they

demonstrated the existence of the “resonance windows” due to an energy exchange mechanism
between the kinks translational and internal modes. The resonance velocity windows correspond
to the situation when the kinks collide inelastically with a possibility to form a breather state or to
be scattered conserving their identities. For r'1/4 a qualitatively new effect can be also detected,
namely, two counter-propagating breathers may emerge as the final result of the kink—antikink
collision. The resonant energy exchange can be understood in the framework of an effective
collective-coordinate model treating the scattering process as a collision of two “molecules”, each
consisting of the DB kink and DB antikink.

4. Anharmonic interatomic interaction

4.1. Preliminary remarks

In the classical FK model, a coupling between the neighboring particles in the chain is assumed
to be harmonic. However, for describing realistic physical systems, different types of anharmonic
interatomic potentials should be taken into account in the FK model. Such generalized FK models
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allow to describe qualitatively new physical effects such as breaking of the kink—antikink sym-
metry, appearance of a new type of dynamical solitons (supersonic waves), a possible breakdown of
the solitonic excitations (namely, antikinks) which is followed by a “rupture” of the chain, a change
of the ground state of the model, a change of the interaction between the kinks, etc.

There are several ways to introduce anharmonic interparticle interaction into the FK model for
modeling realistic physical systems. As an example, we briefly discuss here several mechanisms of
interaction between atoms adsorbed on a crystal surface (for details, see, e.g., Einstein, 1978; Braun
and Medvedev, 1989).

When adatoms are charged, then the Coulomb repulsion »
*/5

(x)+e2/x (e is the adatomic
charge) (Vorotyntsev et al., 1979) acts between them for distances x(a* (a* being the screening
radius which is equal to the Debye screening radius, for a semiconductor substrate, and to the
inverse Thomas—Fermi momentum, for a metallic substrate). For a semiconductor substrate, the
value a* is large enough, and the main contribution into the interaction potential is power-law,
»

*/5
(x)Jx~1. For adsorption on a metallic substrate the value of the screening radius a* is of order

of the lattice constant; for x'a* the interaction of adatoms has a dipole-dipole character:
»

*/5
(x)+2p2

A
/x3 (Bolshov et al., 1977), p

A
being the dipole moment of an adatom. If adatoms are

neutral, then the overlap of their electronic shells gives rise in a direct interaction, which decreases
exponentially with the distance, »

*/5
(x)Jexp(!bx) (Einstein, 1978). More complex interaction

laws are possible as well, such as for the so-called “indirect” mechanism of adatom interaction
(Einstein, 1978; Braun, 1981; Braun and Medvedev, 1989) which may be approximated by the
following generalized law:

»
*/5

(x)&x~n sin (2k
F
x#/) ,

where n varies from 1 to 5 depending on the electronic structure of the substrate, / is a constant
phase, and k

F
is the Fermi momentum of the substrate electrons. In the latter case, an attraction

(or “effective” attraction) can appear for adatoms at some distances.
To cover a larger class of physically important systems, here we consider the following

interaction potentials:

f exponential

»
*/5

(x)"»
0
exp[!b(x!a

s
)] , (4.1)

where »
0

is the energy of interaction between adatoms occupying the nearest neighboring
minima of this substrate potential, and the parameter b characterizes anharmonicity of the
potential;

f power-law

»
*/5

(x)"»
0A

a
s

xB
n

, (4.2)

where n is an integer number (n51);
f Morse potential

»
*/5

(x)"»
m
[e~2b(x~a0)!2e~b(x~a0)] , (4.3)

where a
0

is the equilibrium distance, and »
m

is the depth of the potential well, and, at last,
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f double-well potential

»
*/5
"»

m
[1
2
b4(x!a*)4!b2(x!a*)2] . (4.4)

The latter potential has two minima at x"a*$b~1 and it can approximate qualitatively the
oscillating potential which appears for the ‘indirect’ interaction of adatoms.

The potentials (4.1) and (4.2) are repulsive. Of course, one can include also an attractive branch of
the form »

*/5
Jx so that the resulting potential will have a minimum at some x

0
. Such a modifica-

tion will produce changes only for the case of the finite chain. In the present survey, however, we
consider an infinite FK chain.

The potentials (4.1) and (4.2) are convex, i.e. »A
*/5

(x)'0 for all x'0, while the potentials (4.3)
and (4.4) are nonconvex. The potential (4.3) is concave for x'a

0
#b~1 ln 2, and the potential (4.4)

is concave for the region a*!b~1/J3(x(a*#b~1/J3. As a result, at some values of the
parameters a

0
(or a*), b, and »

m
the ground state of the system becomes nontrivial, and its

excitation spectrum is changed. The FK model with nonconvex potentials (4.3) and (4.4) is
considered in Section 4.3. The exponential potential (4.1) and, especially, the power-law potential
(4.2) are long-range potentials. Therefore, the interaction of more neighbors than nearest neighbors
should be taken into account. This kind of problems is discussed in Sections 4.3 and 4.4, where we
show that the interaction of all neighbors changes the system parameters for the exponential
interaction (4.1) while in the case of the power-law interaction (4.2) the motion equation of the
system becomes nonlocal even in the continuum limit approximation.

4.2. Short-range interaction

For small anharmonicity of the interatomic interaction, the potential can be expanded into
a Taylor series to yield the following motion equation (Braun et al., 1990)

d2u
n

dt2
#sin u

n
!»@@

*/5
(a

s
)(u

n`1
#u

n~1
!2u

n
)C1#

»@@
*/5

@(a
s
)

2»A
*/5

(a
s
)
(u

n`1
!u

n~1
)D"0 . (4.5)

Neglecting the discreteness effects, i.e. using the continuum limit approximation, Eq. (4.5) can be
reduced to the form,

u
tt
#sin u!d2u

xx
(1#adu

x
)"0 , (4.6)

where we have introduced the parameter d, defined according to Eq. (2.29), as

d"a
s
Jg , g"»A

*/5
(a

s
) , (4.7)

and the dimensionless anharmonicity parameter a,

a"
a
s

d
»@@@

*/5
(a

s
)

»@@
*/5

(a
s
)
. (4.8)

Anharmonicity does not change the spectrum of linear excitations (phonons) of the chain.
However, a kink solution of Eq. (4.6) differs from that in the harmonic FK chain. At small
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a a stationary kink solution can be found by the perturbation theory (see, e.g., Kivshar and
Malomed, 1989),

u
,
(z)"u(SG)

,
(z)#aua(z) , (4.9)

where

ua(z)"!4
3
tan~1(sinh z)sech z (4.10)

with z"x/d. A simple analysis shows that anharmonicity of interatomic interaction destroys the
symmetry between a kink and an antikink because according to Eq. (4.9), the correction ua is
independent on p. This means that the effective kink width changes by an amount of pa(nd/3), i.e.

d
%&&
"d(1!npa/3) . (4.11)

This leads to the corresponding change in other parameters characterizing the properties of the
kink and antikink, e.g., the effective mass,

mp+m(SG)(1#npa/6) , (4.12)

and the amplitude of the PN potential which may be estimated as

E
PN

+E(SG)
PN

(g)!
2n
3

pag
E(SG)

PN
(g)

g
, (4.13)

where the function E(SG)
PN

(g) is defined by Eq. (2.50). We note also that the energy of kink—antikink
pair creation is given by

e
1!*3

"eSG
1!*3A1!

4
27

a2B, eSG
1!*3

"2eSG
,

. (4.14)

Such a symmetry breaking between the kink and antikink was firstly found by (Milchev and
Markov (1984), see also Markov and Milchev, 1985; Braun et al., 1991). The change of the kink
shape may result in the appearance of low-frequency (or high-frequency) shape mode of the kink, as
has been shown by Zhang (1996).

For the exponential interatomic potential (3.1) the parameters g and a are calculated to be

g"»
0
b2, a"!ba

s
/d . (4.15)

If the anharmonicity parameter a is negative, the effective width of the kink (at p"#1) is larger,
while that for an antikink (p"!1) is lower than for the SG kink. This phenomenon has a simple
physical interpretation. Indeed, effective interaction forces for a kink (i.e., in the region of local
contraction of a chain) exceed those for an antikink (in the region of local extension of a chain).
Because of that, at the same value of the system parameters, »

0
and b, a kink, as compared with an

antikink, is characterized by lower values of the effective mass and Peierls energy. These qualitative
consideration is substantiated by Fig. 17 adopted from the paper by Braun et al. (1990) which
presents the results of calculation of the dependencies E

PN
(g) and m(g) for the FK model when the

interaction between only nearest neighboring atoms is taken into account, but, at the same time, in
contrast to the standard FK model, the interaction potential is exponential as in Eq. (3.1). It can be
seen that a “splitting” of the curves in Fig. 17 is larger for larger values of b.
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Fig. 17. Amplitude of the PN potential, E
PN

(a) and the kink’s effective mass m (b) for kink and antikink as functions of

the parameter l"nJg for the case when the nearest neighbors interact via exponential forces defined by Eq. (4.1) at

various values of the anharmonicity parameter b: b"0 (the classical FK model), b"J12/2n, and b"J30/2n. Dashed
lines show analytical asymptotic results (see details in Braun et al., 1990).

Eq. (4.11) indicates that the width of an antikink vanishes with increasing of the anharmonicity
parameter b. In order to analyse such an effect in more details, Milchev and Markov (1984) applied
the operator relation, u

nB1
"exp($a

s
£)u

n
to the discrete version of the FK model with the

exponential interaction and they obtained the operator equation

2g expM!b[sinh(a
s
£)]uNsin Mb[cosh(a

s
£)!1]uN"b sin u . (4.16)

Keeping the lowest-order derivatives in Eq. (4.16), it can be reduced to (Milchev, 1986)

d2u
xx

exp(adu
x
)"sin u . (4.17)

Integration of Eq. (4.17) yields

1!(1!adu
x
) exp(adu

x
)"(b2/g)(C!cos u) , (4.18)
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where C is a constant. The value C"1 corresponds to a separatrix curve on the phase plane (u
x
, u),

which connects the points u"0, and u
x
"0, and this a homoclinic trajectory corresponds to a kink

(antikink) solution of Eq. (4.17). Substituting u"n into Eq. (4.18), we find

(1!adu
x
) exp(adu

x
)"1!2b2/g , (4.19)

which determines the value u
x
at the kink center. It is easy to see that Eq. (4.19) has no solution for

antikink (u
x
'0) for b'b

#3
"Jg/2, i.e. if a(a

#3
"!1/J2. In this case the separatrix corre-

sponding to an antikink (an extra hole) is discontinuous (i.e., u
x
PR). The latter means that the

exponential potential (4.1) cannot withstand the chain extension, and the chain breaks into two
disconnected (semi-infinite) parts (Milchev, 1986). The analysis made by Milchev and Mazzucehelli
(1988) has shown that the antikink’s effective width tends to zero as d

%&&
"dJ1!2a2 when aPa

#3
.

The energy of the kink—antikink repulsion, »
kkM

(R)Jexp(!R/d
%&&

), also vanishes for a(a
#3
. Thus,

for large enough anharmonicity of the interatomic potential, antikinks may come closely to each
other creating a cluster of extra holes in the chain, and this explains the effect of the chain
“rupture”. Such an effect may be clearly observed in collisions of kinks and antikinks as well as in
kink interactions with inhomogeneities (such as interfaces). In fact, this phenomenon can be
observed for different cases when the antikink changes its effective width interacting with an
antikink or an interface (Milchev et al., 1992).

Of course, the continuum limit used above breaks down at aPa
#3

even in the case of gPR.
The predicted “rupture” of the atomic chain is a physical artifact which is explained by nonapplica-
bility of the continuum limit approximation; such a “rupture” indicates only that the effective width
of an antikink becomes smaller than the lattice spacing a

s
, and the energy of disorder of a regular

chain of antikinks is rather small. The real rupture of the chain is possible only for nonconvex
interatomic potentials such as the Morse potential (3.3) (see Section 4.3 below). In the case when
a&a

#3
, the antikink’s parameters can be calculated with the help of a weak-bond approximation

(Joos, 1982; Braun et al., 1990).
For a(a

#3
the amplitude of the PN potential for the antikink tends to the value of the substrate

potential amplitude, e
s
"2 (see Fig. 17), so that an antikink cannot move freely along the chain and

it is strongly pinned at a PN potential well. Otherwise, a kink (a local contraction of the chain)
propagates along the anharmonic FK chain more freely than along the harmonic one, because
d
%&&

(p"#1)'d and E
PN

(p"#1)((E
PN

)
)!3.

.
Besides the kinks and antikinks, an anharmonic chain supports the so-called supersonic shock

waves. To show this, let us neglect the substrate potential, then the chain of atoms interacting via
the exponential forces coincides with the well-known Toda lattice (Toda, 1967, 1981). The Toda
soliton has the following shape,

u
n
(t)"ma

s
#

1
b

lnG
1#exp(!2i)/

n
(t)

1#/
n
(t) H , (4.20)

where

/
n
(t)"exp(z

n
/d

%&&
), z

n
"na

s
!vt . (4.21)

Soliton in the Toda lattice propagates with the velocity v'c, and it is characterized by the
effective width, d

%&&
"a

s
/2i, mass, m"1/bd

%&&
, momentum, p"mv, and energy, e

T0$!
"

2»
0
(sinhicoshi!i). The parameter i"i(v) used above is determined by the equation
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(sinhi)/i"v/c (recall that we use the units where c"d"a
s
Jg). The Toda soliton is a kink-like

excitation which carries a jump of the atomic displacements equal to Du"!ma
s
propagating

along the chain. Such an excitation is dynamical and it cannot be static similar to the topological
kink of the FK model.

To the best of our knowledge, propagation of supersonic solitons along the anharmonic FK
chain has been not investigated yet. However, we may suppose that a Toda-like soliton can
propagate in the FK chain during a finite time. Owing to the periodic substrate potential,
a travelling soliton will lose its kinetic energy decreasing its velocity. When the value of v coincides
with the critical velocity c, the Toda soliton should decay into FK kinks or/and radiation. The total
number of the FK kinks may be estimated from the viewpoint of topological constrains,
n
,
"[m!1/2], where [2] stands for an integer part.
Recently, the supersonic motion of topological solitons has been studied by Savin (1995) for the

/4-model with anharmonic interatomic interaction. Savin has found that for certain kink vel-
ocities, when the jump in the atomic displacements Du matches exactly the period of the substrate
potential, i.e. nDu"!a

s
, n being integer, the supersonic kink moves almost without radiation of

phonons. Thus, the supersonic kink may be considered as n Toda solitons coupled together by the
topological constrain due to the external substrate potential.

It is interesting to note that for a special form of the interatomic potential,

»
*/5

(x)"1
2
g(x!a

s
)2[1# 1

48
(x!a

s
)2] , (4.22)

where the anharmonicity parameter is the certain number, equal to 1
48

, the motion equation of the
FK model in the continuum approximation has an exact kink solution of a standard form,

u
,
(x, t)"4 tan~1expG!

(x!vt)
d
%&&

H , (4.23)

which can propagate with an arbitrary velocity v (Kosevich and Kovalev, 1973; Konno et al., 1974).
The effective width of the kink (4.23) is given by the formula

d
%&&
"

a
s

J6GCA
v
cB

2
!1D#SCA

v
cB

2
!1D

2
#

1
3A

a
s

dB
2

H
~1@2

, (4.24)

so that in the limit DvD;c the kink’s width approaches the value given by the standard SG model,
d
%&&
"dJ1!(v/c)2, while in the case of the supersonic motion, when DvD<c, the kink width is given

by the expression d
%&&
+a

s
c/J12(v2!c2), which looks like the corresponding width of a dynamical

Toda soliton.

4.3. Nonconvex interatomic potentials

In the sections above we have assumed that the interatomic interaction in the chain is described
by a convex function, i.e. »A

*/5
(x)'0 for all x'0. The opposite case of the concave potential, i.e.

when »A
*/5

(x)(0, is less interesting from the physical point of view because, according to the
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inequality

»
*/5

(a!Da)#»
*/5

(a#Da)!2»
*/5

(a)(0 , (4.25)

all the atoms will come together to one well of the substrate potential.
In the present section we will consider the so-called nonconvex interatomic interaction potential

which has an inflection point a
i
defined by the equation »A

*/5
(a

i
)"0. The FK model with such

a potential exhibits complicated properties and a rich nonlinear dynamics due to the existence of
two competing length scales, the period of the substrate potential, a

s
"2n, and the scale which is

given by the inflection point a
i
at which the strength of the interatomic bond reaches its maximum.

For definiteness, let us suppose that the potential »
*/5

is convex beyond the inflection point,
i.e. »A

*/5
'0 for x(a

i
, and it is concave at larger distances similar to the Morse potential (3.3). The

opposite case is reduced to that mentioned if kinks are replaced by antikinks.
The nonconvex potential »

*/5
(x) is obviously anharmonic. Thus, when the anharmonicity is large

enough, antikinks in the chain may lead to the chain rupture. In contrast to the case of the
exponential potential analysed above, now a rupture is a real breaking of the chain into two
independent semi-infinite chains, because of attractive interaction between antikinks (Milchev,
1990). More precisely, a coupling of antikinks can lead to a creation of a cluster which consists of
n antikinks and makes the system energy lower for n'n

#3
. The critical size of the cluster, n

#3
, can be

estimated from the inequality

»
*/5

(n
#3
a
s
)#»

*/5
(2a

s
)5»

*/5
(n

#3
a
s
#a

s
)#»

*/5
(a

s
) , (4.26)

so that n
#3
+a

i
/a

s
. Thus, the chains rupture due to increasing of the number of antikinks in the

chain has the nucleation character similar to the first-order phase transitions.
Another feature of the FK model with the nonconvex interatomic interaction is the instability of

the trivial ground state (GS). Looking at Eq. (4.25), we may expect that the trivial GS becomes
unstable provided a

i
(a

s
when »A

*/5
(a

s
)(0. Indeed, it is easy to show that for »A

*/5
(a

s
)4!1/4 the

trivial GS (see Fig. 18a) becomes unstable, and the chain will be dimerized so that short and long
bonds alternate as shown in Fig. 18b for the FK chain with the Morse interatomic interaction
(Haas, 1978; Markov and Trayanov, 1987). This phenomenon is due to the fact that the average
energy of one long and one short bonds is smaller than the energy of a bond with an intermediate
length. Decreasing further the value »A

*/5
(a

s
), the ground state of the chain may be trimerized for

»A
*/5

(a
s
)4!1/3 (Fig. 18d), tetramerized (Fig. 18d), pentamerized (Fig. 18e), and so on. The simple

linear analysis shows that for

»A
*/5

(a
s
)4!

