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The adiabatic motion of a finite chain of atoms interacting in accordance with next-neighbour harmonic forces and placed in a 

periodic external potential (the Frenkel-Kontorova model) is investigated. The conditions are determined where the activation 

energy of the chain motion is lower than that of the motion of a single atom. The results are used to explain some experimental data 

on surface diffusion in chemisorbed systems. 

1. Introduction 

The coordinated motion of particles always 
plays an important role in the dynamics of sys- 
tems consisting of interacting particles . The well- 
known Frenkel-Kontorova (FE;) model [l] is one 
of those which adequately explain such a collec- 
tive motion. The FK model describes a chain of 
harmonically interacting atoms in an external 
sinusoidal potential, so that the potential energy 
of the system is equal to 

v=fgF (x,-x,_1 -a)’ 
r=2 

+:c,c 1-cos 
i*‘,[ ~~)I. 

Here N is the total number of the atoms, xi is the 
position of the ith particle, g is the elastic con- 
stant of the chain, a is the equilibrium distance 
for the interatomic potential, 6, and a, are the 
amplitude and the period of the external potential 
respectively. Further we will use the system of 
units with es = 2, a,= 277 and m, = 1, m, being 
the mass of atoms. The FK model is successfully 
used to explain the motion of dislocations in 
crystals, the dynamics of planar domain walls in 
magnetic systems, the charge-density waves in 
quasi-one-dimensional conductors etc. (see, e.g. 
ref. [2]), and to describe the “solitonic” diffusion 

in a two-dimensional layer of atoms adsorbed on a 
crystal surface (see ref. [3]). 

The FK model for an infinite atomic chain was 
investigated in a number of studies (see, e.g., refs. 
[4-lo]). In the continuum approximation, long- 
wave excitations of the model are described by the 
exactly integrable Sine-Gordon (SG) equation [2]. 
As a result, the model admits topologically stable 
nonlinear solutions, so-called kinks. In the cases 
of g < cc or N -C cc the FK model admits kink 
solutions too (note that the terms misfit disioca- 
tions, topological solitons, and crowd-ions are also 
used by some authors). However, in these cases 
the model is nonintegrable, and, in particular, the 
motion of kinks occurs in the periodic Peierls- 

Nabarro potential whose amplitude, ep, is much 
lower than that of the external potential, c,. More- 

over, the effective mass of a kink, m, is also lower 
than those of the chain atoms, m,. Both these 
properties (m -=x m, and ep << es) result in the fact 
that kinks play an important role in the FK model 
dynamics. 

If the interparticle potential has an attractive 
branch, then a finite chain of N atoms can also 
exist. Naturally, the question of the mobility of 
such clusters arises. In particular, this problem is 
very important for the description of surface dif- 
fusion of adsorbed atoms or molecules [3]_ It is 
easy to understand that the mobility of clusters is 
mainly determined by the ratio between the period 

0039~6028/90/$03.50 0 1990 - Elsevier Science Publishers B.V. (North-Holland) 



0. M. Braze f Adiabutic motion of an atomic chain in periodic potential 263 

a, and the equilibrium distance a. For example, 
the positions of atoms which are rigidly coupled in 
the chain (g = co) may be presented as follows: 

xj=ju+X/N-(N+l)a/2, (1.2) 

where 

x= ; xi, (I .3) 
i=l 

and the potential energy of the chain is described 
by the expression 

c(X)=N- 5 cos xj 
j=l 

= N _ sin( Na/2) 
sin( a/2) cos( X/N ) , 0.4) 

so that the activation energy for the chain’s mo- 
tion is equal to 

6, = 2 1 sin( NO/~) 1 /sin( a/2). 0 4 

Therefore it follows that the maximum value of ea 
is reached for the co~ens~ate case (a = 21~) 
and is equal to E, = 2N, and the minimum values 
are equal to zero and are achieved at a = a:, 
where 

a: = 2a - n(2n/N), n = 1, 2,. . ., int( N/2). 