1
2C1!cosA

2n
q BD , (4.27)

the trivial GS becomes unstable with respect to creation of a superstructure with the period a"qa
s

[Eq. (4.27) is valid for q'2 only].
To find all GS configurations for the FK model with a nonconvex interatomic interaction is

a difficult problem because the system of stationary equations, º/u
n
"0 (where º is the total

potential energy), has usually many solutions, only one of them is the ground state while others
correspond to metastable and unstable configurations. Griffits and Chou (1986) proposed an
algorithm focused directly on the GS and valid for arbitrary interaction potentials »

46"
(x) and
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Fig. 18. Ground states of the FK model with the Morse interatomic potential (4.3): (a) undistorted chain, (b) dimerized
GS, (c) trimerized GS, (d) tetramerized GS, and (e) pentamerized GS (Markov and Trayanov, 1988).

»
*/5

(x). According to these authors, the GS of an infinite chain is found as a solution of the
functional eigenvalue equation (u, u@3[!a

s
/2,#a

s
/2]),

e
0
#»I (u@)"»

46"
(u@)#min

u
[»

*/5
(u@!u!a

s
)#»I (u)] . (4.28)

The function »I (u) is called an effective potential [it has the same period as the primary substrate
potential, »I (u#a

s
)"»I (u)] and the value e

0
is the average energy per particle in the GS. It was

shown (Griffits and Chou, 1986; see also Griffits, 1990) that the function »I (u) always exists, and the
corresponding value e

0
is unique to be given by a solution of Eq. (4.28). One can construct the map

u"M(u@) , (4.29)

obtained by looking for u which, at a given u@, minimizes the r.h.s. of Eq. (4.28). The attraction point
of this map, u

n`1
"M(u

n
), generates the corresponding GS configuration, x

n
"na

s
#u

n
.

In order to get some physical interpretation of Eqs. (4.28) and (4.29), let us consider a semi-
infinite chain of atoms with the edge atom fixed at the position u

0
(Marianer and Floria, 1988).

Suppose that we let the rest part of the chain to relax freely reaching a minimum energy
configuration corresponding to the boundary condition. Then the value of the derivative,
»I (u

0
)/u

0
, gives the value of the force which should be applied to hold the edge atoms at the

position at u"u
0
. Then the location of the nth atom is given by the function Mn(u

0
).
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Fig. 19. (a) Effective potential »I (u) and (b) associated map u
n`1

"M(u
n
) of the model (4.30) with a double-well

interatomic potential for K"0.5 and d"0.33. Also shown in (b) are discontinuities (dotted lines), the line u
n`1

"u
n
, and

the limit cycle of the period q"3 (Marchand et al., 1987).

Usually the functional equation (4.28) is solved numerically by using a grid of a hundred (or
more) equally spaced points in an interval around the point u"0 and applying the r.h.s. of
Eq. (4.28) to the functions defined at these points. The sequence of the iterations »I (n) is stopped
when »I (n`1) and »I (n) differ only by a constant e

0
within a chosen accuracy. Note that for

a hard-core interatomic potential, Eq. (4.28) has an analytic solution (Byrne and Miller, 1989).
As a typical example, let us consider, following to Marchand et al. (1987), the simplified FK

model where the sinusoidal on-site potential, »
46"

(x), is replaced by a sequence of parabolas,
(1!cosx

n
)P1

2
u2
n
. For the double-well interatomic potential (3.4) with b"1, a*"a

s
#d, and

»
m
"1/2K, the Hamiltonian of the model takes the form,

H"+
n
C
1
2A

du
n

dt B
2
#

1
2
u2
n
#

1
4K

(u
n`1

!u
n
!d)4!

1
2K

(u
n`1

!u
n
!d)2D . (4.30)

Fig. 19 shows an example of the effective potential »I (u) and the associated map M(u) obtained for
this model (Marchand et al., 1987). Note that »I (u) is continuous but it has a discontinuous first
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Fig. 20. The phase diagram for the model (4.30). The numbers p/q indicates the structure of modulated phases. The
unlabeled regions contain additional commensurate phases. Inset shows the tricritical point (Marchand et al., 1987).

derivative at the same point where M is discontinuous. This corresponds to a situation when the
ground state is “pinned” to the substrate potential, whereas for incommensurate GS configura-
tions, when the chain of atoms can “slide” under zero force, one can expect the functions »I and
M to be smooth.

Phase diagram obtained by Marchand et al. (1987) for the model (4.30) is shown in Fig. 20. The
different GS configurations are labeled by the ratio of two integers, p/q, where q characterizes the
period of the modulated structure, a"qa

s
, and p is the number of long bonds per one unit cell,

p"+q
1
H(u

n`1
!u

n
) (here the function H is the Heaviside function, H"#1 for x50, and H"0

for x(0). Numerical results suggest that the model (4.30) exhibits a complete Devil’s staircase
even through a rigorous proof of this statement is not possible within the framework of the
effective potential algorithm. First, all the configurations are structurally stable. Second, the
phase characterized by a ratio l"(p#r)/(q#s) is always found to be between p/q and r/s phases
for sufficiently small values of K. Hence, there is an infinite number of phases between any two
given phases (including, probably, incommensurate phases which are characterized by irrational
values of l).

When the system parameters, i.e. c or K in Eq. (4.30), are adiabatically varying, the phase
transitions between different phases should take place. Numerical simulations (Marchand et al.,
1987; Marianer and Floria, 1988) show that the transition between the homogeneous (1/1) and any
modulated (p/q with q'1) phases is usually a continuous (second-order) phonon-driven
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transition, while transitions between the modulated ground states, such as 1
2
P2

3
, 1
2
P3

4
, 2
3
P3

4
, etc.,

are typically first-order transitions, and they take place via creation of kink-type defects with
subsequent nucleation of the defects.

It is worth to mention the work of Byrne and Miller (1989) who considered the FK model with
nonconvex Lennard—Jones and double-well interatomic potentials, and the work by Takeno and
Homma (1986) and Yokoi et al. (1988) where a sinusoidal interatomic potential was analysed.
Marianer and Bishop (1988) investigated the FK model for which, in addition to the double-well
interparticle interaction with a*"a

s
, the strain gradients are taken into account via next-nearest

neighbor interactions, so that the system Hamiltonian is taken to be

H"+
n
C
1
2A

du
n

dt B
2
#(1!cos u

n
)#

1
2
»
m
b4(u

n`1
!u

n
)4!»

m
b2(u

n`1
!u

n
)2

#

1
2
c(u

n`1
#u

n~1
!2u

n
)2D . (4.31)

The model (4.31) can be useful in describing twinning in martensite materials (Barsch et al., 1984,
1987). To apply the effective potential method, Marianer and Floria (1988) transformed the
Hamiltonian (4.31) into that with only nearest neighbor interactions but with vector variables
defined as v

n
,Mu

2n
, u

2n`1
N. As a result, the effective potential »I (v

n
) becomes two-dimensional. The

calculated phase diagram consists of various modulated commensurate and incommensurate GS
structures.

Let us now briefly discuss an excitation spectrum of the modulated GS. First, we should
note that the GS with a complex unit cell (i.e. q'1) may have more than one phonon branch.
Second, the modulated GS with the period a"qa

s
is q-times degenerated because the shift

of all atoms in the chain on the distance which is integer multiplier of the substrate period, Dx"ja
s
,

j"1,2, q!1, will transform a GS to a nonequivalent one. Thus, the situation is quite
similar to that which arises in the case of a multiple-well substrate potential (see Section 3.3
above). A standard 2n-kink splits into q independent subkinks undergoing repulsive inter-
actions. One of those subkinks (in fact, the largest one) is a SG-like kink which describes
a configuration in which atoms occupy neighboring minima of the substrate potential. The other
(q!1) subkinks are confined to be in an elementary cell of the substrate; sometimes they are called
“interface kinks” or “domain walls”. Note, however, that all types of subkinks are topologically
stable. Of course, the subkinks as well as the interactions should satisfy some topological
constraints.

It is clear that the dynamics of kinks for the modulated GS is much more complicated than that
of the original FK model. As a simplest example, let us consider here the FK model with
a double-well interatomic potential (3.4) (with a*"a

s
or d"0) following the paper by Marianer

et al. (1988). As can be seen from Fig. 20, the GS of the chain is dimerized if »
m
b2'1/8, i.e. if

»A
*/5

(a
s
)4!1/4. This GS is two-times degenerated, and the first GS describes the “short-long”

spring length configuration with the atomic coordinates x
n
"na

s
#u

n
, u

n
"(!1)nb, where

b+(1/2b)(1!1/8»
m
b2)1@2 for b<1. The second GS corresponds to the “long-short” length

configuration with u
n
"(!1)n`1b. To consider a subkink (“interface”) which links these

two GSs, we introduce a dimensionless variable v
n
"(!1)nu

n
/b and use the continuum limit

approximation, v
n
Pv(x) and v

nB1
Pv$a

s
v
x
, so that the Hamiltonian is reduced to the form
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(Marianer et al., 1988),

H+b2P
dx
a
s
G
1
2
v2
t
#

1
2
C(v)v2

x
#A(v2!1)2H , (4.32)

where

A"2A»m
b2!

1
8B and C(v)"2»

m
b2C1!3v2A1!

1
8»

m
b2BD .

Hamiltonian (4.32) corresponds to the /4 model with an effective spring constant C(v) which
depends on the variable v(x, t). A kink of the /4 model (4.32), v(x)"tanh(x/d

%&&
), has an effective

width,

d
%&&
"bJ2A

1!12b2b2

1!1/8»
m
b2B

1@2
. (4.33)

The kink’s width becomes infinite at »
m
b2P1/8 (when the dimerized GS disappears) and it

vanishes when bP1/2bJ3, or for »
m
b2P1

8
# 1

16
" 3

16
. The latter case is similar to the case of an

antikink in the FK model with exponential interatomic interactions when the nonlinearity
parameter a is less than the critical value a

cr
(see Section 4.3). Analogously to this, continuum limit

approximation breaks down and for »
m
b253/16 the subkink becomes pinned by the substrate

potential.
General method to analyze the kinks excited on a modulated GS requires straightforward but

rather lengthy calculations. Therefore, we outline here only the main idea of this approach not
going into specific details. Atomic coordinates are given by the relation

x
n
"na

s
#X

n
#u

n
, (4.34)

where X
n
corresponds to the kink coordinate (for an “interface” we take X

n
"0) and u

n
(Du

n
D(a

s
/2)

describes the modulation of the GS. Displacements u
n

are expanded into a Fourier series,

u
n
(t)"v

n
(t)e*Qn#v*

n
(t)e~*Qn#h.h. , (4.35)

h.h. stands for higher harmonics, with some wavenumber Q"2np/q (p and q are integers)
characterizing the modulated GSs. (Note that if we restrict ourselves only by the first harmonic
terms in Eq. (4.35), the approximate ground state may be infinitely degenerated for q'2, and
associated kinks will be not topologically stable.) Then the expressions (4.34) and (4.35) are
substituted into the Hamiltonian of the model, the periodic substrate potential is changed to be

»
46"

(x
n
)"1!cos u

n
cosX

n
#sin u

n
sinX

n
, (4.36)

and the functions cos u
n

and sin u
n

are expanded into Taylor series in small u
n
. The resulting

Hamiltonian can be then considered in the continuum limit approximation in a strightforward way
using, for example, the methods described in details by Slot and Janssen (1988a,b) for the frustrated
/4 model. Namely, the variables X

n
and v

n
are assumed to be slowly varying on the scale of order of

the lattice spacing a
s
, the latter assumption allows us to use the continuum limit expansions,

na
s
Px, S

n
PS(x, t), S

nB1
PS$a

s
S
x
, where S&O(1), S

x
"S/x&O(e), S2

x
, S

xx
&O(e2), etc., with
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e;1, and S
n
stands for X

n
or v

n
. Substituting these expansions into the Hamiltonian, neglecting

fast varying terms, and making some transformations, we can derive an approximate Hamiltonian
which yields an effective motion equation which has to be solved together with appropriate
boundary conditions. However, the procedure described above is rather lengthy, so that direct
numerical simulations with a discrete FK model is usually more straightforward.

To conclude this section, we would like to mention that the FK model with Morse or
Lennard—Jones interatomic potentials has three characteristic lengths, a

s
, a

i
, and a

0
. The additional

spatial scale, a
0
, corresponds to a minimum of the interaction potential. For the boundary

conditions used above (i.e. the chain’s ends are fixed at infinities) this fact does not change the
results provided a

0
5a

FM
, where the value a

FM
(a

FM
(a

s
) introduced by Frank and van der Merwe

(1949a, b) describes the situation when the ground state of the chain with free ends contains kinks
with a finite density. For a

0
(a

FM
the infinite chain (with fixed ends) will rupture into two

semi-infinite chains because this effect leads to a lower system energy in the case »
*/5

(x)P0 at
xPR. However, such a rupture is not connected with “extra” antikinks as in the case analysed
above.

4.4. Kac—Baker interaction

Now we extend the classical FK model, assuming that not only nearest neighboring atoms
interact in the chain. It is natural to consider the interaction potential »

*/5
(x) which remains convex

and falls fast enough for DxDPR (e.g., as in the case of exponentially decaying potential). In fact,
the dynamics of the FK model in this case is similar to that for the model when the nearest
neighbors interact only, but it is characterized by the renormalized coupling parameter,

gPg
%&&
"

=
+
j/1

j2»A
*/5

( ja
s
) . (4.37)

As an example, we take the exponential interaction (4.1), for which Eq. (4.37) yields

g
%&&
"g

(1#S)
(1!S)3

, (4.38)

where g"»
0
b2 is defined above, and

S"e~bas. (4.39)

For the long-range interatomic potential, when ba
s
;1, from Eq. (4.38) it follows

g
%&&
+

2g
(ba

s
)3
<g . (4.40)

For an exponential interatomic interaction the results mentioned above may be simply proved
with the help of the method firstly proposed by Sarker and Krumhansl (1981) (see also Remoissenet
and Flytzanis, 1985; Croitoru, 1989; Braun et al., 1990; Woafo et al., 1993). Following this
procedure, we expand the interaction potential (4.1) into a Taylor series keeping the cubic terms, for
interaction of the nearest-neighbors, and quadratic terms, for interaction of other atoms. In this
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case the interaction energy takes the form

H
*/5
"

1
2

+
iEj

»
*/5

(x
i
!x

j
)+

A
6

+
i

(u
i
!u

i~1
)3#J

(1!S)
4S

+
iEj

S@i~j@(u
i
!u

j
)2, (4.41)

where we have introduced the following notations,

A"aA
d
a
s
B

3
, J"

(d/a
s
)2

(1!S)
, (4.42)

and the parameters d"a
s
Jg and a"!ba

s
/d are defined above. Thus, Eq. (4.41) describes

a one-dimensional chain of atoms interacting via a pair potential of the Kac—Baker form (Baker,
1961; Kac and Helfand, 1973). The equations of motion which correspond to the Hamiltonian
(4.41), is

d2u
i

dt2
#sin u

i
#

1
2
A[(u

i
!u

i~1
)2!(u

i`1
!u

i
)2]#2Ju

i
"¸

i
, (4.43)

where the auxiliary quantity

¸
i
"J

(1!S)
S

`=
+

j/~=( jE0)

S@j@u
i`j

(4.44)

satisfies the following recurrence relation (Sarker and Krumhansl, 1981)

AS#
1
SB¸i

"¸
i`1

#¸
i~1

#J
(1!S)

S
(u

i`1
#u

i~1
!2Su

i
) , (4.45)

which allows to reduce Eqs. (4.43), (4.44) and (4.45) to an effective problem which includes only
interactions of the nearest-neighbor atoms.

In the continuum limit, Eqs. (4.43), (4.44) and (4.45) can be presented in the form,

u
tt
#sin u!d2

%&&
u
xx
!ad3u

x
u
xx
"Sa2

s
(1!S)~2f (u) , (4.46)

where

f (u)"u
ttxx

!(u
x
)2sin u!u

xx
(1!cos u) , (4.47)

d2
%&&
,d2

(1#S#S/J)
(1!S)3

. (4.48)

Using the dimensionless coordinate, xPx/d
%&&

, we derive the equation

u
tt
#sin u!u

xx
(1#a

%&&
u
x
)"e f (u) , (4.49)

where

a
%&&
,aA

d
d
%&&
B

3
, e"

S
S#J(1#S)

. (4.50)
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In the case d<a
s
we have J<1 and e;1; therefore, the perturbation e f (u) in Eq. (4.49) can be

neglected. Consequently, a long-range exponential character of the atomic interaction, as com-
pared with the considered-above short-range interactions, results only in an effective renormaliz-
ation of the kink parameters, e.g. the kink s width increases (dPd

%&&
'd), while its nonlinearity

parameter decreases (aPa
%&&

, DaD(Da
%&&

D). We would like to note also that interaction between two
kinks is always more extended than that for the direct interaction of two extra atoms via the
potential (4.1) because d~1

%&&
+b(b

s
/2g)1@2;b for ba

s
;1 and g<1.

At last, from Eqs. (4.46), (4.47) and (4.48) it follows that the long-range character of the
interatomic interaction changes the dispersion relation for phonons. Indeed, for the wave numbers
DiD;n, the dispersion relation can be obtained in the following form:

u2
1)

(i)"
u2

.*/
#g

%&&
i2

1#S(1!S)~2i2
, (4.51)

where g
%&&

"(d
%&&

/a
s
)2 and u

.*/
"1. We would like to mention that the double SG model with the

Kac—Baker interactions was considered by Croitoru (1989) with qualitatively similar conclusions.

4.5. Long-range interactions

Interaction potentials discussed up to now allow a reduction in the continuum approximation to
a SG-type equation with local interaction. In contrast to that case, the motion equation for the FK
model with a power-law interatomic interaction,

»
*/5

(x)"»
0A

a
s

xB
n
, (4.52)

can be reduced to a nonlocal integro-differential SG equation (Kosevich and Kovalev, 1974b;
Pokrovsky and Virosztek, 1983; Braun et al., 1990). To derive such an equation, let us use the
continuum approximation, jPy"ja

s
, +

j
P:dy/a

s
, and change the variable, yPx"y#u(y), so

that approximately, dx"(1#u
y
) dy+(1#u

x
) dy and dy+(1!u

x
) dx. Then the interaction

energy takes the form

H
*/5
"

1
2PP

dx dx@
a2
s

u
x
(x)u

x{
(x@)»

*/5
(x!x@) . (4.53)

The result (4.53) has a simple physical meaning, since the value o(x),!u
x
(x)/a

s
is the density of

the atomic excess (with respect to the initial commensurable structure). For a local potential of the
atomic interactions,

»
*/5

(x)"ad(x)d2 , (4.54)

Eq. (4.53) takes the form of the standard SG equation. For the nonlocal potential (4.52) the integral
(4.53) diverges provided (x!x@)P0, and, as a result, one should make a cut of the integration
interval at some distance a*+a

s
(Braun et al., 1990). Introducing dimensionless variables, we may

obtain the Hamiltonian for a nonlocal SG model,

H"

1
dPdxG

1
2
u2
t
#

1
2
u2
x
#»

46"
(u)#

1
2
Au

xP
=

d

dx@
(x@)n

[u
x
(x#x@)#u

x
(x!x@)]H , (4.55)
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where

d"a
s
/d, A"»

0
dn`1/(2n)2. (4.56)

If the potential »
*/5

(x) is short-range, then, without the last term in Eq. (4.55), the expression
for the energy should take the form corresponding to the SG model, for which
d2"a2

s
»A

*/5
(a

s
)"»

0
n(n#1). We use this relation to reduce the number of independent parameters

and express »
0

of the potential (4.52) in terms of the parameter d. As a result,

A"

»
0
dn~1

n(n#1)
, (4.57)

and the Hamiltonian (4.55) is a function of only two parameters, d and n. The motion equation
corresponding to the Hamiltonian (4.55) has the form

u
tt
!u

xx
#»@

46"
(u)"A


xP

=

d

dx@
x@n

[u
x
(x#x@)#u

x
(x!x@)] , (4.58)

and it describes the dynamics of a chain with a nonlocal interaction.
From Eq. (4.58), one can see that the core structure of a kink (i.e. its shape at Dx!XD(d) is

determined mainly by local terms of the motion equation (Pokrovsky and Virosztek, 1983).
Therefore, “local” characteristics of a kink, such as its effective mass or amplitude of the PN
potential, will not differ significantly from those calculated for the local FK model with the
renormalized elastic constant

g
%&&
"

=
+
j/1

»A
*/5

( ja
s
)"gS

n`2
, g"n(n#1)

»
0

a2
s

, (4.59)

where S
.
"+=

j/1
j~m (for example, S

3
+1.202, S

5
+1.037), and the anharmonicity of the interac-

tion is determined by the parameter

a
%&&
"aS~3@2

n`2
, a"!(n#2)/d . (4.60)

Indeed, the dependencies E
PN

(l) and m(l) (where l,nJg) calculated by Braun et al. (1990) for the
Coulomb (n"1) and dipole—dipole (n"3) atomic interactions shown in Fig. 21are qualitatively
similar to those in Fig. 17 obtained for the local anharmonic interaction in the FK model. The
difference between the parameters E

PN
and m for a kink and an antikink at the same value of the

parameter g for the dipole interaction, is much larger than for the Coulomb interaction, which is
accounted for by larger anharmonicity of the dipole potential, according to Eq. (4.60). We note that
the amplitude of the PN potential for the FK model with the Coulomb interaction (n"1) at some
particular values of the system parameters was calculated by Wang and Pickett (1976). Braun et al.
(1990) have calculated also the kink’s parameters for the power-law FK model with nonsinusoidal
substrate potential. The dependencies (see Fig. 22) are similar to those for the local FK model
described in Section 3.2. It is interesting to note that for g;1 the amplitude of the PN potential for
the kink moving in the substrate potential with sharp bottoms may be lower than that for the
sinusoidal substrate potential.

In spite of the fact that local characteristics of the kink are quite similar to those for the classical
FK model, asymptotics of the kink of Eq. (4.58), which are determined by the last term, are very
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Fig. 21. Dependencies of the PN energy E
PN

(l) (a) and effective mass m(l) (b) for a kink and antikink in the presence of the

Coulomb and dipole mechanisms of interatomic interaction. The parameter l"1
2
J»

0
n(n#1) for n"1 or 3, is defined

by with the kink width d. Dashed curves show analytical asymptotics (Braun et al., 1990).

Fig. 22. Dependence of the PN energy E
PN

(l), where l"J3»
0
, for the dipole repulsion of atoms in the case of the

nonsinusoidal substrate potential (3.18) with the parameters s"$0.3. For comparison, dash-dotted curves show the
kink characteristics for the sinusoidal potential »

46"
(x). Dashed lines show the results of the weak-bond approximation.

Regions of the normal and inverse PN relief are indicated by the letters N and I, respectively (Braun et al., 1990).

different from those of the SG kink, and they are power-like (Kosevich and Kovalev, 1974b;
Pokrovsky and Virosztek, 1983). Indeed, linearizing Eq. (4.58) near the asymptotic value u(R) and
integrating by parts, we obtain

Du(x)!u(R)D+
2nnA

u2
.*/

DxDn`1
, xP$R , (4.61)

where u2
.*/

"»A
46"

(0). It is clear that for the power-law interatomic forces, the interaction between
kinks (i.e., between “extra” atoms or holes in the chain) should also be power-like. This has been
shown by Kosevich and Kovalev (1974b) for a crowdion moving in a bulk of a crystal, by Gordon
and Villain (1979), Lyuksyutov (1982), and Talapov (1982), for elastic interaction of atoms
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adsorbed on a crystal surface, and by Haldane and Villain (1981) and Pokrovsky and Virosztek
(1983), for dipole—dipole interaction of adatoms. To show this directly, let us consider the chain
with two kinks of topological charges p

1
and p

2
, respectively, which are separated by some distance

x
0
. In the zero-order approximation, the solution of Eq. (4.58) can be presented as a superposition

of two SG kinks,

u(x, t)"uSG
, Ax!

1
2
x
0B#uSG

, Ax#
1
2
x
0B . (4.62)

Within the framework of the adiabatic perturbation theory (see, e.g., Kivshar and Malomed, 1989)
the change of the relative coordinate x

0
due to the kink interaction is given (for large values of x

0
)

by the following equation (Braun et al., 1990)

d2x
0

dt2
"(2n)2nA

p
1
p
2

xn`1
0

, (4.63)

which reduces the problem to a motion of an effective particle in the potential

»(0)
*/5

(x
0
)"

(2n)2Ap
1
p
2

xn
0

. (4.64)

It is interesting to note that after introducing again the dimensional variables we find that the
interaction law obtained above is nothing but the interaction of two “extra” atoms (or holes) in the
chain. Such a contribution to the kink interaction is absent in the standard FK model where only
nearest-neighboring forces are taken into account, i.e. for the classical FK model we always have
»(0)

*/5
,0. In the local FK model, however, the kink interaction is caused by an overlapping of their

tails, and such an overlapping gives the interaction energy »(-0#)
*/5

(x)Ju
x
(x), which is proportional to

the density of the “excess” atoms. Of course, the same effect will give a contribution to the kink
interaction energy for the power-law forces as well. However, in that case this contribution is
smaller in comparison with the main interaction described by Eq. (4.64), i.e. »(-0#)

*/5
Jx~(n`2).

Indeed, as follows from the numerical simulations of Braun et al. (1990), in the case of the dipole
interaction the result »(-0#)

*/5
(x)Jx~5 is in a good agreement with numerical data. We should note,

however, that in contrast to the case of the Kac—Baker interaction (see Section 4.3), the contribu-
tion from the kinks’ tails is small and, in particular, for the power-law interactions such a contribu-
tion may be neglected.

The phonon spectrum of the nonlocal FK model is described by the expression

u2
1)

(k)"u2
.*/

#2g
=
+
j/1

[1!cos (ij)]
jn`2

, (4.65)

which is similar to the dispersion relation of a local FK model. However, parameters of the
breather excitations differ remarkably from those for the local FK model. For example, the period
¹

"3
of a large-amplitude (small-frequency) breather, determined from the kink—antikink interac-

tion, is given by (Braun et al., 1990)

¹
"3
"

2n
u

"A~1@2C
n
x(1`n@2)
.!9

, C
n
"

J2C(1/n#1/2)

JnC(1/n)
, (4.66)
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where x
.!9

is the maximum amplitude of the breather,

x
.!9

"A
4n2A
De
"3
D B

1@n
Ju~2@(n`2) . (4.67)

From Eqs. (4.66) and (4.67), we can make a conclusion that the breather energy is

De
"3
D"

(C
n
u)2n@(n`2)

(4n2A)2@(n`2)
. (4.68)

The results (4.67) and (4.68) can be compared with those for the standard FK model considered as
that formally corresponding to the limit case nPR when x

.!9
JDlnuD and De

"3
DJu2.

Recently, the nonlocal SG equation of the form,

u
tt
#sin u"


xP

`=

~=

dx@G(x!x@)u
x{
(x@, t) , (4.69)

with the exponential kernel, G(x)"(2j)~1exp(!DxD/j) or the McDonald kernel, G(x)"
(nj)~1K

0
(DxD/j), has been derived to describe the nonlocal effects in the electrodynamics of long

Josephson junctions (for an overview, see Alfimov, 1996; Aliev et al., 1995; and references therein).
For this type of nonlocal models, it has been shown that the nonlocal SG equation (4.69) with the
exponential interaction does not support any moving 2n-kinks, but instead, it allows the moving
4n-, 6n-, etc. kinks. However, these complex kinks can propagate only with certain velocities
(Alfimov et al., 1993).

5. Kink diffusion

5.1. Preliminary remarks

In the previous sections we have investigated the properties of an isolated FK chain, as
a Hamiltonian system. In an isolated chain, the kink’s effective friction coefficient g corresponds
to the “intrinsic” damping g

*/5
caused by the energy exchange between the kink’s transla-

tional/vibrational motion and phonon modes excited in the chain. However, to describe realistic
physical objects such as dislocations, adsorbed layers, hydrogen-bonded atomic chains and other
systems with the help of an effective FK model, we should remember that usually the FK model
takes into account only a part of the whole number of degrees of freedom of a physical system while
the other part, which corresponds to other types of excitations, should be taken into account
effectively. As an example, for adatomic systems an external potential »

46"
(x) is created by the

atoms which form a crystal surface; in the case of a crowdion, the periodic potential is produced by
the nearest arrows of metal atoms, etc. In fact, the substrate plays a twofold role: first, it produces
an effective external potential to the atoms of the primary chain modelled by the FK model, and
second, it creates a mechanism for an energy exchange between the atoms of the FK chain and the
substrate degrees of freedom. In other words, the FK chain is usually a nonconservative system, so
that the substrate plays a role of a thermostat at a certain temperature ¹.
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Thus, because the positions of the substrate atoms are not fixed, in a general case their motion
has to lead to the following effects:

f The substrate atoms should feel and response to the corresponding configurations of atoms in
the FK chain. Such a “polaronic effect” will lead to increasing the amplitude of the external
potential »

46"
(x);

f At a nonzero temperature, ¹O0, the substrate atoms are vibrating with some amplitudes. This
leads to a dependence of the value e

s
on the temperature (the Debye—Waller effect);

f There always exists an energy exchange between the FK chain and the substrate. This effect leads
to an additional damping, i.e. to the “external” friction g

%95
. For example, in the case of adatomic

chains the external friction is the main damping mechanism (g
%95

<g
*/5

) (Braun, 1989).

To describe the energy exchange mechanisms mentioned above, we introduce an effective friction
force acting on the lth atom of the FK chain. In a general case the friction force F(&3)

l
can be taken in

the form,

F(&3)
l

(t)"!m
a
+
l{
P

=

0

dqN
ll{
(q)xR

l{
(t!q) , (5.1)

where the dot stands for a derivative in time, and the response function

N
ll{
(q),N(xR

l
, x(

l
,2, xR

l{
, x(

l{
,2; q) , (5.2)

is, in a general case, nonlocal, nonlinear, and non-Markovian. It is evident that the calculation of
this function as well as the solution of the corresponding motion equations is extremely complic-
ated problem. For the sake of simplicity, it is usually assumed that the operator N is Markovian
and local, and, moreover, it does not depend on the position of a given atom relative to the
substrate potential, i.e.

N
ll{
(q)"2gd

ll{
d(q) , (5.3)

so that the force (5.1) reduces to the standard viscous friction,

F(&3)
l

(t)"!m
a
gxR

l
(t) . (5.4)

However, we should realize that the parameter g in Eq. (5.4) is in fact an “effective” friction
coefficient which is calculated by means of a suitable averaging of the response function over all the
trajectories of the atomic motion. Thus, because realistic models are quite complicated, the value of
g should be estimated rather than calculated with the help of a simplified model.

Besides the energy flux from the FK chain to the substrate caused by the damping force (5.4), it
should exist also the backward flux of the energy to the chain which is usually treated as ¹O0.
This effect may be modeled by introducing a random force (noise) dF

l
(t) with zero mean value,

SdF
l
(t)T"0, acting on the lth atom of the FK chain from the substrate. Amplitude of the external

noise is determined by the fluctuation—dissipation theorem which is based on the assumption of
thermal equilibrium, i.e. the equal shearing of the kinetic energy between all degrees of freedom,
1
2
m

a
SxR 2

l
T"1

2
k
B
¹, at the stationary state. Depending on the physical model under consideration,

the external noise may be additive or/and multiplicative. Thus, the problem reduces to the analysis
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of the dynamics of the FK chain governed by a system of Langevin-type equations. In the present
section we discuss the case when at ¹O0 the chain contains a single kink only. This situation is
described by the periodic boundary conditions, u

N`1
"u

1
$a

s
, when the temperature is assumed

to be low enough, k
B
¹;e

,
, so that the probability of the thermal creation of a kink—antikink pair

is negligible. So, the problem is to derive and solve a stochastic motion equation for the kink
collective coordinate X(t). The kink diffusion coefficient is then obtained as

D
,
"lim

t?=

1
2t

S[X(t)!X(0)]2T , (5.5)

or, more generally, as

D
,
(uN )"P

=

0

dt e*uN tSXQ (t)XQ (0)T, Im(uN )'0 . (5.6)

Thus, the physical reason of a diffusional motion for the kink is the effective coupling of the FK
chain with the thermostat, i.e. the existence of the nonzero “external” friction coefficient g

%95
.

However, the long-time-scale dynamics of the kinks might be also diffusional for an isolated chain
as well. Indeed, as we have shown above, any deviation of the model from the integrable case of the
pure SG system such as nonsinusoidal substrate potential, anharmonic interatomic interactions
and discreteness of the atomic chain will destroy the exact integrability of the system. Therefore,
besides the external chaos induced by the substrate, the dynamics of the FK chain has to exhibit its
own “intrinsic chaotization”. This effect may be described approximately by introducing an
“intrinsic” friction coefficient g

*/5
. It is clear that g

*/5
cannot be easily calculated, but it can be

estimated by a perturbation technique. The intrinsic friction leads to a viscous diffusion of a kink
which will be discussed in Section 5.3.

It is interesting that the kink dynamics exhibits two types of diffusion, namely, the conventional
or viscous diffusion and anomalous diffusion. To explain the latter mechanism of the kink
diffusional motion, we should recall that any collision of a kink with other excitations such as
phonons causes a phase shift of the kink, i.e. the displacement of the kink’s coordinate. If such
collisions occur randomly in time, the kink will undergo a Brownian random walk, however,
keeping its averaged velocity unchanged because such collisions are almost elastic or completely
elastic for the limit described by the SG equation. It is important that this diffusion mechanism
exists even in the integrable SG model where the viscous diffusion is absent (if, of course, we
suppose that the mechanism which makes the collisions can be modeled as a random process).
A physical reason for the anomalous kink diffusion is based on the fact that a kink is an extended
object with its own width, whereas a usual particle cannot exhibit this type of motion being
a point-like object which does not suffer a shift of its location after a collision. The coefficient of the
anomalous diffusion can be calculated in the random phase approximation as it is usually assumed
in the case of the friction for a particle linearly coupled with a thermostat (see, e.g., Haken, 1980).
This problem will be analysed in Section 5.4.

In real physical systems the kink diffusion coefficient D
,

is determined by all the mechanisms
mentioned above, and we expect that it is determined by the anomalous diffusion coefficient D

a
for

short-time scales, t;g, and by the viscous diffusion coefficient Dg for t<g~1. Besides, in
a strongly discrete chain, when the amplitude of the PN potential exceeds the energy of the kink’s
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thermalized motion, E
PN

'k
B
¹, the kink diffusion becomes thermally activated according to the

Arrhenius law, D
,
Jexp(!E

PN
/k

B
¹).