0.6) 

The behaviour of the finite FK chain was 
studied in refs. [ll-141. All equilibrium states of 
the FK chain for some fixed parameters of the 
model were obtained numerically by Markov and 
Karaivanov [12]. It was found that the activation 
energy ea versus the number of atoms N oscillates 
around a nearly constant value which is lower 
than that for a single atom if the natural misfit is 
greater than the critical misfit, above which misfit 
dislocations can be spontaneously introduced at 
the free ends.The present work develops ideas of 
ref. 1121. We determine the ground and stationary 
states of the FK chain as well as examine in detail 
its adiabatic (i.e. infinitely slow) motion for arbi- 
trary parameters of the system. Our main interest 
is to determine the system parameters under which 
the mobility of the N-cluster is sufficiently high. 
The paper is organized as follows. In section 2 we 
describe the model, introduce the parameters of 
the chain’s motion, and present the algorithm of 

the computer program designed for calculating 
these parameters. In section 3 we present the 
results of the calculations, and in section 4 we 
interpret these results using the “solitonic” 
terminology. The limitations and possible gener- 
alizations of the model are considered in section 5. 
In section 6 we discuss the way in which the FK 
model can be applied to describe the surface diffu- 
sion of adparticles. Finally, in section 7 we give 
brief conclusions. 

2. Model and computer program 

The model (1.1) is characterized by three 
parameters: N, g, and a. Note that it is sufficient 
only to consider the parameter a within the inter- 
val ?r < a G 27r, since the potential energy (1.1) is 
not changed provided the transformation of the 
equilibrium distance, a ---) *a + 2n, and the posi- 
tions of the atoms, xj + -+-x, + 2rj, are done 
simultaneously. 

The stationa~-state configurations of the chain 
follow from solutions of the system of equations 

av/ax,=o, i= 1, 2 ,...) N. (2.1) 

The method of computerized solution of this sys- 
tem was described by Snyman and van der Merwe 

11% 
To classify various solutions {xi”‘} of the sys- 

tem (2.1), it is necessary to find, as usual, eigenval- 
ues h, of the elastic matrix A 5 { Ai,}, A,, = 
a*v/ax, ax, 1 xi=xp: 

Au’“’ -_ jj *@I 
n 7 (2.2) 

where u is the N-dimensional vector: u = (ui}, 
and ui = xi - XI”’ is the atomic displacement away 
from the stationary state. The symmetric matrix A 
can be reduced to a diagonal form with the help of 
an unitary matrix T: 

A= TEST-‘, B= {B,,}, B,,,,=X,&,,,,, (2.3) 
.fn) = Tu”“, ,,(“) s ( “$“}, uc’ = u,~m,. (2.4) 

Then, close to a stationary state, the potential 
energy of the chain converts into the canonical 
form: 

Y= const( x(“‘) + $ E ?i,u,t. 
tl=l 

(2.5) 
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From the physical viewpoint, only the follow- 
ing stationary states are of interest: the minima of 
the potential energy (h, > 0 for all n), and the 
saddle points with one eigenvalue being negative, 
and others, positive (X, < 0 < X, < . . . < A,,,). The 
neighbouring local minima can always be con- 

nected by a “saddle” trajectory, i.e. by a curve 

which passes through the saddle point and is 

determined by the solution of the following sys- 

tem of differential equations: 

ax,/& = -aV/ax,, i = 1, 2,. . . , N, (2.6) 

where r is a parameter along the trajectory. The 
saddle trajectory is the curve of steepest descent; 

at the stationary points the direction of the saddle 
trajectory is defined by the eigenvector +u’” cor- 
responding to the minimum eigenvalue A,. 

The stationary state of the system with the 
lowest value of potential energy is called the 
ground state. Evidently, the ground state of a 
finite FK chain is infinitely degenerated since the 

substitution x, + x, + 277 transfers one ground 
state to the neighbouring one. We will call the 

“adiabatic” trajectory the saddle trajectory which 
connects the neighbouring ground states of the 
system. Every state of the system on the adiabatic 
trajectory can be associated with a unique param- 
eter, the coordinate X, defined by (1.3) according 
to Bergmann and coworkers [16]. Thus, the poten- 

tial energy of the system is described by the func- 
tion 

‘tx> = v({x~)) 1 (x,)Eadiab.tr.r 

which is periodic with the period 

b = 2nN. 

(2.7) 

(2.8) 

If two ground states can be connected by several 
different saddle trajectories, the trajectory with 
the minimum value of activation energy, c,, de- 
fined by the relationship 

~,=max[t:(X)] -mm[~(X)], (2.9) 

should be taken as the adiabatic trajectory. 
As the system moves along the adiabatic trajec- 

tory, the kinetic energy of the chain, K 
= fm,~~S,(axi/at)2, takes the form 

K=+m,t: zar zI,(axz axj2=$m(~j2, (2.10) 

where an effective mass of the chain is equal to 
(see ref. [lo]) 

m(X) = m, E (aXi/axj2. 
t=l 

(2.11) 

Using eqs. (1.3) and (2.6), the expression (2.11) 
can be rewritten in the form: 