5.2. Langevin equation

In the presence of the viscous friction (5.4) and the additive stochastic force, the motion equation
for the classical FK chain is changed to be

m
a

d2x
l

dt2
#m

a
g
dx

l
dt

!g(x
l`1

#x
l~1

!2x
l
)#»@

46"
(x

l
)"dF

l
(t) . (5.7)

The fluctuation—dissipation theorem says that the self-correlation function of the fluctuation force
dF

l
should satisfy the relation

SdF
l
(t) dF

l
(t@)T"2gm

a
k
B
¹d(t!t@) , (5.8)

while the cross-correlation function, SdF
l
dF

l{
T for lOl@, may be defined in an arbitrary manner. In

particular, it is natural to suppose that the spacial correlations decay exponentially with a correla-
tion length j

F
,

SdF
l
(t)dF

l{
(t@)T"2gm

a
k
B
¹e~@l~l{@as@jFd(t!t@) . (5.9)

Below we consider the SG limit, i.e. g<1 and »@
*/5

(x)"sin x, when we should take x
l
"la

s
#u

l
,

la
s
Px, u

l
(t)Pu(x, t), and dF

l
(t)PdF(x, t), so that the Langevin equation (5.7) becomes (recall

m
a
"1):

u
tt
#gu

t
!d2u

xx
#sin u"dF(x, t) . (5.10)

In order to write Eq. (5.9) in the continuum limit, we have to use additionally the rules +
l
P:dx/a

s
and d

ll{
Pa

s
d(x!x@), thus obtaining

SdF(x, t)dF(x@, t@)T"2gk
B
¹

exp(!Dx!x@D/j
F
)

2j
F
[1!exp(!a

s
/2j

F
)]

d(t!t@) . (5.11)

For a spatially uncorrelated random force, j
F
P0, Eq. (5.11) reduces to

SdF(x, t)dF(x@, t@)T"2gk
B
¹a

s
d(x!x@)d(t!t@) , (5.12)

while for the coherent external noise, j
F
PR, this leads to the relation,

SdF(x, t)dF(x@, t@)T"2gk
B
¹d(t!t@). (5.13)

In dimensionless units, when xJ "x/d and tI"u
0
t, the Langevin equation (5.14) takes the form

(we omit all the tildes below),

u
tt
!u

xx
#sin u"f (x, t; u, u

t
),dF(x, t)!gu

t
. (5.14)

If the perturbation f is small, the solution of Eq. (5.14) can be obtained by the perturbation
technique (McLaughlin and Scott, 1978; see also Kivshar and Malomed, 1989). Namely, looking
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for a solution in the form of a nonrelativistic kink,

u(x, t)"4tan~1expM!p[x!X(t)]N , (5.15)

we obtain the following equation for the kink’s coordinate X(t),

d2X
dt2

"!

p
4P

=

~=

f (x, t; u, u
t
)

cosh[x!X(t)]
. (5.16)

Thus, the effect of perturbations reduces to modulations of the kink’s coordinate and velocity while
the kink’s shape is assumed to be unchanged (adiabatic approximation). Eqs. (5.14) and (5.16) lead
to the Langevin equation for X(t) (see, e.g., Joergensen et al., 1982; Marchesoni, 1986; Bass et al.,
1988)

m
d2X
dt2

#mg
dX
dt

"dF
,
(t) (5.17)

with the kink fluctuation force satisfying the relation

SdF
,
(t) dF

,
(t@)T"2gm*k

B
¹d(t!t@) . (5.18)

Here m is the kink’s mass, and the effective mass m* is defined as

m*"P
=

~=

dxP
=

~=

dx@ u(x)u(x@)SdF(x)dF(x@)T

"

ma
s

2j
F
[1!exp(!a

s
/2j

F
)]

mA2,
1#j

F
/a

s
2j

F
/a

s
B , (5.19)

where

m(s, v)"
=
+
n/0

(n#v)~s (5.20)

is the generalized Riemann zeta-function.
For large-time scales, t<g~1, the Langevin equation (5.17), (5.18) describes the Brownian kink

motion,

SX2(t)T"2Dgt, Dg"A
m*

m B
k
B
¹

mg
, (5.21)

where Dg is the diffusion coefficient.
Thus, if the fluctuation force is spatially uncorrelated, i.e. j

F
;d, from Eq. (5.19) we have m"m*

and the mean kinetic energy of a nonrelativistic kink, 1
2
mSXQ 2(t)T, is equal to the thermal energy

1
2
k
B
¹ in an equilibrium state. In this case the kink diffusion coefficient is equal to (Remoissenet,

1978; Bergman et al., 1983; Marchesoni, 1986)

Dg"k
B
¹/mg . (5.22)
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In the opposite case of spatially correlated fluctuation force, i.e. for j
F
<d, we find m*"(n2/2)m,

and the thermal energy of a single kink is modified to be

1
2
mSXQ 2(t)T"

n2

4
k
B
¹ .

The reason for such a renormalization is that a kink is an extended object and, therefore, its
coupling to an external source of noise varies to be determined by a ratio of the kink’s width d and
the noise correlation length j

F
. In the case of a coherent external noise the kink diffusion is

determined by the expression (Buttiker and Landauer, 1980; Bergman et al., 1983; Pascual and
Vázquez, 1985; Marchesoni, 1986)

Dg"
n2

16
k
B
¹

mg
. (5.23)

The result (5.23) has been verified by means of molecular dynamics simulations (Pascual and
Vázquez, 1985; Biller and Petruccione, 1990) which showed that the assumption of the preserved
kink’s shape works with a good accuracy.

In some physical problems the fluctuation force acting on the FK chain from the substrate is
modeled by a multiplicative external noise. In this case the corresponding Langevin equation takes
the form

u
tt
#gu

t
!d2u

xx
#sin u"d»(x, t) sin u , (5.24)

where d»(x, t) is usually assumed to be Gaussian with zero mean value and two-time correlation
function,

Sd»(x, t) d»(x@, t@)T"kd(x!x@)d(t!t@) , (5.25)

k being a measure of the noise intensity, kJ¹. The perturbation theory applied to this kind of
problems shows that the multiplicative noise leads to the very similar Brownian motion of the kink
with a diffusion coefficient different from that calculated for an additive noise (Pascual and
Vázquez, 1985; Biller and Petruccione, 1990).

5.3. Intrinsic viscosity

In the previous section we have assumed that the viscous friction g has an origin in the energy
exchange between the atoms of the chain and substrate, i.e. it corresponds to an external friction
g
%95

. It is clear, however, that a Brownian kink diffusion should exist also in an isolated FK chain as
well, and the main reason for that is nonintegrability of the primary model. If the corresponding
response function (5.1), (5.2) is approximated by a local function, and the fluctuation force, by an
additive uncorrelated noise, the kink diffusion coefficient is calculated to be

Dg"
k
B
¹

mg
*/5

, (5.26)

and the problem itself reduces to the calculation of the intrinsic friction coefficient g
*/5

.
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Although the value g
*/5

cannot be calculated exactly, it can be estimated considering the
momentum exchange at a kink collision with other excitations such as phonons and/or breathers.
These calculations are usually based on perturbation techniques such as the Mori technique and
memory-function approach, the inverse scattering transform, the technique in which the kink’s
coordinate X(t) is treated as a canonical variable, etc. (see, e.g., Ogata and Wada, 1985, 1986; Kunz,
1986a,b; Marchesoni and Willis, 1987; Theodorakopoulos and Weller, 1988; Bar’yakhtar et al.,
1988). As an example, let us below briefly describe the approach used by Bar’yakhtar et al. (1988)
where the continuum limit of the FK model with nonsinusoidal substrate potential was investi-
gated. As usual, the field variable u(x, t) is presented in the form

u(x, t)"u
,
(x!vt)#/(x, t) , (5.27)

where u
,
corresponds to a slowly moving unperturbed kink, and /(x, t) describes the phonon field

accompanying the kink motion. Substituting Eq. (5.27) into the system Hamiltonian and expand-
ing »

46"
(u

,
#/) into the Taylor series in /, the Hamiltonian can be presented in the form

H"H
,
#H

1)
#H

*/5
, (5.28)

where H
,
corresponds to an isolated kink, H

1)
describes the phonon subsystem, and the third term,

H
*/5
"

=
+
n/3

H
n
, H

n
J

1
n!PdxA

dn»
46"

(u)
dun BK

u/u,

/n , (5.29)

is responsible for inelastic scattering of phonons on the moving kink. Then, let us introduce the
complete set of functions ta(x) found as eigenfunctions of the pseudo-Schrödinger equation (3.12);
we denote the corresponding eigenvalues as ua. The set Mta(x)N consists of the Goldstone mode, the
shape modes (if any), and the continuum spectrum modes. Using this basis, we introduce new
canonical variables ma by the expansion

/(x, t)"+
a

mata(x)e*uat , (5.30)

and rewrite H
*/5

in the terms of ma. Now we can calculate the probability of the n-phonon inelastic
scattering process and obtain the corresponding contribution to the rate of the energy exchange
g
*/5

. For the pure SG model such a procedure will give the trivial result g
*/5
"0 because the

contributions of all the orders compensate each other, as it should be for an exactly integrable
model where the kink motion is not accompanied by radiation (Ogata and Wada, 1985;
Bar’yakhtar et al., 1988). Otherwise, for a nonintegrable case, the lowest-order contribution to the
inelastic scattering comes from the three-phonon scattering and it leads to a viscous friction
coefficient (Bar’yakhtar et al., 1988)

g
*/5
+Cu

0A
k
B
¹

e
,
B

2
. (5.31)

Substituting Eq. (5.31) into Eq. (5.26), we obtain the diffusion coefficient for a slowly moving kink
in the isolated FK chain,

Dg"C
1
d2u

0A
e
,

k
B
¹B . (5.32)
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The numerical factors C and C
1

in Eqs. (5.31) and (5.32) depend on the particular model under
consideration and, for example, in the case of the /4 model C

1
+20 (Ogata and Wada, 1986).

Eqs. (5.31) and (5.32) describe the classical behaviour of the chain. At extremely low temper-
atures, i.e. for k

B
¹;+u

0
, we should employ the quantum statistics for phonons which leads to the

result (Bar’yakhtar et al., 1988),

g
*/5
Jexp(!C

2
+u

0
/k

B
¹) and D

,
J¹2 exp(C

2
+u

0
/k

B
¹) , (5.33)

where C
2

is another numerical constant.

5.4. Anomalous diffusion

When a kink collides with other excitations, it suffers a phase shift, or a spatial displacement d(k)
without a change of its momentum. As a result, the kink’s coordinate which has an initial value X

0
,

evolves according to equation

X(t)"X
0
#»

0
t#dX(t), dX(t)"Pdk d(k)l

t
(k) , (5.34)

where »
0

is the initial kink velocity, and l
t
(k) dk stands for the number of kink’s collisions with

excitations having the wavenumbers between k and k#dk. The function l
t
(k)"o(k)n

t
(k), where

o(k) is the density of the phonon states with the wavenumber k, and n
t
(k) is the number of collisions

with the mode having the wavenumber k. We would like to note that such an approach can be
based on a phonon picture of the low-energy excitations (see Wada and Schrieffer, 1978; Theodo-
rakopoulos and Klein, 1980, 1981; Fesser, 1980; Wada and Ishiuchi, 1982; Ogata and Wada, 1986)
as well as on an alternative description in terms of breathers (Sasaki and Maki, 1987a,b; Theodo-
rakopoulos and Weller, 1988); both the approaches lead to identical results (Theodorakopoulos
and Weller, 1988). Here we follow the work of Theodorokopoulos and Weller (1988).

Now let us assume that the low-energy excitations constitute a heat bath, i.e. that the
kink—phonon collisions occur in a random manner and, moreover, that for the time interval
between the collisions the heat bath “regenerate” its equilibrium state. In this case, due to a series of
spatial shifts Md(k)N of the kink, the kink dynamics will be diffusional to be considered as a random
walk with the mean velocity »

0
,

S(X(t)!X
0
!»

0
t)2T"2D

a
t . (5.35)

Since the shift d(k) is proportional to the squared amplitude of the scattered phonon (or breather),
the anomalous diffusion constant D

a
is proportional to ¹2. Indeed, the fluctuations of the kink’s

position with respect to the thermal average of X(t) is equal to

dX(t)"Pdk d(k)dl
t
(k) , (5.36)

and thus

S[dX(t)]2T"P dkdk@d(k)d(k@)Sdl
t
(k)dl

t
(k@)T . (5.37)
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Taking the phonons as a thermal bath, we obtain

Sdl
t
(k)dl

t
(k@)T"¸~1Dv(k)Dto

0
d(k!k@)S[dn(k)]2T , (5.38)

where v(k) is the group velocity of phonons with the wavenumber k, v(k)"du
1)

(k)/dk, u
1)

(k)"
Ju2

0
#c2k2, and o

0
(k)"o

0
,¸/2n, ¸ being the chain length. Using the classical limit of the

Bose—Einstein statistics,

S[dn(k)]2T"[k
B
¹/+u

1)
(k)]2 ,

we get from Eqs. (5.37) and (5.38) the result

S[dX(t)]2T"2D
a
t, D

a
"CI d2u

0A
k
B
¹

e
,
B

2
. (5.39)

Here the numerical factor CI depends on the model under consideration, for example, CI "2/3n for
the SG system, and CI "8.24/9, for the /4 model (Theodorakopoulos, 1979; Ogata and Wada,
1986).

Anomalous (nondissipative) kink diffusion was first investigated by Wada and Schrieffer (1978)
for the /4 model. It should be emphasized that this diffusion mechanism assumes the existence of
an “external” thermalization which produces the low-energy heat bath. The only mechanism of
such a thermalization is the energy exchange between different degrees of freedom of the system,
which appears due to nonintegrability of the isolated FK chain and/or due to a coupling of the
chain with the substrate. As a result, the anomalous diffusion defined by Eq. (5.35) exists only on
short-time scales, t;g~1, where g"g

%95
#g

*/5
, while for t<g~1 the kink dynamics should be

viscous leading to the standard expression S[X(t)!X
0
]2T"2Dgt with Dg"k

B
¹/mg (Kunz,

1986b; Ivanov and Kolezhuk, 1989, 1990; Marchesoni and Willis, 1990).
As was verified by Theodorakopoulos and Weller (1988), the dominant contribution to D

a
comes

from a relatively narrow band of the phonon wavenumbers, k&0.005n/a
s
. Therefore, the con-

tinuum approximation yields a correct value of D
a

for the discrete FK model as well. Besides,
a small number of phonons in the vicinity of the Brillouin-zone edges gives rise to inelastic
kink-phonon scattering (Theodorakopoulos and Klein, 1981) leading to a small contribution to the
coefficient g. For the SG model the anomalous diffusion was observed in the molecular dynamics
simulations by Theodorakopoulos and Weller (1988) (notice, however, that a discretization
procedure applied to the continuum equation always destroys integrability of the model and could
be a factor for the subsequent viscous diffusion of kinks).

5.5. Kink diffusion coefficient

In a general case, the kink diffusion coefficient D
,
(u) is determined by Eq. (5.6). Using the

Kubo—Mori technique (Mori, 1965; Kubo, 1966), the coefficient D
,
(u) can be expressed in the form

(Marchesoni and Willis, 1990)

D
,
(u)"A

k
B
¹

m B
1

[g(u)!iu]
, (5.40)
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where g(u) is the total generalized friction coefficient. Expanding g(u) in u,

g(u)"g
0
!ig

1A
u
u

0
B#g

2A
u
u

0
B

2
#2 , (5.41)

the real part of the diffusion coefficient can be calculated as

ReD
,
(u)+A

k
B
¹

m B
g
0
#g

2
(u/u

0
)2

g2
0
#(u/u

0
)2[(u

0
#g

1
)2#2g

0
g
2
]

. (5.42)

Thus, the viscous diffusion is characterized by the coefficient

D
,
+

k
B
¹

mg
0

, g
0
" lim

u?0

g(u) . (5.43)

It dominates for low frequencies (or longtime scales), i.e. when

u;u*, u*"u
0S

g
0

g
2

. (5.44)

For the SG model we have the results: g
0
"0 and u*"0, so that the viscous diffusion is naturally

absent. Otherwise, at high frequencies when u<u* (or short-time scales) the anomalous diffusion
dominates. Comparing D

,
(u) for u<u* with the value D

a
given by Eq. (5.39), we can estimate the

coefficient g
2

as g
2
&u

0
(k

B
¹/e

,
) and then the crossover frequency u* is found to be

u*
&

u
0
g
0
e
,

k
B

¹

. (5.45)

For an isolated FK chain, when, according to Eq. (5.31), g
0
&u

0
(k

B
¹/e

,
)2, we obtain

u*
&u

0
(k

B
¹/e

,
)1@2. Thus, if uO0 and the temperature ¹ increases, a crossover from the anomal-

ous diffusion D
,
+D

a
to the standard (viscous) diffusion D

,
+Dg should take place. This effect was

investigated by Ogata and Wada (1986) for the /4 model (see Fig. 23). However, if the FK chain is
coupled with a thermostat and g

0
O0 as ¹P0, the inverse consequence should take place.

Up to now we have neglected the existence of the PN relief in the FK chain. In a strongly discrete
FK chain, when g41, the amplitude of the PN potential may exceed the kink thermal energy, and
the kink diffusion will become activated. Phenomenologically, in such a case the Langevin
equation (5.17) for the kink’s coordinate X(t) have to be replaced by the equation (Pietronero and
Strässler, 1978; Combs and Yip, 1983; Kunz and Combs, 1985)

m
d2X
dt2

#mg
dX
dt

#»@
PN

(X)"dF
,
(t) , (5.46)

where »
PN

(X)+1
2
E

PN
(1!cosX). Eq. (5.46) leads to the Arrhenius form for the diffusion coefficient

at tPR (uP0),

D
,
"D

0
exp(!E

PN
/k

B
¹) . (5.47)
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Fig. 23. Log—log plot of the real part of the function D
,
(u)/d2u

0
the dimensionless temperature ¹I "2

3
k
B
¹/e

,
, for several

values of the dimensionless frequency uJ "u/u
0
. In the region ¹I (uJ 2 the diffusion coefficient is approximately given by

the estimate D
a
J¹2, while in the region ¹I 'uJ 2, D

,
(u) approaches the curve DgJ¹~1 (Ogata and Wada, 1986).

Then, the pre-exponential factor D
0

can be calculated approximately with the help of the Kramers
theory (Kramers, 1940),

D
0
+G

a2
s
u

PN
/2n if g*;g(u*

PN
,

a2
s
u

PN
u*

PN
/2ng if g'u*

PN
,

(5.48)

where

u
PN

"J»A
PN

(0)/m, u*
PN

"J!»A
PN

(a
s
/2)/m ,

g*"
u

PN
k
B
¹

2nE
PN

.

The case of a low friction, g(g*, is rather complicated to be investigated analytically. Numer-
ically, an activated kink diffusion (5.47) was observed in the molecular-dynamics simulations for
the /4 model by Combs and Yip (1984).
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Thus, in application of the theory discussed above to real physical objects the following remarks
should be taken into account:

(i) The total “generalized” friction coefficient g(u) consists of the intrinsic contribution g
*/5

and
the external (substrate) contribution g

%95
, both g

*/5
and g

%95
depend, in a general case, on the

frequency u and the temperature ¹. In some cases, for example, for the chain of atoms chemically
adsorbed on a crystal surface, the intrinsic friction is negligible, g

*/5
;g

%95
(Braun, 1989);

(ii) The intrinsic friction g
*/5

has an origin in radiation-induced effects due to nonintegrability of
the FK chain unlike the completely integrable SG equation, and this nonintegrability is caused by
all the factors such as a nonsinusoidal substrate potential, anharmonic interatomic interactions,
discreteness effects, and the possible presence of impurities, etc.

6. Nonlinear localized modes

6.1. General overview

Up to now the main subject of our discussions related to the properties of nonlinear excitations
in the discrete FK model was a kink — a topologically stable excitation which exists in the
continuum as well as discrete models. As for the breather modes, we have discussed above the cases
when the discreteness effects are actually weak, i.e. when the assumption of strong coupling
between the atoms in the chain is valid. However, such breather-like excitations may also exist in
discrete lattices, i.e. for the limit of weak interparticle coupling. Such nonlinear modes are strongly
localized and they exist with the frequencies below (similar to a breather in the SG model) or above
the phonon frequency band.

For an anharmonic lattice without on-site potential, such localized breather-like modes exist in
a form of the so-called intrinsic localized modes (Dolgov, 1986; Sievers and Takeno, 1988; Page,
1990). In the latter case, the energy localization, which involves only a few particles of the chain, is
possible due to nonlinear interparticle interaction itself, but not due to impurities, as is in the
theory of linear lattices (see, e.g., Maradudin, 1966). Different properties of the intrinsic localized
modes have been discussed in a number of papers (see, e.g., Takeno et al., 1988; Page, 1990;
Burlakov et al., 1990a,b; Takeno and Hori, 1990; Bickham and Sievers, 1991; Kivshar, 1991b;
Scharf and Bishop, 1991; Bickham et al., 1992; Sandusky et al., 1992; Hori and Takeno, 1992;
Dauxois and Peyrard, 1993; Dauxois et al., 1993a,b; Kiselev et al., 1993; Kivshar, 1993a,b; Flach
and Willis, 1993; Flach et al., 1994; Bang and Peyrard, 1996; Takeno and Peyrard, 1996; Forinash
et al., 1997) and they have been overviewed by Takeno et al. (1988), Sievers and Page (1995), Kiselev
et al. (1995), and Flach and Willis (1998). An important theoretical result was a rigorous mathemat-
ical proof of the existence of nonlinear localized modes (MacKay and Aubry, 1994) based on the
analysis of a system of weakly coupled nonlinear oscillators (the so-called “anti-integrability” limit,
see Aubry, 1994; for an overview).

The original model firstly considered to describe intrinsic localized modes (Dolgov, 1986; Sievers
and Takeno, 1988) is a chain with anharmonic interatomic interaction, and it describes a one-
dimensional lattice without a substrate in which each atom interacts only with its nearest neighbors
via a symmetric nonlinear potential. The localized Sievers—Takeno (ST) mode has a symmetric
pattern (Sievers and Takeno, 1988) given by u

n
(t)"A(2, 0,!1

2
, 1,!1

2
, 0,2) cosut, whereas the
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Page (P) mode has the asymmetric pattern (Page, 1990), u
n
(t)"A(2, 0,!1, 1, 0,2) cosut,

A being the mode amplitude. These modes can also propagate through the lattice (see, e.g.,
Bourbonnais and Maynard, 1990a,b) in spite of the fact that their motion is strongly affected by
discreteness. Adiabatic motion of the localized mode can be also viewed, till some extend, as the
sequential changing between ST and P modes. Due to the lattice discreteness, these two states have
different energies (e.g., Claude et al., 1993), viewed as two states of the same mode moving
adiabatically through the lattice when its motion is affected by an effective periodic PN-like
potential, similar to that introduced earlier for a FK kink. In such a picture, the P mode
corresponds to a minimum of the effective PN potential, whereas the ST mode corresponds to
a maximum and it displays a dynamical instability (Sandusky et al., 1992).

It is well established that nonlinear localized mode exist not only due to anharmonic coupling
between the atoms, but also in a chain with linear coupling when the nonlinearity is introduced
only through an on-site substrate potential. The purpose of the present chapter is to describe briefly
nonlinear localized modes for the FK model, employing the approximation based on the discrete
nonlinear Schrödinger (NLS) equation. The case of the quartic on-site potential was discussed by
several authors (Takeno et al., 1988; Kivshar, 1991b; Flach and Willis, 1993; see also the case of the
purely cubic on-site potential, (Dauxois et al., 1992) and highly localized modes with the frequen-
cies below the minimum frequency of the linear spectrum have been found. The existence of moving
localized modes in such a model has been discussed by several authors, but this issue is still not
completely clarified. However, we would like to mention several papers (Kivshar and Campbell,
1993; Cai et al., 1994), where the existence of an effective PN potential for moving localized mode,
similar to that for the FK kink, was demonstrated, and the height of the PN potential was
estimated analytically for two limit cases. Additionally, we would like to note that the spectrum of
a linear discrete FK chain is limited from above by an upper cut-off frequency existing due to
discreteness, so that one naturally expects to find localized modes with the frequencies above the
cut-off frequency similar to the odd-parity ST modes (see Sievers and Takeno, 1988) or even-parity
P modes (see Page, 1990; Sandusky et al., 1992) in a chain with anharmonic interatomic interac-
tions. The physically important problem related to these localized nonlinear modes is to prove that
they are long-lived excitations which can contribute to many properties of nonlinear discrete
systems. Additionally, there exists a variety of other modes such as “dark-soliton” nonlinear
localized modes with nonvanishing asymptotics which have no simple analog in the continuum
limit approximation.

We would like to emphasize that this section has a purpose to complete the picture of the kink
dynamics discussed above by a few illustrative examples of nontopological nonlinear modes in the
FK model, and the specific features introduced by discreteness. A more comprehensive discussion
of the intrinsic localized modes (called also discrete breathers) can be found in the papers by Flach
and Willis (1998) and Hennig and Tsironis (1999).

6.2. Discrete NLS equation

We consider the dynamics of a one-dimensional FK chain with an on-site potential of a general
shape. Taking into account relatively small amplitudes of the modes, one can expand the substrate
potential keeping terms up to the quartic one. For the standard FK model, the coefficient a in front
of the cubic term is zero, but the case considered below is more general to treat, for example, the
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situation of a small dc field applied to the FK chain. Denoting by u
n
(t) the displacement of the nth

particle, its equation of motion is

d2u
n

dt2
!g(u

n`1
#u

n~1
!2u

n
)#u2

0
u
n
#au2

n
#bu3

n
"0 , (6.1)

where g is the coupling constant, u
0

is the frequency of small-amplitude on-site vibrations in the
substrate potential, a and b are the anharmonicity parameters of the potential. Linear waves of the
frequency u and wavenumber k are described by the dispersion relation

u2"u2
0
#4g sin2A

ka
s

2 B , (6.2)

a
s
being the lattice spacing. As shown by Eq. (6.2), the linear spectrum has a gap u

0
and it is limited

by the cut-off frequency u
.!9

"(u2
0
#4g)1@2 due to discreteness.

Analysing slow temporal variations of the wave envelope, we will try to keep the discreteness of
the primary model completely. In fact, this is possible only under the condition u2

0
<g, i.e. when

a coupling force between the neighboring particles is weak. Looking for a solution in the form

u
n
"/

n
#t

n
e~*u0t#t*

n
e*u0t#m

n
e~2*u0t#m*

n
e2*u0t#2 , (6.3)

we assume the following relations (similar to the continuum case, see, e.g., Remoissenet, 1986),
/
n
&e2, m

n
&e2, t

n
&e, and also the following relations between the model parameters, g&e2,

u2
0
, a, b&1, (d/dt)&e2. It is clear that this choice of the parameters corresponds to large values of

u2
0

(we may simply divide all the terms by the frequency gap value).
Substituting Eq. (6.3) into Eq. (6.1) and keeping only the lowest order terms in e, we obtain the

equation for t
n
,

2iu
0

dt
n

dt
#g(t

n`1
#t
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!2t

n
)!2a(/

n
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n
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)!3bDt
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"0 , (6.4)

and two algebraic relations for /
n

and m
n
,

/
n
+!

2a
u2

0

Dt
n
D2, m

n
+

a
3u2

0

t2
n

. (6.5)

The results (6.4) and (6.5) are generalizations of the well known ones for the continuum case
(Remoissenet, 1986). Thus, the final discrete NLS (or DNLS) equation stands,

i
dt

n
dt

#K(t
n`1

#t
n~1

!2t
n
)#jDt

n
D2t

n
"0 , (6.6)

where

K"

g
2u

0

, j"
1

2u
0
A
10a2

3u2
0

!3bB . (6.7)

Eq. (6.6) is used below to analyse different types of localized modes in the FK chain. In fact, the
DNLS equation (6.6), also known as the discrete self-trapping equation (e.g., Eilbeck et al., 1985;
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Carr and Eilbeck, 1985), is rather known to have numerous physical applications, and it describes
the self-trapping phenomenon in a variety of coupled-field theories, from the self-trapping of vibron
modes in natural and synthetic biomolecules (Eilbeck et al., 1985; Scott, 1985) to the dynamics of
a linear array of vortices, being a special limit of the discrete Ginzburg—Landau equation (see, e.g.,
Willaime et al., 1991). Generalized version of the DNLS equation with arbitrary degree of the
nonlinearity has been considered to study the influence of the nonlinearity on the structure and
stability of localized modes (see, e.g., Scott and Christiansen, 1990; Bang et al., 1993, 1994;
Malomed and Weinstein, 1996; Gupta and Kundu, 1997).

We would like to point out again that in the present context Eq. (6.6) emerges as an approximate
equation under the assumption of slow (temporal) variation of the envelopes as well as the
neglecting of higher-order harmonics, and the latter means that we assume the gap frequency
u

0
large with respect to the other frequencies in the system, i.e. u2

0
<4g, and u2

0
<au

0
, bu2

0
,

u
0

being the wave amplitude. The former inequality is valid in a weakly dispersive system where
u

0
is close to u

.!9
, while the latter one means that the nonlinearity of the substrate potential is not

large. These are usual conditions to get the NLS equation, but in the lattice, the condition u2
0
<4g

means also that discreteness effects are considered strong pointing out the interest to the discrete
modes localized on a few particles.

First of all, we analyze modulational instability for the DNLS equation (6.6). As is well known,
nonlinear physical systems may exhibit an instability that leads to a self-induced modulation of the
steady state as a result of an interplay between nonlinear and dispersive effects. This phenomenon,
referred to as modulational instability, has been studied in continuum models (see, e.g., Bespalov
and Talanov, 1966; Benjamin and Feir, 1967; Ostrovskii, 1966; Hasegawa, 1970) and, only recently,
in discrete models (Kivshar and Peyrard, 1992). As has been pointed out, modulational instability
is responsible for energy localization and formation of localized pulses.

For the DNLS equation (6.6), derived in the single-frequency approximation, modulational
instability in the lattice can be easily analyzed. Eq. (6.6) has the exact continuous wave (cw)
solution

t
n
(t)"t

0
e*hn, with h

n
"ka

s
n!ut , (6.8)

where the frequency u obeys the nonlinear dispersion relation

u"4K sin2A
ka

s
2 B!jt2

0
. (6.9)

The linear stability of the wave (6.8) and (6.9) can be investigated by looking for the perturbed
solution of the form t

n
(t)"(t

0
#b

n
) exp(ih

n
#is

n
), where b

n
"b

n
(t) and s

n
"s

n
(t) are assumed to

be small in comparison with the parameters of the carrier wave. In the linear approximation two
coupled equations for these functions yield the dispersion relation

[X!2K sin(Qa
s
) sin(ka

s
)]2"4K sin2(Qa

s
/2) cos(ka

s
) [4K sin2(Qa

s
/2) cos(ka

s
)!2jt2

0
] (6.10)

for the wavenumber Q and frequency X of the linear modulation waves. In the long wavelength
limit, when Qa

s
;1 and ka

s
;1, Eq. (6.10) reduces to the usual expression obtained for the

continuous NLS equation (see, e.g., Benjamin and Feir, 1967).
Eq. (6.10) determines the condition for the stability of a plane wave with the wave-number k in

the lattice. Contrary to what would be found in the continuum limit, now the stability depends
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on k. An instability region appears only if (Kivshar and Peyrard, 1992)

j cos(ka
s
)'0 . (6.11)

For positive j and a given k, i.e. k(n/2a
s
, a plane wave will be unstable to modulations in all this

region provided t2
0
'2K/j. The stability of the plane wave solutions to modulations of the wave

parameters allows to conclude on possible types of nonlinear localized modes which may exist in
the chain.

Modulational instability was shown to be an effective mean to generate localized modes in
discrete lattices, because the lattice discreteness modifies drastically the stability condition.
Daumont et al. (1997) have analyzed, following the technique suggested by Kivshar and Peyrard
(1992), the modulational instability of a linear wave in the presence of noise in a lattice with qubic
and quintic on-site potential, and they have demonstrated that the modulational instability is
the first step towards energy localization (see also Kivshar and Salerno, 1994; for the case of the
deformable discrete NLS model).

6.3. Spatially localized modes

As has been mentioned above, one of the main effects of modulational instability is the creation
of localized pulses (see, e.g., Karpman, 1967). In the present case, this means that for j'0 the
region of small k is unstable, and, therefore, nonlinearity can lead to a generation of localized
modes below the smallest frequency of the nonlinear spectrum band (6.9). Such a localized mode
can be found in an explicit form, from the DNLS equation (6.6) following the method by Page
(1990). Looking for the stationary solutions of Eq. (6.6) in the form, t

n
(t)"Af

n
e~*ut, we obtain a set

of coupled algebraic equations for the real functions f
n
,

uf
n
#K( f

n`1
#f

n~1
!2f

n
)#jA2f 3

n
"0 . (6.12)

We seek now two kinds of strongly localized solutions of Eq. (6.12), which are centered at and
between the particle sites. First, let us assume that the mode is centered at the site n"0 and take
f
0
"1, f

~n
"f

n
, Df

n
D;f

1
for DnD'1. Simple calculations yield the pattern of the so-called “A-modes”

(see Fig. 24a),

t(A)
n

(t)"A(2, 0, m
1
, 1, m

1
, 0,2)e~*ut , (6.13)

where the parameter m
1
"K/jA2 is assumed to be small (i.e., terms of order of m2

1
are neglected).

The frequency u in Eq. (6.13) is u"!jA2, and it indeed lies below the lowest band frequency.
The second type of the localized modes, the “B- modes”, may be found assuming that the mode

oscillation is centered symmetrically between two neighboring particles (see Fig. 24b),

t(B)
n

(t)"B(2, 0, m
2
, 1, 1, m

2
, 0,2)e~*ut , (6.14)

where the values u and m
2

are defined as m
2
"K/jB2, and u"!jB2.

The calculation of the effective PN potential for localized mode is much more difficult task than
that for the kinks, because the localized modes possess more parameters and the PN potential
cannot be defined rigorously (Flach and Willis, 1994). However, the existence of a kind of PN
potential affecting the motion of a nonlinear localized mode through the lattice can be easily
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Fig. 24. Schematic shapes of strongly localized low-frequency nonlinear mode: (a) odd-parity mode, and (b) even-parity
mode. The former mode may be considered as excited at the particle site whereas the latter one, between two nearest
particles.

demonstrated. First, following the paper by Kivshar and Campbell (1993) we can imagine
a localized wave form of a fixed shape being translated rigidly through the lattice. Then, it is clear
that when the peak is centered on a lattice site, the symmetry is of the “A” form, whereas when the
peak is centered halfway between the sites, the symmetry is of the “B” form. This observation
motivates a comparison between the energies of these two modes provided, for the case of the NLS
equation, the integral of motion N"+

n
Dt

n
D2 is conserved. Such a comparison of the integrals

N calculated for A- and B-modes gives the relations between the amplitudes A and B in the lowest
order in the small parameter m

1
and m

2
, A2"2B2. With this condition on A and B, we can interpret

now the two modes as stationary states of the same localized mode, calculating a difference in the
energy between these two stationary states, DE

AB
"E

A
!E

B
"!1

2
jA4#jB4"!1

4
jA4.

From this simple estimate, it follows an important conclusion that there exists an effective energy
barrier (the height of the effective PN potential) between these two stationary states of the discrete
NLS equation, also meaning that any translation of nonlinear localized modes through the lattice
will be affected by a periodic energy relief. In particular, a localized mode may be captured by the
potential (i.e. trapped by the lattice discreteness). A simple way to observe this effect is “to push” the
localized mode to move through the lattice by variation of the mode initial phase (Krolikowski and
Kivshar, 1996). The B-mode, corresponding to a maximum of the potential, starts to move almost
immediately, whereas it is clear that a certain energy barrier must be overcome to move through
the lattice (Krolikowski and Kivshar, 1996). This is an indirect manifestation of the effective barrier
due to the lattice discreteness, in spite of the fact it cannot be defined in a rigorous way.

Importantly, the analysis presented above is somewhat related to the stability properties of the
nonlinear localized modes: the stationary localized mode corresponding to a local maximum of the
PN potential should display an instability whereas the mode corresponding to a minimum should
be stable. This qualitative observation made on the basis of the analysis of the PN barrier is in an
agreement with the work by Sandusky et al. (1992) who have shown numerically and analytically
(using other arguments and not referring to the PN potential) that for the case of interatomic
quartic anharmonicity the ST localized mode (shown in Fig. 25a) is in fact unstable, but the
P mode (shown in Fig. 25b) is extremely stable.
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Fig. 25. The same as in Fig. 24a and b but for high-frequency nonlinear modes. However, the properties of such a mode
may become reverse so that the mode (a) may have a lower energy than the mode (b).

One of the simple way to calculate the shape of the PN potential in the case of the NLS equation
is to use the integrable version of the lattice equation, i.e. the Ablowitz—Ladik (AL) model (Ablowitz
and Ladik, 1976), and to take the difference between these two models as a perturbation [see also
Salerno (1992a,b) and Cai et al. (1994), where the perturbed AL chain has been considered as
a novel physically important model]. To do so, we present the primary discrete NLS equation (6.6)
in the form

i
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n
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We start from the exact solution of the AL model (Ablowitz and Ladik, 1976) for the unperturbed
case (R"0) which we present in the form

t
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0
)#ia]

cosh[k(n!x
0
)]

, (6.17)

where dk/dt"0, dl/dt"0, dx
0
/dt"(2/k) sinhk sin l, and da/dt"2[cosh(k) cos(l)!1]. In

Eq. (6.17) and the subsequent calculations related to Eqs. (6.15) and (6.16) we use the normalized
variables: tPt/K and Dt

n
D2P(2K/j)Dt

n
D2.

Considering now the right-hand side of Eq. (6.15) as a perturbation (that is certainly valid for not
too strongly localized modes), we may use the perturbation theory based on the inverse scattering
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transform (Kivshar and Malomed, 1989). For the case of the AL model, the corresponding version
of the soliton perturbation theory was elaborated by Vakhnenko and Gaididei (1986). According to
this approach, the parameters of the localized solution (6.17), i.e. k, l, a and x

0
, are assumed to be

slowly varying in time. The equations describing their evolution in the presence of perturbations
were obtained by Vakhnenko and Gaididei (1986). Substituting Eq. (6.16) into those equations and
applying the Poisson formula to evaluate the sums appearing as a result of discreteness of the
primary AL model, we obtain two coupled equations for the soliton parameters l and x

0
:

dx
0

dt
"

2
k

sinhk sin l , (6.18)

dl
dt

"!

2n3 sinh2k sin(2nx
0
)

k3 sinh(n2/k)
, (6.19)

and also dk/dt"0. In Eq. (6.19) we took into account only the contribution of the first harmonic
because the higher ones, of the order of s, will always appear with the additional factor
& exp(!n2s/k) which is assumed to be small.