N 

N 

m= C 
1=1 

war 
ax/a7 

Taking into account the following relationship for 
the stationary state, 

the effective mass can be expressed through the 
components of the eigenvector u(l): 

m(stationary state) = E ( ~1”)~ 
i=l 

(2.14) 

Using the definition (2.11), it is easy to show that 

1, if g-+ 0. 

l/N, if g-+co. 
(2.15) 

Finally, using eq. (2.13) and the following rela- 
tionships: 

2 

(X-X,)‘= 5 p ) 

i i I=1 

we obtain from expression (2.5) that near a sta- 
tionary (minimum or saddle) state with a coordi- 
nate X,, the potential energy of the system can be 
represented as 

~(X)=const(S)&+mwf(X-XS)2, 

where 

w,“= rtx, >o. 

(2.16) 

(2.17) 
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Fig. 1. Stationary-state configurations of the FK chain. 

Let us number the minima of the external 
potential in a such manner that the first atom of 
the chain will occupy the potential well with the 
number 1, and the last (Nth) atom, the well with 
some number M. Then, it will be convenient to 
designate various stationary states of the system 
by the integer n = N - M, and also by an ad- 
ditional index “s” for symmetric and “a” for 
asymmetric states (see fig. 1). Moreover, to dis- 
tinguish the states corresponding to the local 
minima of the potential energy from the saddle 
ones, we will highlight the former by underscoring 
((g )), and the latter, by overscoring ((Z)). Evi- 
dently, the state (e), will always be the ground 
one at a = 2a. As the parameter a decreases, the 
consequent change of the ground states, (Q, + 

W-(2>- ... -+ (n * ), takes place, where 

n* = int[( N - 1)/2]. (2.18) 

So, the problem is reduced to the calculation of 
characteristics of the adiabatic motion of the chain, 
E(X), z,, m, and w, from one ground state (c) 

with the coordinate Xi to the neighbouring one 
with X, = Xi + b. 

3. Results of the calculations 

In the two limiting cases, the determination of 
the characteristics of the system motion is trivial. 
Firstly, for noninteracting atoms (g = 0) we have 
m = 1, ea = 2, and w = 1. Secondly, for the strongly 
coupled atoms in the chain (g = co), the activation 
energy for chain’s motion is determined by (1.5), 
the effective mass is equal to m = l/N, and the 
frequency, eq. (2.17), is equal to 

w = [ 1 sin( Nu/2) l/N sin( a/2)] I’*. (3.1) 

Evidently, at 0 < g < cc it is energetically favoura- 
ble for chain atoms to be shifted away from the 
positions, eq. (1.2), to the nearest minima of the 
external potential. For short chains consisting of 
two and three atoms it is possible to obtain ana- 
lytical results; they are given in appendices A and 
B. Here we describe the results of numerical inves- 
tigation of the chain’s motion for an arbitrary N, 
firstly for even N (N = 4 as an example), and then 
for odd N. 

Let us recall that the ground state (cl, should 
transfer to the states (A), (z), . . . , (g*) whenever 
the parameter a is reduced. Consequently, it is 
possible to define regions O,,, 0,, . . . ,O,,. on the 
parametric plane (a, g), so that in the region 0, 
the state (_n) is the ground one. For example, for 
N = 4 the region 0, (with the ground state (Q),) 
includes regions a-c in fig. 2, and the region 0, 
(with the ground state (A),) includes regions d-i. 
The regions O,_ 1 and 0, are separated by the 
curve [a,] (see curve [a,] in fig. 2), where the value 
a, is equal to that value of a which satisfies the 
equation e((n - 1)) = z((_n)), so that the region 
0, is determined by the inequality a,,, < a < u,. 

Every region 0, is in turn divided by the curve 
[a”,] (see curve [a,] in fig. 2) into two subregions, 
the “right” one, 0; (Z, < a < a,), where the mo- 
tion is carried out along the trajectory 

(n> + (n - 1) + (_n>, (3.2) 

and the “left” subregion, 0: (a,,, < a < Z,,), 
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0 
7-r a 2n 

Fig. 2. Plane of system parameters (a, R) for the FK chain 
with N = 4. Definitions of curves see in text. The letters a-i 

designate the regions with different adiabatic trajectories: (a) 

(O), * (i), - (9,. (b) w, + G> -+ (9, + (9 + (O),, Cc) 
(Q),- (x’) --f (A), -+ (F”) + (I),- (x”) + . . . . Cd) (I), + 