The system (6.18), (6.19) is a Hamiltonian one, the corresponding Hamiltonian is given by the
expression,

H"!

2
k

sinhk cos l!
n2 sinh2k

k3

cos(2nx
0
)

sinh(n2/k)
, (6.20)

where the parameters x
0

and l have the sense of the generalized coordinate and momentum,
respectively. The first term is the kinetic energy of the effective particle, the second one is the
periodic potential, which is, as a matter of fact, the effective periodic PN relief. In the approach
assuming the difference between the two models to be small, i.e. the parameter k small, the
amplitude of the PN potential defined as

º
.!9

"

n2 sinh2k
k3 sinh(n2/k)

, (6.21)

is exponentially small in the parameter k~1. As we can see, the dependence (6.21) and the periodic
potential º

.!9
cos(2nx

0
) are similar to those in the problem for the topological kink in the FK

model discussed above. As a result, all types of motion of the effective particle remain the same as in
the case of the kink, in particular, the nonlinear mode may be trapped by discreteness similar to
a trapping of a kink.

The approach based on the perturbations of the integrable AL lattice model have been examined
by Bang and Peyrard (1995) who found only qualitative agreement with numerical results on
nonlinear localized modes in the generalized FK models. One of the possible reason for this is the
strong assumption in the derivation of the adiabatic equations (6.18) and (6.19) which is valid only
in the case of very small perturbation. In a general case, all higher harmonics in the Poisson sums
give a contribution of the same order and the quantitative agreement should be no longer expected.
However, the theory based on the AL model may serve as a simple example explaining how the
effective periodic dependence of the mode parameters appears due to lattice discreteness when the
lattice model becomes nonintegrable.
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6.4. Dark-soliton modes

As is well known, in the continuum limit approximation the DNLS equation (6.6) supports two
different kinds of soliton solutions, bright and dark solitons. The bright solitons are similar to
spatially localized modes discussed above, whereas localized structures which are similar to dark
solitons are less discussed in literature. It is the purpose of this section to present two types of these
structures in the FK type lattice following the paper by Kivshar (1992), see also Putterman and
Roberts (1993), Huang et al. (1993) and Kivshar et al. (1994). This type of structures has been
observed experimentally by Denardo et al. (1992) in an array of parametrically driven pendulums
(see also Lou and Huang, 1995; for the case of a diatomic lattice). Similar types of dark-soliton
localized modes for a chain with anharmonic interatomic coupling has been recently analyzed by
Bortolani et al. (1997).

First, we notice that for positive j, the continuous wave solution is stable only for k'n/2a
s
, so

that dark-profile structures are possible, for example, near the cut-off frequency u
m
"4K. Substitu-

ting t
n
"(!1)nW(x, t)e*umt into Eq. (6.6), where the slowly varying envelope W is found to be

a solution of the continuous NLS equation, it is easy to obtain the dark soliton solution in the
continuum approximation,

t
n
"(!1)nA tanh(Ax)e~*Xt , (6.22)

where X"4K!jA2, and x"na
s
JK is considered as a continuous variable.

Looking now for the similar structures in the discrete NLS equation (6.6), we find that they are
possible, for example, in the form
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,!1, 1,2) , (6.23)

where X"4K!jA2, and
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1
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K
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;1 . (6.24)

The structure (6.23) is a solution of the NLS equation with the accuracy better for smaller D
1
, and it

is a phase-kink excitation with the width localized on a few particles in the lattice (see Fig. 26a).
Because the frequency X coincides with the cut-off frequency of the nonlinear spectrum, we call
these solutions “cutoff kinks”.

Another type of dark-profile nonlinear localized structures which may be also described
analytically in continuum as well as discrete models, is realized in the case when the mode
frequency is just at the middle of the spectrum band, i.e. the wavenumber is equal to n/2a

s
. In this

case we may separate the particles in the chain into two subsets, odd and even ones, and describe
their dynamics separately, introducing the new variables, i.e. t

n
"v

n
, for n"2l, and t

n
"w

n
, for

n"2l#1. The main idea of such an approach is to use the continuum approximation for two
envelopes, v

n
and w

n
(see Kivshar, 1992).

Looking now for solutions in the vicinity of the point k"n/2a
s
, we may use the following ansatz:

v
2l
"(!1)l»(2l, t)e~*u1t, w

2l`1
"(!1)l¼(2l#1, t)e~*u1t , (6.25)
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Fig. 26. Dark-soliton localized nonlinear modes: (a) cut-off and (b) non-cut-off kinks.

where u
1
"2K is the frequency of the wavelength-four linear mode, assuming that the functions

»(2l, t) and ¼(2l#1, t) are slowly varying in space. Substituting Eq. (6.25) into Eq. (6.6), we finally
get the system of two coupled equations,

i
»
t

#2a
s
K

¼
x

#jD»D2»"0 , (6.26)

i
¼
t

!2a
s
K

»
x

#jD¼D2¼"0 , (6.27)

where the variable x is treated as continuous one. Analysing localized structures, we look for
stationary solutions of Eqs. (6.26) and (6.27) in the form

(»,¼)J( f
1
, f
2
)e*Xt , (6.28)

assuming, for simplicity, the functions f
1

and f
2

to be real. Then, the stationary solutions of
Eqs. (6.26) and (6.27) are described by the system of two ordinary differential equations of the
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first order,
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where z"x/2a
s
K. Eqs. (6.29) and (6.30) represent the dynamics of a Hamiltonian system with one

degree of freedom and the conserved energy, E"!1
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easily integrated with the help of the auxiliary function /"( f
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), for which the following equation

is valid,
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Different kinds of solutions of Eq. (6.31) may be characterized by different values of the energy
E (Kivshar, 1992). On the phase plane ( f

1
, f

2
) soliton solutions correspond to the separatrix curves

connecting a pair of the neighboring saddle points (0, f
0
), (0,!f

0
), ( f

0
, 0), or (!f

0
, 0), where

f2
0
"X/j. Calculating the value of E for these separatrix solutions, E"!X2/4j, it is possible to

integrate Eq. (6.31) in elementary functions and to find the soliton solutions,

/(z)"exp($J2Xz) , (6.32)
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2
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The solutions (6.32), (6.33), but for negative X, exist also for defocusing nonlinearity when j(0.
The results (6.32), (6.33) together with (6.28) and (6.25) give the shapes of the localized structures

in the discrete nonlinear lattice. The whole localized structure represents two kinks in the odd and
even oscillating modes which are composed to have opposite polarities (see the envelopes in
Fig. 26b).

Highly localized nonlinear structures in the lattice corresponding to the solutions (6.32), (6.33)
may be also found, and one of these structures has the following form:

t
n
"Ae~*Xt(2, 1, 0,!1, 0, m

2
, m

2
, 0.!1, 0, 1,2) , (6.34)

where X"2K!jA2 is the frequency at the middle of the nonlinear spectrum, and m
2
"1!D

2
,

D
2
"K/2jA2;1. The approximation is better for smaller values of the parameter D

2
.

7. Effects of disorder

7.1. Models of disorder

For realistic physical models, the interaction of nonlinear excitations with impurities should play
an important role in the transport properties because kinks (or breathers) can be trapped or
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reflected by local impurities. Additionally, a breather captured by an impurity becomes a nonlinear
impurity mode, and this observation makes a link between the theory of nonlinear chains and the
theory of harmonic lattices with defects (see, e.g., Lifshitz, 1943, 1944; Krivoglaz, 1961; Maradudin,
1966).

Many features of the soliton-impurity interactions have been already discussed in review papers
by Kivshar and Malomed (1989) and Gredeskul and Kivshar (1992) in the framework of the SG
model with local or extended inhomogeneities. For the discrete FK model, two new features of the
soliton-impurity interactions appear and they should be discussed. First, in a discrete chain, a kink
moves in the presence of an effective PN potential whose amplitude is always less than the
amplitude of the substrate potential. Thus, the kink parameters are varying periodically and this
simple mechanism generates phonons leading to the subsequent rapid pinning of the kink by the
lattice discreteness. As a result, the discreteness effects which are absent in the SG model may
significantly modify the adiabatic kink scattering (see, e.g., Braun and Kivshar, 1991a). Second, the
important feature of the kink scattering by impurities in a discrete chain is the possible excitation
of impurity modes during the scattering. In fact, such an effect is also possible for continuous
models provided one considers strong disorder (see below), but the discreteness modifies the
impurity mode frequency making the process of its excitation more easier (see, e.g., Forinash et al.,
1994).

A simple generalization of the FK model to include defects of different kind was discussed by
Braun and Kivshar (1991a). The FK model with disorder is described by the following Hamil-
tonian [cf. Eqs. (2.1), (2.2), (2.3), (2.4), (2.5), (2.6), (2.7), (2.8), (2.9) and (2.10)]
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where impurities are taken into account through the parameters m
j
(change of the particle mass),

g
j
(change of the interparticle interaction), e

j
(local distortion of the substrate potential), and v(x

j
)

(an additional change of on-site potential created by impurities). The motion equation for the
atomic displacements u

j
"x

j
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s
takes the form [we select the simplest case when a
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s
, cf.

Eq. (2.20)]
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When one of the atoms of the chain, say at j"0, has properties which are different from those of
the lattice atoms, it may be characterized by a local change of the parameters (in dimensionless
units adopted in Section 2), e

0
"1#De, m

0
"1#Dm, and g

0
"g

~1
"g#Dg, so that the

perturbation-induced correction dH to the Hamiltonian of the FK chain is written as
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In the continuum approximation such an impurity is introduced by the changes like e
j
Pe(x)"

1#Dea
s
d(x), and so on.
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7.2. Kinks

7.2.1. Static properties
First of all, the combined effect of nonlinearity and disorder can modify the kinks properties

even in the static case. This problem is easier to be analysed for the SG model, i.e. for the
continuous version of the FK chain. In fact, the SG model with defects was introduced by
Baeriswyl and Bishop (1980) who analysed the linear properties of that model. For the case
of the delta-like impurities, a number of exact results to the SG model can be obtained for
defect stationary states, nonlinear static structures created by the effect of kink’s pinning
due to impurities. Several cases where such stationary structures may be treated analytically
have been considered for both the linear coupling between the defect and the wave field,
i.e. when v(x)&jd(x!x

0
) (see, e.g., Reisinger and Schwabl, 1983), and for nonlinear coupling

(when, e.g., e(x)&jd(x!x
0
), see Galpern and Filippov, 1984). The derivative mismatch in-

troduced by such a d-function allows to get (for isolated defects) the nonlinear stationary
conditions which can be solved analytically. With the help of those exact results, the correlation
function in the presence of defects can be calculated, as well as the free energy of the various
possible configurations. This program can be realized not only for one or two impurities but also
for a random distribution of defects in the limit of small concentration (see, e.g., Reisinger and
Schwabl, 1983).

More complicated behavior is observed in a generalized FK model where, e.g., an extension of
the model beyond the limits of the harmonic approximation for the interatomic potential leads to
some qualitatively novel results such as the existence of distortion chain configurations (Markov
and Trayanov, 1987) or formation of cracks when the tensile strength of the chain exceeds a certain
critical value (see, e.g., Milchev, 1986, 1990). When local impurities are inserted into the chain, they
may act as traps in both pinning the antikinks and increasing the threshold for a chain breakup.
Such an effect was analysed for the FK chain with nonconvex interaction between neighboring
atoms by Malomed and Milchev (1990) who showed that the breakup threshold for an antikink
pinned by an inhomogeneity which locally decreases the substrate potential is higher than for a free
antikink, the effect they related to the observed formation of cracks out of misfit dislocations in
III—V heterostructures (Franzosi et al., 1988).

7.2.2. Effective equation of motion
First we consider the continuum approximation of the FK model described by the SG equation

with inhomogeneous parameters. In this case, the effective equation for the kink’s coordinate can
be derived by a simplified version of the collective-coordinate approach (see, e.g., Fogel et al., 1976,
1977; Kivshar and Malomed, 1989; and references therein). As an example, we consider the simplest
case of the inhomogeneous SG model,

u
tt
!u

xx
#sin u"ef (x) sin u , (7.4)

when the impurity is modelled by introducing the external potential

º
%95

(x)"P
x

dx f (x) .
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Analysing the kink dynamics in the framework of the collective-coordinate approach, we can
obtain, in a simple way, an effective equation of motion for the kink’s coordinate (see, e.g., Currie
et al., 1977; McLaughlin and Scott, 1978). To derive such an equation, we note that the unpertur-
bed SG system has an infinite number of quantities (system invariants) that are conserved during
the evolution, among which there is the momentum,

P,!P
=

~=

dx u
t
u
x

. (7.5)

For the SG kink, Eq. (7.5) takes the form of the well-known relativistic expression P"m»/
J1!»2, » being the kink velocity. In the presence of perturbations, the momentum is no
longer conserved; using Eq. (7.4) it is possible to show that it varies according to the equation

dP
dt

"eP
=

~=

dx f (x) (cos u)
x

,

provided the boundary conditions uP0(2n) at xP$R holds. The adiabatic approach is now
defined by the assumption that, for e small enough, the kink shape is not affected and only the
kink’s coordinate X becomes a slowly varying function of time. Within this hypothesis it can be
shown that, in the non-relativistic limit, the kink center obeys the following equation of motion
md2X/dt2"!º@(X), where

º(X),!2eP
=

~=

dx
f (x)

cosh2(x!X)
, (7.6)

and we have used the approximate expression P+m
k
(dX/dt), valid for small velocities. Thus, in

the framework of such an adiabatic approach, the motion of the SG kink can be thought of as that
of a particle with (kink) mass m in the external potential º(X) defined by Eq. (7.6). The similar
properties can be shown for relativistic kinks (Bergman et al., 1983).

The following two cases arise naturally from Eq. (7.6). If f (x) changes rapidly over distances of
the order of the kink length, then e has to be small for our approximation to hold. For example, in
the case f (x)"d(x), we have (McLaughlin and Scott, 1978): º(X)"!2e sech2X. On the other
hand, if f (x) changes slowly, i.e., its characteristic length (say ¸) is much larger than the kink width,
it is not necessary for e to be small, because all the parameters of the perturbation theory are of the
order of ¸~1, and we are left with º(X)+4ef (X/¸).

The approximation involved in the derivation presented above is based on the assumption that
the kink moves slow through the region of inhomogeneity. In this case, the kink’s width does not
change much and its variation can be neglected. This corresponds to the so-called ‘nonrelativistic’
interaction of the kink with an impurity. However, relativistic effects can be taken into account by
introducing one more collective coordinate associated with kink’s width (Rice, 1984; Fernandez
et al., 1986). A more detailed analysis of this effect was presented by Woafo and Kofané (1994) who
observed that a kink is shortened in the attractive potential and extended in the repulsive potential
of the impurity.
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The adiabatic theory presented above becomes not valid in the case when a localized impurity
can support an impurity mode, an oscillating linear mode at the impurity site. In this latter case, the
kink’s position and the impurity mode amplitude are two effective collective coordinates as
discussed in detail below. Different types of the so-called resonant interactions of solitons and kinks
with impurities have been recently overviewed by Belova and Kudryavtsev (1997), and the simplest
example of such an interaction can be found below in Section 7.4.

In a discrete FK lattice, the motion equation for the kink’s coordinate is modified by the PN
relief. One of the ways to derive the effective equation of motion for the kink has been already
mentioned in Section 2.3 and it is based on the projection-technique approach developed by the
group of Willis. Another approach is based on the Lagrangian formalism which we will apply here
just to mention the example how such a method really works (see, e.g., Pouget et al., 1989; Braun
and Kivshar, 1991a; Salerno and Kivshar, 1994).

Let us start from the Lagrangian of the inhomogeneous FK chain
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Considering now the simplest case of a single-point defect at the site n"0 (the case of several
impurities can be treated in a similar manner) we put e
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where A"m
a
(c/2n)2. In the notations adopted above, the parameter k has the meaning of a ratio of

the lattice spacing to the kink’s width. We now assume that the value k is small, so that distorted
kink in the discrete chain may be approximated by the SG kink ansatz

/
j
(q)"4 tan~1 ekmj , (7.9)

where m
j
"j!½(q), where ½(q) is a collective coordinate of the kink. Substituting Eq. (7.9) into the

system Lagrangian and evaluating the sums with the help of the Poisson sum formula:
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we obtain the effective Lagrangian in the following reduced form (Braun and Kivshar, 1991a)
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The equation of motion for the kink’s coordinate X"k½ can be obtained from Eq. (7.10) in
a straightforward manner. The simple analysis shows that the discreteness yields an additional
potential field associated with the PN relief so that the kink may be treated as an effective particle
of a variable mass moving in an effective potential
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%&&
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(X) , (7.11)
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The analysis of the kink motion in the vicinity of the impurity can be found in the paper by Braun
and Kivshar (1991a), but a qualitative physical picture of such an interaction is rather simple: The
kink’s motion is affected by the potentials of two kinds, localized, from the impurity, and
nonlocalized from the periodic PN relief. In particular, if the kink is pinned by the discreteness not
far from the impurity, its PN frequency is renormalized to be
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, (7.14)

where u2
PN

"[8n4/k sinh(n2/k)] is the PN frequency, X
j
"k( j#1

2
), and ja

s
is the distance from the

impurity. It is important to note that the local impurity potential º
*.

acts on a kink and antikink
in the same way.

The similar technique can be applied to the problem of the DNA promoters to explain its role as
dynamical activators of transport processes of the RNA polymerase along DNA macromolecules.
By introducing an effective potential for the kink in a disordered FK model, suggested as a simplest
model of the DNA chain (Englander et al., 1980; Yomosa, 1983, 1984; Homma and Takeno, 1984;
Zhang, 1987; Yakushevich, 1989; Salerno, 1991, 1992b), Salerno and Kivshar (1994) have demon-
strated the existence of a dynamically ‘active’ region inside of a DNA promoter, in a qualitative
agreement with experimental data (Ricchetty et al., 1988).

Several interesting effects can be observed for a multi-kink dynamics when more than one kink
interact near the impurity. In particular, when a moving kink collides with a kink trapped by at an
impurity site, three different outcomes of the collision are possible: depinning, capture, and
exchange (Malomed and Nepomnyashchy, 1992). For the kinks of different polarities, such
collisions may result also in annihilation of the kinks at the impurity. The scattering of a SG
breather can be treated as that of a coupled pair of kinks, at least in the case of low-frequency
breathers. A complex dynamics of the breather-impurity scattering has been demonstrated by
Kenfack and Kofané (1994) and Zhang (1998).

The adiabatic effects discussed above are based on the approximation when radiative losses are
negligible. However, during the scattering by impurities, the kink radiates phonons which may
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change the general pictures of the scattering by introducing an effective radiative losses (see, e.g.,
Kivshar and Malomed, 1989). In fact, radiative losses in the inhomogeneous FK model may be of
three types.

f ¹he first type of radiation effects arises due to the PN potential: Moving in a discrete lattice with
a variable velocity, the kink generates phonons (see Ishimori and Munakata, 1982; Peyrard and
Kruskal, 1984; Boesch et al., 1989). Such an emission of radiation is strongly connected with the
structure of the spectrum band of linear phonons and, for example, in the case of extreme
discreteness (g&1), the emission of the moving kink exhibits well-defined changes at some
critical velocities (Peyrard and Kruskal, 1984). The trapped kink oscillating in the PN potential
emits large and sudden bursts of radiation when the frequency of the kink oscillation reaches
certain resonant values (Boesch et al., 1989).

f ¹he second type of the resonant effects is related to the change of the kink’s velocity caused by
impurities. This kind of the kink’s emission can be calculated in the lowest order as emission of
the SG kink. A number of such problems was mentioned in a review paper on the soliton
perturbation theory (Kivshar and Malomed, 1989). The importance of this type of radiative
effects has been demonstrated for the case of the kink scattering by two impurities by Kivshar et
al. (1992), who demonstrated that, for low kink’s velocities, the reflection coefficient of the kink
depends oscillatory on the distance between impurities, the effect caused by an interference of the
radiation emitted by the kink.

f At last, the third type of inelastic effect which are not taken into account by the adiabatic
approach is the excitation of impurity modes by the scattering kink, and in the limit of the SG
model such a problem will be discussed below (see Section 7.4).

7.2.3. Point impurities
When the function f (x) in Eq. (7.4) describes random impurities, we may consider the simplest

case of delta-like inhomogeneities,
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Then, the equation for the kink coordinate X takes the form, md2X/dt2"!º@(X), where
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Here, as above, we have approximated PKm»KmdX/dt. Thus, in the collective coordinate
framework, the motion of the SG kink can be interpreted as the motion of a nonrelativistic particle
with the unit mass m in an effective, random potential defined in Eq. (7.17).

In the paper by Gredeskul et al. (1992) the kink scattering was analysed for the case when
disorder appears as randomly distributed point impurities with equal intensities, i.e. for e

n
"e. The

general methods usually used for time-dependent random perturbations [see, e.g., Pascual and
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Vázquez (1985), Biller and Petruccione (1990) and also the review papers by Bass et al.
(1988); Gredeskul and Kivshar (1992) and Sánchez and Vázquez (1992)] cannot be directly
applied to the problem because for randomly distributed spatial impurities we cannot derive
the Fokker—Plank equation [notice that the potential (7.17) is not Markovian]. Gredeskul et al.
(1992) elaborated a statistical procedure to compute the mean characteristics of the kink propa-
gation, e.g. the kink’s mean velocity, assuming the velocity is rather large and the strength of
impurities small.

One of the important problems related to the FK chain dynamics is the influence of disorder on
the dislocation motion in crystals with a high PN potential. The basic concepts of the dislocation
dynamics in crystals with a high PN relief were formulated by Lothe and Hirth (1959) and
Kazantsev and Pokrovsky (1968). Transversal displacement of the dislocation line is treated
as creation of kink—antikink pairs by thermal fluctuations under the action of the applied
constant force. Experimental data show that the dislocation mobility is also significantly affected
by point defects, e.g. doping of crystals can give rise to an increase in the dislocation speed (Patel
and Chandhuri, 1966; Erofeev and Nikitenko, 1971). This effect can be explained in the framework
of the FK model as a consequence of local lowering of the PN barrier due to the interaction
between the dislocation and impurities (Petukhov, 1971, 1983) and we would like to mention that
such conclusions were confirmed by extensive numerical simulations which showed that point
defects in crystal lattice have an extremely profound effect on dislocation mobility (Vinokur, 1986;
Sagdeev and Vinokur, 1987). This kind of effects is caused by the force-activated dynamics of the
kinks in the FK model, but the detailed analysis of such effects is out of the content of the present
survey.

7.2.4. Kink diffusion in a disordered chain
For many applications of the FK model, for example, in the surface physics, the analyzing of

mass transport along the chain is a very important problem. As distinct from two- and three-
dimensional systems, in the one-dimensional atomic chain impurities cannot be bypassed, and
therefore impurities may drastically modify the transport properties of such systems.

In the FK model, the chemical diffusion along the chain is determined by the motion of kinks
(see, e.g., Gillan, 1985; Gillan and Holloway, 1985; Braun et al., 1990). For the system temperature
¹, lower then the amplitude of the PN potential E

PN
, the kink’s motion has an activated character,

so that, for a homogeneous FK chain the kink diffusion coefficient is equal to (Gillan, 1985)
D

0
"Ra2

s
, where the escape rate R is determined by the Kramers theory (Kramers, 1940; see also

Section 5 above),
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Note that here we have taken into account the energy exchange between the FK chain and the
substrate, and assume that the friction coefficient g has an intermediate value (see details in
Section 5, and also Braun, 1989; Braun et al., 1990).

In the presence of impurities, the external potential for the kink motion is modified as well.
According to Eq. (7.11), the minima of the effective potential are equal to (we suppose Dm"0,
for simplicity) º

j
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#k/2), and the maxima are determined by the expression

88 O.M. Braun, Yu.S. Kivshar / Physics Reports 306 (1998) 1—108



º
j, j~1

"E
PN

#º
%&&

(k
j
). Thus, the escape rate for the kink from the jth well to the ( j#1)th well

takes the form

R
j`1, j

+

u
j

2n
expA!

E
j`1, j
k
B
¹ B , (7.19)
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is determined by Eq. (7.14), and the activation energy for the jump
jP( j#1) is given by

E
j`1, j

+E
PN

!mu4
1
4A

Dg
g
#

De
e
s
B

sinh(kj)
cosh3(kj)

. (7.20)

Let us suppose that the average distance between impurities in Na
s
. Then the kink diffusion

coefficient may be presented as D
k
"D

0
K, where the value of K is determined by the escape rates

(7.19) (see, e.g., Haus and Kehr, 1987). The expression for K is simplified if all the minima are
equivalent (when, for example, there is no external force), so that R
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As follows from estimations for adsystems (see Braun, 1989; Braun et al., 1990), it is usually valid
g&1, so that the kink width d&a

s
, and only one well or barrier, say at j"0, is changed

significantly. In this case,
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If R
0
&R for N<1, then K+1!(R!R

0
)/NR

0
. For R

0
<R, we obtain K+N/(N!1)+1 and

for NR
0
;R, K+NR

0
/R;1. Therefore, the estimate shows that impurities may drastically

change the value of the diffusion coefficient of the kink, and, therefore, modify transport properties
of the kink-bearing nonlinear systems.

7.3. Nonlinear impurity modes

Localized modes created by impurities are well known in the linear theory of crystal lattices (see,
e.g., Maradudin, 1966). To investigate such kind of localized excitations in the framework of the
linearized FK model, we consider small-amplitude oscillations of the impurity atoms making the
expansion sin u

j
+u

j
. Then the localized modes of the linear lattice can be easily found analytically

with the help of the Green-function technique (see, e.g., Maradudin, 1966; Kosevich, 1972). Such an
analysis for the case of the linearized FK model can be found in the paper by Braun and Kivshar
(1991a). The Green function of the chain with impurities satisfies the Dyson equation, and a simple
analysis of the corresponding solutions of that equation gives the conditions for the impurity
modes to exist. As a result, the impurity-induced localized modes are possible with the frequencies
lying either above or below the phonon frequency band defined as (u

.*/
, u

.!9
), where u

.*/
"1 and

u
.!9

"J1#4g. For example, in the case of an isotopic defect (firstly analysed for another type of
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lattices by Lifshitz, 1943), when DmO0 but Dg"De"0, the localized impurity mode exists for
Dm'0 (heavy mass) below the frequency band, 0(u(u

.*/
, and for Dm(0 (light mass), it exists

above the frequency band, u'u
.!9

. The mode frequency is given by

u2
l
"

(1#2g)GJ4g2#Dm2(1#4g)
(1!Dm2)

, (7.23)

for the cases Dm'0 or Dm(0, respectively.
The impurity-induced localized modes can be also described in the nonlinear FK chain in the

long-wavelength limit when the effective SG equation is valid. In such a case nonlinear impurity
modes may be obtained as breather modes captured by impurities (Kosevich and Kovalev, 1975;
Braun and Kivshar, 1991a; Boardman et al., 1995). Analogously to the linear approximation
discussed above, the nonlinear impurity modes may exist with the frequencies lying either below or
above the phonon spectrum band. However, the shape of the nonlinear mode is modified by
nonlinearity giving rise several new features. In particular, the nonlinearity itself may extend the
condition for the nonlinear modes to exist (see, e.g., Kosevich and Kovalev, 1975; Kivshar and
Malomed, 1988; Braun and Kivshar, 1991a; Kovalev et al., 1995), however, the stability analysis
shows that such nonlinear localized modes excited near local impurities are stable only in the
regions of existence of corresponding linear modes (Kivshar and Malomed, 1988; Braun and
Kivshar, 1991a).

As an example, let us consider the case when only DeO0 so that the corresponding continuous
version of the FK model is described by the perturbed SG equation
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where z"x/l, l"a
s
Jg, and e

1
"De/2Jg. In the linear approximation, the impurity mode for

Eq. (7.24) is given by the expression u"A exp(eDzD/2) cos(u
l
t), where u

l
"J1!e2/4 and such

a mode exist only provided e(0. To analyse the impurity mode in the nonlinear case, it is
convenient to derive an effective envelope equation instead of Eq. (7.24) making the transformation

u"W e*t#W*e~*t (7.25)

(the asterisk stands for the complex conjugation), where the envelope function W is assumed to be
slowly varying and small enough to take the nonlinearity in the lowest order. Then, it is possible to
reduce the problem to the effective nonlinear Schrödinger equation

2iW
t
!W

zz
!1

2
DWD2W"0 , (7.26)

with the matching condition at z"0

W
z
D
0`

!W
z
D
0~

"e
1
W(0) . (7.27)

Matching two soliton solutions of the NLS equation (7.26), (7.27) we may find the approximate
solution for the nonlinear impurity mode,

u(z, t)"4b sech[b(DzD#z
0
)] cos(X

l
t) , (7.28)

where the impurity mode frequency X
l
is determined by the relation X

l
"J1!b2/2, and unlike

the linear case, now it depends on the mode amplitude b. The equation which follows from the
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Fig. 27. Shape of a low-frequency nonlinear impurity mode for (a) e
1
(0 and (b) e

1
'0. The parameter z

0
is defined in

the text.

matching condition (7.27) takes the form

tanh(bz
0
)"!e

1
/2b , (7.29)

and it determines the structure of the nonlinear impurity mode which has different shapes for
different signs of e

1
. For e

1
(0, Eq. (7.29) yields z

0
'0, and the impurity mode has a shape similar

to the harmonic case (see Fig. 27a), and, moreover, for z
0
PR it recovers the linear case. In the

case of e
1
'0, Eq. (7.29) leads to the solution with z

0
(0, and the impurity mode has two maxima

(see Fig. 27b): The latter case shows that, in principle, impurity localized mode may be supported
by nonlinearity in the cases when it is not possible in the linear limit, however, as a matter of fact,
this new kind of localized impurity modes does not give stable solutions (Kivshar and Malomed,
1988; Braun and Kivshar, 1991a).

Analogously, we may find the impurity modes with the frequencies lying above the cut-off
frequency of the linear lattice u

.!9
, using again the approximation of the slowly varying mode

envelope. In this case we start from the FK model looking for a solution which describes
out-of-phase oscillations of the atoms. The approximate solution is found to be (Braun and
Kivshar, 1991a)

u
j
"4(!1)jb cosech[b(D ja

s
D#z

0
)] cos(X

l
t) , (7.30)
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Fig. 28. Shape of a high-frequency nonlinear impurity mode for e
1
'0. The parameter z

0
is defined in the text.

and it is shown in Fig. 28. The matching parameter z
0

is determined by the equation

coth(bz
0
)"e

1
/2b . (7.31)

and the mode frequency,

X
l
"u

.!9
#(b2/2u

.!9
) , (7.32)

lies above the upper (cut-off) frequency of the spectrum. Such a mode exists only provided e
1
'0.

As has been mentioned above, one of the main problems for the nonlinear impurity modes to
exist is their stability. Although such impurity modes may exist even for the conditions when the
linear impurity modes are forbidden, in most of the cases these new modes are in fact unstable. One
of the simplest ways to carry out the stability analysis for the nonlinear modes discussed above is to
introduce a small mismatch between two parts of the composed solution (7.28). Then the small-
amplitude oscillations around the stationary solution are characterized by the frequency (Braun
and Kivshar, 1991a) uJ 2"!3e

1
(b#e/2) which clearly shows that the nonlinear mode is unstable

for e
1
'0, i.e. just for the condition when the linear problem does not have spatially localized

solutions. Thus, even supporting stationary localized solutions of a new form, nonlinearity itself
does not extend the conditions for the impurity localized modes to exist.

A rigorous analysis of the stability of a nonlinear impurity mode has been recently developed by
Bogdan et al. (1997) for the case of the NLS equation. They employed the analysis similar to that
developed by Vakhitov and Kolokolov (1973) for solitary waves of the generalized NLS equation
in a homogeneous medium and formulated the stability in terms of the invariant

N(u
l
)"P

=

~=

DW(x;u
l
)D2 dx .

As a result, they provided a rigorous proof that the nonlinear modes for e
1
'0 is unstable, the

instability corresponds to the condition dN(u
l
)/du

l
(0. Such an instability manifests itself in an

exponential growth of antisymmetric perturbations which shift the soliton to one side from the
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impurity mode that finally repel the localized mode due to the repulsive effective interaction with it,
as consistent with the prediction based on an effective potential. In the case of negative nonlin-
earity, i.e. the positive sign in front of the nonlinear term in Eq. (7.26), the nonlinear impurity mode
is possible only for e

1
(0 and, according to the analysis of Bogdan et al. (1997), it is stable.

In a discrete chain, the potential of the interaction between the localized mode and an impurity is
modified by an effective periodic Peierls—Nabarro potential. Due to a complex structure of
extremum points of a total effective potential, the mode can be shifted from the impurity site,
creating an asymmetric nonlinear impurity mode. Such a kind of (high-frequency) nonlinear impurity
mode has been recently analyzed for a lattice without a substrate potential but with nonlinear
interatomic coupling (Kovalev et al., 1995; Kivshar et al., 1997), and it has been shown that it may
exist even for a heavy-mass impurity (i.e. for e

1
'0, see above). Even being expected, such modes

are not investigated yet for a lattice with on-site potential.
Another very important problem related to the theory of nonlinear impurity modes is the

radiative damping of the mode oscillations. For the low-frequency impurity modes such an
effective decay is usually power-law (Kivshar and Malomed, 1987; Braun and Kivshar, 1991a)
while for the high-frequency nonlinear modes the mode lifetime may be much shorter (see Braun
and Kivshar, 1991a, and references therein).

7.4. Resonant interactions with impurities

As has been demonstrated above, the kink—impurity interaction may be described by a simple
picture where a local inhomogeneity gives rise to an effective potential to the kink. However, the
model of a classical particle is valid only in the case when the impurity does not support an
impurity mode, a local oscillating state at the impurity site. Such an impurity mode can be excited
due to the kink scattering and it may change the result for the kink transmission. The importance of
such impurity modes in the kink—impurity interactions has been pointed out in the papers by
Fraggis et al. (1989), Kivshar et al. (1991), Zhang et al. (1991, 1992a, 1992b, 1994) Malomed et al.
(1993), and Belova and Kudryavtsev (1995). A comprehensive overview of different types of the
kink—impurity interactions can be found in a recent review paper by Belova and Kudryavtsev
(1997).

An important effect found first numerically (Kivshar et al., 1991) is that a kink may be totally
reflected by an attractive impurity due to a resonance energy exchange between the kink transla-
tional mode and the impurity mode. This resonant phenomenon is quite similar to the resonances
observed in the kink—antikink collisions in some nonlinear Klein—Gordon equations (see Campbell
et al., 1983, 1986; Peyrard and Campbell, 1983; Anninos et al., 1991).

To demonstrate the origin of the resonant kink—impurity interactions, we start from the SG
model (7.4) which includes a local point-like impurity, i.e. f (x)"d(x). When the impurity is absent,
the model (7.4) displays the kink propagation without any distortion. In the presence of the
d-impurity, the potential (7.6) becomes

º(X)"!

2e
cosh2X

, (7.33)

i.e. for e'0 the impurity attracts the kink.
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Kivshar et al. (1991) (see also Zhang et al., 1991, 1992a, b) have studied the kink—impurity
interactions for e'0 by numerical simulations. They found that there are three different regions of
the initial kink velocity, namely, region of pass, of capture, and of reflection; and a critical velocity
»

#
(e.g., »

#
+0.2678 for e"0.7) exists such that if the incoming velocity of the kink is larger than

»
#
, the kink will pass the impurity inelastically and escape without change of the propagation

direction, losing a part of its kinetic energy through radiation and exciting an impurity mode. In
this case, there is a linear relationship between the squares of the kink initial velocity »

*
and its final

velocity »
&
: »2

&
"a(»2

*
!»2

#
), a+0.887 being constant. If the incoming velocity of the kink is

smaller than »
#
, the kink cannot escape to infinity from the impurity after the first collision, but will

stop at a certain distance and return back (due to the attracting force of the impurity) to interact
with the impurity again. For most of the velocities, the kink will lose energy again in the second
interaction and finally it gets trapped by the impurity. However, for some special incoming
velocities, the kink may escape to the direction opposite to the incident one after the second
collision, i.e., the kink may be totally reflected by the impurity. The reflection is possible only if the
kink initial velocity is taken from certain resonance windows. By numerical simulation, Kivshar
et al. (1991a) have found a number of such windows. Using the idea of the resonant energy
exchange between the kink translational mode and the impurity mode, it is possible to analytically
predict the positions of the resonance windows (Kivshar et al., 1991),

»2
n
"»2

#
!

11.0153
(n¹

*.
#0.3)2

, n"2, 3,2 , (7.34)

where ¹
*.

is the period of the impurity mode oscillation, and »
#

is the critical velocity. This
formula has been shown to provide a very good prediction [see the corresponding data in the table
presented by Kivshar et al. (1991)].