(2) - (9, + (2) -+ (1>,, (e) (A>, -+ (X’> + (I), + (21) + 

(O), + G”) -f “‘1 (f) CL), + CO), -+ US+ (91 (1>, -+ Q>, -+ 

(QS7 (h) (1), --f W --) W,- W --) (9,~ (i) (1), + (2’) + 
(I), --+ (X”) -j (Q,-, (X”) - 

where the adiabatic trajectory passes through the 
state (n + 1): 

(n> + (n + 1) -+ {I). (3.3) 

For N = 4 the region 0; involves subregions d-f 
in fig. 2, and the region 0: includes subregions 
g-i. According to the definition of the adiabatic 
trajectory, the curve [&,I is determined by a condi- 
tion that the activation energies for the trajecto- 
ries, eqs. (3.2) and (3.3) will equal to one another. 
Note that the straight line a = 2a corresponds to 
the curve [a”,,], and the straight line a = 7~ coin- 
cides with the curve [a,, + r] at even N, and with 
the curve [CT,*] at odd N. 

In the region 0, there is the curve [ls] (see fig. 
2) to the right of which (i.e. at ajlbl -C CI -C 2~) the 
state (l), is the saddle one, and to the left of 
which the state (l), corresponds to the local 
minimum of the system energy. Similarly, in each 
region 0,; (O,“} there exists the same curve [(n - 
1)sJ (l[(n + l)s]), to the left (right) from which the - - 
state (R - l), ((n + l),), and to the right (left) 
from which the state (+)1>, ((&)l>,) exist (see 

the curve [OS] in the region O,, and the curve [2s] 
in the region 0: in fig. 2). 

Finally, in fig. 2 is plotted the curve [la], below 
which the stationary state (I), (see fig. 1) ad- 
ditionally appears, corresponding to the local 
minimum of the system energy (to be exact, the 

saddle state (X) is splitted into three ones: (i’}, 
(I),, and (k”)). Generally, there are curves [ na] 

(n= 1, 2,..., int[( N - 1)/2]) below which the sta- 
tionary states (PZ), exist; in the case of odd N, 
these curves are merged with the curves [ns] at 

Cf-+ar (see appendix B). The additional dif- 
ference of the case with odd N from that with 
even N consists in the presence of an asymmetric 
ground state in the case of odd numbers of N and 
n f 0 (see ref. [15]) (i.e. the ground state is ad- 
ditionally twice degenerated 1131; it is an analog of 
the Aubry transition [6] for an infinite chain). For 
example, for N = 3 the asymmetric state (I), is 

ICI 

ibi 

fa) 

Fig. 3. Dependences of activation energy c, on parameter u 
for: (a) N = 2, (b) N = 3, and (cf N = 4. Broken curves corre- 

spond to values g = M and g = 0, solid curves, to values R = 1 

(curve 1) and g = 0.1 (curve 3), and chain curves, to values 

~=l/nforN=2,andg=0,3forN=3andN=4. 
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(al 

lb) 

(cl 

Fig. 4. Parametric plane (a, g) for: (a) N = 2, (b) N = 3, and (c) 
N = 4. Hatched areas show regions where activation energy for 

adiabatic motion of N-cluster is lower than for a single atom. 

the ground one below the curve [Is] in the region 
0; (see fig. 8 and the trajectories 5 and 6 in fig. 9 
in appendix B). 

Thus, the function C=(U) reaches its maximum 
at the commensurate case (a = 2a), has local max- 
ima at a = H, and local minima at a = a, (see fig. 
3). In vicinity of the curves [a,] there are regions 

on the parametric plane (a, g) (see hatched areas 
in fig. 4) where the activation energy for the 
motion of the chain is lower than that for the 
motion of an isolated atom. 

4. Interpretation of the results 

Let us now interpret the obtained results with 
the help of “solitonic” terminology. For an in- 

finite atomic chain, commensurate with the exter- 
nal potential, there is a solution of motion’s equa- 
tion of the FK model, so-called kink, which de- 
scribes the minimum possible topologically stable 
local compression of the chain. A kink is char- 
acterized by a half-width d, 

d=2s&, (4.1) 

and an effective mass m, 

l 

1, if g -=z 1, (4.2a) 

mz 2/rr2&, if g>>l. (4.2b) 

The energy for the creation of a kink (with respect 

to the commensurate state of the chain with the 
same number of atoms) is equal to (see refs. [4,9]) 

Ek = C’ko’ T 27rg(2m - a), (4.3) 

where the upper (lower) sign corresponds to a 
kink (antikink), or chain’s compression (expan- 
sion, and 

(0) = 

( 

2r2g(l - 2g), if g < 1, (4.4a) 
‘k 

8&i, if g > 1. (4.4b) 

The motion of the kink is carried out in the 
periodic Peierls-Nabarro potential (see, e.g., refs. 
[9] and [lo]) with the amplitude 

(2-r2g, if g<l, (4.5a) 

c,, = 
{ 

(16rr4/3)g exp( -,rr2&), 

\ ifg%l. (4Sb) 

Two kinks separated by a distance x 2 d repel one 
another with an energy (see refs. [9,17]). 

%p(X) = 

1 

4r*g exp( -[x/d), 

if g-=z 1, (4.6a) 

32& exp( -x/d > , 

if g z=- 1, (4.6b) 

where the numerical coefficient [( g)([ -C 1) was 
tabulated by Joos [9]. In the case of g >> 1 (i.e. 
d z=- 2m) the motion equations of the FK model 
are reduced to the SG equation whose solution is 
the so-called knoadel wave, a periodic sequence of 
kinks of width kd, one period of the wave com- 
prising L atoms, 

L = g”22kK( k), (4.7) 
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and the modulus k(0 < k < 1) being determined 

by the equation [8] 

G(E(k)/k) = (277 -a)&. (4.8) 

Here, K(k) and E(k) are the complete elliptic 

integrals of the first and second kinds, respec- 
tively. 

For a semi-infinite atomic chain with a free end 
the solution of the SG equation is stable if the 

modulus k satisfies the following inequalities [4]: 

(1 - k2)“* < +k&(2n - u) < 1. (4.9) 

For a finite atomic chain, the value of k is de- 
termined by the boundary condition for the sec- 
ond free end of chain [4], so that only a finite 

number of values k = k,, n min < n < n,,, are ad- 
mitted [14]. 

Using “solitonic” terminology, the state (n) 
can be considered as the state with n kinks in the 

a 

chain. In the commensurate case (a = 277) the 
state without kinks, (0), is the ground one. As the 
parameter a decreases, the energy of the state (0) 
increases and the energy of the state (1) decreases 
down to intersection of their plots at a = u, (see 

fig. 5) when the energy of creation of an ad- 

ditional kink, Ed, becomes equal to zero. It follows 
from eqs. (4.3) and (4.4) that the curve [a,] is 

determined by the expression [4] 

i 

(a-71)/277, if g a 1, (4.10a) 
‘Y 

‘rrl’ = (4/m)*/(2~ - u)‘, if R >> 1. (4.10b) 

The state (Cj), exists up to the values g G g,,,], the 
curve [OS] being determined by the inequality (4.9) 
at k-1, 

g,,,,=4/(2a-a)*, if g>>l. (4.11) 

At u2 i a < a,, the state with one kink is the 

ground state since the creation of a second kink is 

yQpdwYr (0)s 

m Cl’), 

? (‘)a 

Fig. 5. Plot of energies of various states of the five-atomic FK chain versus equilibrium distance a at: (a) g = 2 and (b) R = 0.3; (c) 

stationary-state configurations of the chain with N = 5. 
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energetically unfavourable due to repulsion be- 
tween the kinks (4.6). With further decrease of a, 
the energy ~((1)) reaches its minimum and then 
rises (fig. 5). At the same time the energy ~((2)) 
continues decreasing so that at a = a, the energies 
of the states (1) and (2) become equal to one 
another. Within the interval a3 < a c a2, the state 
with two kinks is the ground one, and so on up to 
the state (n * ). For small values of g, all the 
curves [a,,] converge to the line determined by eq. 
(4.10a), because of an energy of kinks repulsion 
(4.6a) is exponentially small for small g. In the 
case of g >> 1 (when d z==- 2a), the continuum 
approximation can be used to determine the curves 
[a,,]. If we neglect the boundary effects (i.e. if 
N >> l), then the energies of the states (n - 1) 
and (n) for a finite chain become equal to one 
another, whenever the following condition is 
fulfilled: 

nL=N. (4.12) 

It can be seen from eq. (4.8) that k -+ 0 whenever 
g --, cc and a # 2a. Expanding the functions K(k) 
and E(k) into a series in small k, from eqs. (4.7), 
(4.8), and (4.12) after straightforward transforma- 
tions we obtain the expression for the curve [a,,]: 

(m/N)“* 
g fanI = (za _ a)‘( a,” - a)l/* . 

(4.13) 

Note that this expression is valid provided (2a - 
a)& B 1. 