Let us give a brief explanation of the resonance structures in the kink—impurity interactions.
The main point is the observation that the nonlinear system (7.4) supports a localized mode.
By linearizing Eq. (7.4) in small u, the shape of the impurity mode can be found analytically
to be

u
*.

(x, t)"a(t)e~e@x@@2 , (7.35)

where a(t)"a
0
cos(Xt#h

0
), X is the frequency of the impurity mode,

X"J1!e2/4 , (7.36)

and h
0

is an initial phase. As a matter of fact, the impurity mode (7.35) can be considered as
a small-amplitude oscillating mode trapped by the impurity, with energy E

*.
"X2a2

0
/e.

Now we may analyze the kink—impurity interactions through the collective-coordinate method
taking into account two dynamical variables, namely the kink coordinate X(t) and the amplitude of
the impurity mode oscillation a(t) [see Eq. (7.35)]. Substituting the ansatz

u"u
k
#u

*.
"4 tan~1 e*x~X(t)+#a(t)e~e@x@@2 (7.37)

into the Lagrangian of the system, and assuming that a and e are small enough so that the
higher-order terms can be neglected, it is possible to derive the following (reduced) effective
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Lagrangian

¸
%&&
"

1
2
mA

dX
dt B

2
#

1
eCA

da
dtB

2
!X2a2D!º(X)!aF(X) , (7.38)

where º(X) is given by Eq. (7.33), and F(X)"!2e tanhX sechX. The equations of motion for the
two dynamical variables become

m
d2X
dt2

#º@(X)#aF@(X)"0,
d2a
dt2

#X2a#
e
2
F(X)"0 . (7.39)

System (7.39) describes a particle (kink) with coordinate X(t) and effective mass m placed in an
attractive potential º(X) (e'0), and “weakly” coupled with a harmonic oscillator a(t) (the
impurity mode). Here we say “weakly” because the coupling term aF(X) is of order O(e) and it falls
off exponentially. The system (7.39) is a generalization of the well-known equation

m
k

d2X
dt2

"!º@(X)

describing the kink—impurity interactions in the adiabatic approximation.
The dynamical system (7.39) can describe all features of the kink—impurity interactions. First, it

may be used to calculate the threshold velocity of kink capture, which is given by the equation
(Zhang et al., 1992a, b),

»
5)3
"

ne

J2

sinh[XZ(»
5)3

)/2»
5)3

]
cosh(Xn/2»

5)3
)

, (7.40)

where Z(»)"cos~1[(2»2!e)/(2»2#e)]. Comparing the analytical results with the direct numer-
ical simulations of Eq. (7.4), Zhang et al. (1991a) found that the perturbation theory is valid only for
very small e (e40.05), while formula (7.40) gives good estimations of »

5)3
(e) for e over the region

(0.2, 0.7).
As was pointed out by Kivshar et al. (1991) and Zhang et al. (1992a), Eq. (7.39) can be used as

a qualitative model to explain the mechanism of resonant energy exchange between the classical
particle and the oscillator. The resonant reflection of the particle by the potential well corresponds
to the reflection of the kink by an attractive impurity. Therefore, the collective-coordinate
approach can give a qualitative explanation of the resonance effects in the kink—impurity interac-
tions. At the same time, the collective-coordinate model (7.39) is conservative, so that it cannot
explain the inelastic effects such as the subsequent kink trapping by the impurity. Such effects are
possible to be explained only by introducing other degrees of freedom of the system, for example,
an effective coupling to phonons or another subsystem (Malomed et al., 1993).

It is important to note that similar resonance phenomena have been observed in the
kink—impurity interactions in the /4 model (Zhang et al., 1992b; Belova and Kudryavtsev, 1995).
However, the resonant structures in the /4 kink—impurity interactions are more complicated than
in the SG model because the /4 kink has an internal (shape) mode which also can be considered as
an effective oscillator. Zhang et al. (1992b) have developed a collective-coordinate approach taking
into account three dynamical variables, and they have found that due to the joint effect of the
impurity and the kink internal mode oscillation, some resonance windows may disappear.
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The resonant interactions described above have been analyzed numerically and analytically for
a single impurity, and we can say that the physical mechanism of this effect has been well
understood. It is clear that in the case of several impurities the well-defined energy-exchange
process will be more difficult to observe (for the case of two impurities, see Zhang et al., 1994).
However, increasing the number of impurities, it is likely to expect that the fine structure of
resonances will be destroyed, especially for the case of a random lattice. However, the possibility of
exciting impurity modes during the kink propagation will lead to an additional and, as we have
seen for a single impurity, an efficient source of the energy loss during the kink propagation. So,
a possible mechanism of the kink damping in disordered media is the excitation of localized mode
vibrations due to impurities but not radiation of small-amplitude waves. This mechanism was
mentioned in the earlier paper by Tsurui (1973) who discussed the soliton propagation in
a nonlinear lattice with isotopic disorder [see also the paper by Malomed (1992) for the case of the
/4 kink].

When a discrete breather (or nonlinear localized mode) interacts with an impurity, the resonant
effects similar to those described above can be observed (Forinash et al., 1994). In particular, due to
an overlapping of the breather and impurity mode frequencies, a local change of only 5—10% of the
particular mass is already sufficient to trap the breather in a lattice. Forinash et al. (1994) also
observed that the lattice discreteness enforce a stronger interaction between the localized breather
mode and impurity mode, although they were not able to describe this effect quantitatively within
the collective coordinate approach because the form of a breather moving in a discrete lattice is not
known even numerically. A number of interesting effects was described by Forinash et al. (1994) for
the case of the interaction of breather with an excited impurity. In particular, they noticed that the
disorder associated with impurities can act as a catalyst for nonlinear energy localization because it
can cause the fusion of two nonlinear excitations into a single larger one.

8. Concluding remarks

To conclude this brief presentation of the nonlinear dynamics of the FK model and its physically
important generalizations, it is fitting to mention some other examples of physical systems where
the fundamental concepts and results based on the FK model and the analysis of its nonlinear
excitations such as kinks and breathers are effectively applied. It would be relevant to mention also
possible generalizations of the one-dimensional model to describe more realistic physical situations
as well as to apply this model to certain physical objects such as arrays of Josephson junctions,
hydrogen-bonded chains, adsorbed atomic layers, etc.

Josephson junctions arrays. As has been already pointed out in the Introduction, the FK model
appears in many models of solid state physics describing nonlinear wave phenomena of different
physical nature. Among the many systems already mentioned in Introduction, one of the closest
correspondence to the pure SG dynamics was found for flux quanta in long quasi-one-dimensional
Josephson junctions (JJs) (see, e.g., McLaughlin and Scott, 1978; Pedersen, 1986). The FK model
itself does appear in the theory of long JJs when one considers the flux flow in discrete parallel
arrays of weak links based on low-¹

#
superconductors (see, e.g., Hontsu and Ishii, 1988) or high-¹

#
(see, e.g., Hohenwarter et al., 1989). As a matter of fact, the physical model for a discrete array of JJs
can be reduced to the same FK chain as has been discussed above, and it displays a number of
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peculiarities caused by discreteness which are naturally absent in the continuum model (see, e.g.,
Ustinov et al., 1993; where the influence of the discreteness effects on the current—voltage character-
istics of an array of JJs has been analysed). It is important to mention the recent experiments on the
JJ arrays which reported the first measurements of the discreteness effects (van der Zant et al., 1995;
Watanabe et al., 1995).

One more interesting (but very unusual) example how the FK model appears in the theory of
continuous media is the JJ lattices with inhomogeneities, the latter arise due to a spatially periodic
modulation of the critical current density. In the simplest case, the model is described by the SG
equation (7.4) with the inhomogeneity of the form,

f (x)"1#e+
n

d(x!na) , (8.1)

a being the spacing between the impurities. The impurity lattice introduced in this way, gives rise to
novel effects, e.g. superkink resonances (Ustinov, 1989). To explain briefly the physics of such
a phenomenon as the superkink propagation, let us consider a periodic array of kinks interacting
with the periodic lattice of delta-like impurities introduced by Eq. (8.1). In the case when the array
as a whole remains in a pinned state, it may support propagation of particle-like (or hole-like)
defects moving along the pinned chain of kinks. Such defects are called superkinks, because they are
kink-like excitations of the chain of the primary SG kinks. The superkinks were discovered by
Ustinov (1989) in numerical simulations for an annual JJ with a regular lattice of point-like
inhomogeneities, and their existence and excitation were experimentally observed as new resonant
modes of long JJs (Oboznov and Ustinov, 1989; Vernik et al., 1992). A theoretical model for the
superkink propagation was developed by Malomed (1990) who showed that for the collective
coordinate of the kink chain with the average spatial period ¸"2kK(k), where k (0(k(1)
is the modulus of a Jacobi elliptic function, the following (effective) equation of motion can be
derived,

m
tt
!m

xx
#

4e
aok

sn(m/k)cn(m/k) dn(m/k)"0 , (8.2)

where the standard Jacobi elliptic functions are used, and o stands for the “density” of the
kink chain. Eq. (8.2) was shown to have a kink solution with the boundary condition
m(#R)!m(!R)"2kK(k),¸ (Malomed, 1990) which gives, in fact, a nontrivial generalization
of the standard SG kink to the case of the elliptic SG equation (8.2). As a matter of fact, Eq. (8.2) is
derived as a continuum limit of the discrete motion equations for the kinks’ coordinates, so that
in such a case the generalized discrete elliptic FK model appears from the theory of periodic
continuous systems.

Hydrogen-bonded chains. Another interesting version of the FK model arises in the theory
of proton transport of hydrogen-bonded chains. These systems are known to consist of two
different types of atoms, light hydrogen atoms and heavy oxygen atoms. In the lowest-order
approximation the oxygen atoms are assumed to have almost fixed positions producing an
effective substrate potential to the mobile hydrogen atoms, for which a kind of the FK model
can be derived. The mechanism of the proton conductivity is based on a migration transport
of the so-called ionic and bonding (Bjerrum) defects along the hydrogen-bonded chain, the defects
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are nothing but two types of kinks of the corresponding generalized FK model with the double-
barrier substrate potential. This kind of one-component model for hydrogen-bonded systems is
rather well investigated in the framework of the continuum approximation (see, e.g., Zolotaryuk
and Pnevmatikos, 1990; Pnevmatikos et al., 1991; and references therein). In the same time, some
recent ideas in the theory of kink-induced proton conductivity involve more general properties of
the FK type models like discreteness of the proton chains and thermalized kink motion (Savin and
Zolotaryuk, 1991), the effect of the increased proton conductivity due to commensurabil-
ity—incommensurability phase transitions (Christophorov and Gaididei, 1992), complex chain
with a zigzag structure (Christiansen et al., 1997), mass variation along the chain (Kalosakas et al.,
1997), etc.

More rigorously, the dynamics of the systems such as hydrogen-bonded chains may be properly
described by introducing two interacting sublattices for proton and oxygen atoms, respectively. In
such a case, we should consider “two-component” generalizations of the FK model which describe
two interacting chains of particles, one is subjected into a substrate potential created by the second
chain. Several models of this type have been introduced and studied in the continuum limit
approximation (see, e.g., Antonchenko et al., 1983; Zolotaryuk et al., 1984; Zolotaryuk, 1986;
Hochstrasser et al., 1988; Pnevmatikos, 1988). The dynamics of the two-component models has
several new features in comparison with the standard one-component models, for example, a new
branch of the phonon spectrum appears in the gap of the linear spectrum band of the standard FK
chain, so that the motion of kinks is stable only for small velocities which do not exceed the sound
speed of acoustic phonons of the oxygen sublattice (see, e.g., Zolotaryuk et al., 1984). As a matter of
fact, this second (acoustic or optical) branch plays an important role in the kink scattering by local
impurities as well (Kivshar, 1991a).

The two-component FK model describes more realistically the dynamics of some other physical
objects such as crowdions, adatomic chains, chains of ions in superionic conductors, etc. In all such
situations the second (heavy atoms) subsystem corresponds to substrate atoms, so that the whole
system may be treated again as a FK chain on a deformable substrate. Similar situation appears for
the physical models of molecular crystals and polymer chains as well as ferroelectric or ferroelastic
chains where rotational and vibrational degrees of freedom are coupled together (see, e.g.,
Remoissenet, 1981; Pouget and Maugin, 1984, 1985; Maugin and Miled, 1986; Sayadi and Pouget,
1991; to site a few).

Incommensurable chains. One more class of the problems strongly related to the FK model is the
chain dynamics in the case of an incommensurate ground state. Namely, in the present survey
we have described the nonlinear dynamics of the FK type model considering excitations of
the trivial ground state of the chain when the chain has a fixed density of atoms (owing to
fixed or periodic boundary conditions) with the coverage parameter h"1 for which the mean
interatomic distance coincides with the period of the substrate potential. If, however, we consider
the free-end boundary conditions and assume that the equilibrium distance introduced by the
interatomic interaction potential does not coincide with the substrate period a

s
, then we naturally

come to one of the simplest physical models with two (or more, if one treats a nonconvex
interatomic potentials) competing lengths. The richness of the FK model (and a variety of the
corresponding physical problems) drastically increases in this case due to a possibility of two
distinct types of the system ground state, commensurate and incommensurate ones, the latter
exhibits also such a remarkable phenomena such as the Aubry transition of analyticity breaking
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(see, e.g., Bak, 1982; Aubry, 1983). Besides, the FK chain may be subjected to a thermostat at
nonzero temperature that naturally leads to a series of physical problems such as the analysis
of thermodynamic properties at an equilibrium state (see, e.g., Schneider, 1986; Tsuzuki and
Sasaki, 1988; Griffits, 1990), the mass or charge transport along the FK chain (e.g., Gillan
and Holloway, 1985), the kink—antikink nucleation, and the dynamics of the FK chain in the
presence of external DC or AC fields, etc.

¼eakly interacting chains. In fact, one of the important restrictions of the standard FK model is
the one-dimensional nature of the chain dynamics. In many physical situations the one-dimen-
sional approximation is rather good. However, usually quasi-one-dimensional chains of atoms do
not exist as completely independent, forming a system of parallel chains. For example, a typical
situation when atoms are adsorbed on stepped or furrowed surfaces of a crystal can be described as
a two-dimensional system of weakly coupled one-dimensional FK chains. Considering kinks of the
primary FK chains as quasiparticles subjected to a periodic PN potential, we may analyse
collective excitations of such two-dimensional systems. In fact, excitations of the two-dimensional
model may be treated as “secondary” kinks which can be again described by a variant of
the “super FK model”. A system of interacting FK chains was analysed, for example, by
Braun et al. (1988) and Braun and Kivshar (1990), and there exist also many papers devoted to
the statistical mechanics of adsorbed layers (see, e.g., the book by Lyuksyutov et al., 1988, and
references therein).

¹wo-dimensional lattices. One of the ways to make the FK model more realistic for a broader
class of physical applications is to include an additional degree of freedom allowing the
atoms to move in the direction perpendicular to the chain. The corresponding FK model
with a transverse degree of freedom was proposed by Braun and Kivshar (1991b). Interesting
physical effects are possible in this type of models due to the existence of nontrivial zigzag-like
ground states and, correspondingly, novel types of topological kink-like excitations. In some
sense, this situation is analogous to the case of the FK model with a nonconvex interatomic
potential.

More general models describing the particle dynamics in two-dimensional systems correspond
to a vector generalization of the FK model, which is the most realistic model for two-dimensional
arrays of atoms adsorbed on crystal surfaces: each atom has two degrees of freedom to move and it
is subjected to a two-dimensional external potential created by atoms of the surface. In fact,
a variety of such models is generated by symmetry properties of various substrate potentials
(isotropic models with square, triangular, hexagonal lattices or anisotropic models with, e.g.,
rectangular lattice, etc.). As several examples of these models, we would like to mention here those
introduced by van der Merwe (1970), Snyman and van der Merwe (1974), Snyman and Snyman
(1981), Abraham et al. (1984), Lomdahl and Srolovitz (1986).

Additionally, the structure and stability of nonlinear localized excitations in two-dimensional
lattice is an interesting topic of current research (Fischer, 1993; Pouget et al., 1993) in order to
understand the mechanism of the energy localization in discrete lattices.

Forced dynamics. We would like to point out again that in the present review paper we did not
discuss a rather wide class of problems related to the effects of external (impulsive, DC, or AC) fields
on the dynamics of the FK chain. Such kind of effects is very important from the physical point of
view for both one-component and two-component modes, and there exist many corresponding
studies for the continuum limit of the FK model, the perturbed SG equation. A number of novel
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physical effects which appear in this model when external AC or DC forces are applied is indeed
large enough to be reviewed in such a short survey paper. In particular, we mention here the
breather stabilization by a direct (Lomdahl and Samuelsen, 1986, 1988) or parametric (Gr+nbech-
Jensen et al., 1991) forces, complicated nonlinear dynamics which includes period-doubling,
spatial-temporal complexity, and chaos (see, e.g., Bishop et al., 1983, 1986; Mazor et al.,
1986; Mazor and Bishop, 1987; Taki et al., 1989; Grauer and Birnir, 1992, to cite a few), and so on.
Similar effects can be found also for discrete chains but they have been not investigated in
detail yet. The discreteness itself may give rise to novel features not existing in the continuous SG
equation.

The overdamped discrete FK chain driven by an AC force has been recently investigated
analytically and numerically (see, e.g., a recent review paper by Mazo and Floria, 1996; and
references therein). Besides, in view of possible applications of the FK model to the problems of
tribology, a number of papers which appear recently has been devoted to the FK model with
dissipation (as well as its generalization known as the FK—Tomlinson model) driven by a DC force
(e.g., Weiss and Elmer, 1996, 1997; Braun et al., 1997b,c).

Nonlinear localized modes. At last but not least, during recent years an exponentially growing
activity was directed towards understanding the properties of localized modes in discrete lattices
with on-site and intersite potentials. In this survey paper we just touched this topic in Section 6.
A number of results, including a rigorous proof of the existence and stability, has appeared in the
literature which are beyond the scope of our original idea about this work. We would like to
mention the most recent review papers by Aubry (1997) and Flach and Willis (1998) where
a summary of the recent progress in the theory of nonlinear localized modes (also called discrete
breathers) is presented.

In conclusion, we believe the understanding of the specific and unusual properties on nonlinear
models introduced by discreteness is an active and attractive topic of the current research. Since
realistic physical models of solids are rather complicated, it is extremely important to develop the
basic concepts with the help of simple physical models such as the FK model.
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Woafo, P., Kenne, J.P., Kofané, T.C., 1993. J. Phys.: Condens. Matter 5, L123.
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