It is evident that for a finite chain with a length 
I, I = a,( N - 2) the expressions (4.2b) - (4.6b), 
(4.10b), and (4.11) are valid as long as a kink can 
be “inserted” into the chain, i.e. whenever g <( g *, 
where the value of g* is determined from the 
condition 

2d=I, (4.14) 

so that g* = (N/2 - l)*. Otherwise, i.e. at g Z+ 
g*, all the chain’s atoms move simultaneously, 
and the equation cL = 0 is satisfied at a = a? (see 

equation (1.6)). 
For the commensurate case (a = 2s) the 

adiabatic motion of a chain can be described in 
the following way (see refs. [12,14]: in the begin- 
ning, a kink is introduced from the left end of the 

chain, then it moves along the chain to the right 
and is annihilated at the right end. According to 
the work [ll], the creation of a kink at the free 
end of a semiinfinite chain (with the coordinate 
x = 0) and its subsequent motion to the right can 
be qualitatively viewed as the creation of a kink- 
antikink pair at the point x = 0 of an infinite 
chain, and their subsequent motion in opposite 
directions (kink to the right, xk = x, and antikink 
to the left, x, = -x). Therefore, the energy of the 
system with one kink can be rewritten in the form: 

%tx) = Ek - t%ep (2x) - &,,(4aN - 2x), 

(4.15) 

where the last two terms can be interpreted as an 
energy of attraction of the kink to the chain’s free 
ends. Thus, the potential energy of the adiabatic 
chains’ motion, c(X), can be approximately pre- 
sented by the expression 

C(x)=C,(x)+c,(x), (4.16) 

where the second term describes the kink motion 
along the chain in the periodic Peierls-Nabarro 
potential, <r(X) = +cr(l - cos X). In case g -+ 0 
we have E,, -+ 2 and fk + 0, and the function c(X) 
has (N - 1) local minima. According to the equa- 
tions (4.4) and (4.5) zp + 0 with an increase of g, 
and the energy ck is increased up to its saturation 
at g >, g*. At the same time the local minima of 
the function E(X) disappear; at first (at g ,< 1, 
when 2d = 272) two minima which are the nearest 
to chain ends, then more remote from the ends 
and so on. Finally, when at g 2 g* the kink 
cannot be “inserted” into the chain, the function 
r(X) has only one maximum for the state (i),, 
and the “solitonic” terminology becomes unsuita- 
ble. 

In the general case (a # 277) with the ground 
state (n) (n # 0), the adiabatic motion, eq. (3.3) 
can be viewed, according to refs. [12,14], as the 
creation of an additional kink at the left end of 
the chain, and then, after a number of displace- 
ments, the annihilation of the extreme right kink 
at the right end of chain (see fig. 6a). For the 
trajectory (3.2) with an intermediate state (n - 1) 
the sequence of events is inverse: at first, the 
extreme right kink leaves the chain, and then a 
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D 1 2 3 4 7 8 9 10 11 

(a) 
X12n 

IbI 

Fig. 6. Trajectories of adiabatic motion of the five-atomic FK chain for system parameters: g = 0.3 and (a) a = 1.90 n, and (‘of 
LI = 1.01 77. 

new kink is created at the left end of the chain 
(see fig. 6b). Otherwise, the behaviour of the sys- 
tem at Q f: 2n is qualitatively similar to that de- 
scribed above. So, the activation energy of the 
chain motion can be approximately represented as 

(4.17) 

AC, = min{ ]e((n + 1)) -I) 1, 

I~((~-l))-e(WI]. (4.18) 

Evidently, e a reaches minimum values whenever 
AC, = 0, i.e. at the curves [a,] of the plane (a, g). 
Therefore, near the curves [a,] there are regions, 
where the activation energy for the adiabatic mo- 
tion of the N-atomic chain is lower than that for 
an isolated atom (see fig. 4). Note that at a fixed 
value of g for chains with various numbers of 
atoms, N, functions r,(a), w(a), and m(a) are 
weakly dependent on N as long as the inequality 
2d @ 1 is satisfied (i.e. if N +C N *, where the 
value of N* is determined by eq. (4.14). In par- 
ticular, at g +C 1 the dependence r,(a) has the 

form (A.lO) (see Appendix A) for an arbitrary 
value of N 2 2. 

5. Discussion of the mode1 

Now we discuss possible generalizations of the 
FK model. First of all, it is to be noted that the 
interaction between atoms should be described by 
more realistic potential than the harmonic one, 
e.g. by the Morse potential 

l),,,(X)=~int{exP[-y(x-a)l -I}“% (5.1) 

where tint is the dissociation energy for two-atomic 
molecule, and y = u -’ reflects the degree of 
anharmonicity of the interatomic potential. At 
small displacements away from the equilibrium 
state, In - a 1 -=c a, we have 

U&X) = ig(x - a)2[1 - y(x - a)], g = 2rin,y2. 

(5.2) 

Note that to estimate the value of g, it is conveni- 
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ent to return to dimensional units: 6. Diffusion of adsorbed clusters 

(5.3) 

As was shown by Markov and Milchev [18], the 
FK model with the Morse potential (5.1) has two 
novel features. Firstly, the symmetry between the 
kink (local contraction of the chain) and the anti- 
kink (local extension) is violated. As compared 
against the kink, the antikink is characterized by a 
lower value of Ed, and by higher values of c p and 
m, the difference in kink-antikink parameters 
being proportional to y. As a result, the curves 

[a,] and [L?,] on the plane (a, g) will be shifted. 
For example, at a = 2n the trajectory (0) + 

( - 1) --, (0) will have the lower activation energy 
than the trajectory (0) + ( + 1) --, (0). Secondly, 

for the potential (5.1) the interatomic attraction 
force is reduced with an increase of distance be- 
tween atoms. As a result, an infinite number of 
metastable states of the system appears, which 
correspond to the chain rupturing into two, three, 
N parts (or single atoms). So, at some parameters 
of the system there may be an adiabatic trajectory 
corresponding to chain’s rupture (i.e. its dissocia- 
tion). 

Above we have considered only the adiabatic 
(i.e. infinitely slow) motion of a chain. If the chain 
moves at some finite velocity X, the “dynamic” 
Peierls potential will differ from the adiabatic one. 
Indeed, at velocities X> bw the atoms of the 

chain will have no time to adjust to the external 
(substrate) potential; this is equivalent to effective 

decrease of the external potential amplitude. Be- 
sides, as was shown by Kovalev [ll], in the case of 

a = a”, due to inertia of the chain, its motion 
should be carried out along the trajectory 

(n) -+ (n + 1) --, (n) + (n - 1) --* (n) + . . .) 

(5.4) 

because the kink is transformed into the antikink 
during its reflection from a free end of the chain. 
This motion, reminiscent of a crawling caterpillar, 
has a more “straight” trajectory in a phase space. 

To describe a behaviour of real systems, an 
energy exchange between various degrees of free- 

dom of the FK chain as well as between the chain 
and the substrate should be taken into account. 
Phenomenologically, this exchange leads to a fric- 
tion with some coefficient TJ which is proportional 
to the rate of energy exchange (e.g., ref. [19]). 
Thus, the motion of the chain can be approxi- 
mately described by the Langevin equation 

mX+mm77X+ ac(x)/ax=w, (6.1) 
where the stochastic force SF satisfies the fluctua- 

tion-dissipation theorem, (6F( X, t) SF( X, t’)) 
= 2n( X)m(X)k,T 8(t - t’), and T is the tem- 
perature of the system. Of course, thermal fluctua- 

tions of positions and velocities of chain and 

substrate atoms modify the function e(X) in 
equation (6.1). The corresponding errors can be 
lowered if the value of es is taken as the experi- 
mentally measured value of the activation energy 
of diffusion of a single atom. 

It is well known that for times t > q-l, a solu- 
tion of the Langevin equation (6.1) describes a 
diffusion motion of the system with a diffusion 
coefficient 

D = Rb*, R = R, exp( -c,/k,T), (6.2) 

where R is the rate of escape of the system from 
the bottom of the potential well of C(X). Neglect- 
ing a complicated form of the function e(X) 

(namely, ignoring the local minima ,existence), the 
energy e(X) can be approximated by the function, 
initially introduced by Peyrard and Remoissenet 
[20]: 

e(X) = &+,(2xX,/b), 

u 
P 

(y) = Cl- 4*0 - cos Y> ’ 
(1 +r2+2rcos r) 

(6.3) 

where r is some parameter ( 1 r 1 < 1). Then the 
eigenfrequencies w0 (at the minimum of the 
potential E(X)) and ws (at the saddle point), wi., 

= WY&+“(K) I x=0; h/21 can be connected by the 
following relationship: 

Wr&&l,o,’ = (‘./2N*)*. (6.4) 
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Excluding an exotic case of extremely low friction 
(see, e.g., ref. [19]), a pre-exponential factor R, for 
the potential (6.3), (6.4) is determined by the 
Kramers theory [21]: 

R,= 
i 

@@J271., if new,, (6.5a) 

(%$%/2% if 71 > w,. (6.5b) 

Using eqs. (6.2), (6.4), and (6.5), we obtain the 
expression for the diffusion coefficient: 

D = D0 exp( -cJ~,T), (6.6) 

Do 1: 
i 

2nN+.+, if 17s~~. (6.7a) 

ae./r)Jmom,, if 11 > 0,. (6.7b) 

If the potential (6.3) has a shape of deep narrow 
wells separated by wide barriers (i.e. if r < 0), we 
can approximately take E, = $mo&r2, so that the 
following estimation for the value of D,, is ob- 
tained: 

Do = 
i 

2nN*w,,, if N< N**, (6.8a) 

27=$% if N> N**, (6.8b) 

where 

N** = (o,/#‘*. (6.9) 

Thus, for the commensurate case (a = 27r) at a 
fixed value of g, both the activation energy e, (up 
to the saturation at N 2 N *, where N* is de- 
termined by eq. (4.14)) and the pre-exponential 
factor D,, (up to the saturation at N z N * * ) 
increase with the increase of the chain’s length, N. 
On the other hand, at fixed values of N and g the 
factors ea, wO, and D,, change “in-phase” (usually 
decrease, see fig. 3)), when reducing the equi- 
librium distance a. So in both cases the theory 
predicts the existence of a “compensation” effect, 
i.e. the values C, and Do are changed simulta- 
neously in the same direction. Note that this effect 
is observed in a number of experiments (see, e.g., 
ref. [3]). The diffusion coefficient D can both 
increase and decrease with the increase in a chain 
length, N, the former situation taking place at 
a = CT?,, and the latter, at a = a,. 

The FK model is naturally used to describe 
static and dynamic properties of layers adsorbed 
on metal or semiconductor surfaces (see e.g. ref. 
[22]). Surface diffusion of adatoms or admolecules 

is extensively investigated by various experimental 
techniques (see ref. [3]), including computerized 
simulation (see refs. [23,24]). To estimate the 
parameter g for adsystems, let us take e, = 0.1 eV 
for the activation energy of diffusion of a single 
adatom [3], eint = 0.05-0.5 eV for the interaction 
energy between two neighbouring adatoms (see 
survey [25]), and put ya, = 1 into eq. (5.3). As a 
results, we obtain g = = 0.05-0.5, which corre- 
sponds to the case of a weak bond. However, 
when atoms of small radii (a < a,) are adsorbed, 
then y I: (as/a) > 1, and the case of intermediate 
coupling, g 2 1, can be carried out. In the case of 
adsystems, the energy exchange between adatoms 
and substrate atoms usually leads to a friction 
coefficient n = (0.01 - l)w, {see ref. [19]) and, as 
the estimates show, this friction mechanism is the 
main one. Thus, we obtain the estimation N * = 
N * * 5: l-10. However, it should be noted that for 
adsystems the parameters eint, y, and n are not 
constant because they depend on the electronic 
structure of the substrate, its temperature, and the 
concentration of adatoms f19,25]. 

Observation of the motion of single adatoms 
and their clusters with the use of field ion micro- 
scope have shown that on the smoothed crystal 
faces (for example, on the face (110) of tungsten) 
the mobility of clusters is reduced with an increase 
of the number of atoms forming the cluster [26]. 
Similar behaviour was observed on the “furrowed” 
crystal faces (i.e. on the face (112) of tungsten) for 
the motion of a linear cluster which is completely 
disposed inside one furrow [26-291. However, if 
different atoms of the cluster are placed into dif- 
ferent (neighbouring) furrows of the furrowed 
crystal face, then the mobility of the cluster is 
sufficiently high, i.e. is close to the mobility of a 
single adatom [26-291. Such behaviour can be 
explained in the following way: the case of 
smoothed faces is close to the commensurate case 
of a = a,, while in the case of atomic adsorption 
in the neighbouring furrows on the furrowed faces 
the situation may arise with 0 -C a -C a,. 

When a parameter of the adsystem, e.g. temper- 
ature T or adatomic concentration 8 is changed, 
various phase transitions can occur in the adlayer 
[22]. For the phase transition of the first kind, it 
was experimentally observed that when the system 
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is approaching the phase transition point, the dif- 
fusion coefficient D increases in some cases (e.g., 
for adsystems Ba-Mo(ll0) [30] and Li-Mo(ll0) 
[31]) as well as it decreases in other cases (e.g., for 
Li-W(110) [32], Ba-W(llO) [33], and La-W(llO) 
[34]). Such behaviour of D can be explained by 
the creation of two-dimensional islands (clusters) 
of a new phase against the background of the old 
phase due to fluctuations of the adatomic con- 
centration in the fluctuation region of the first-kind 

phase transition. Depending on the parameters of 
an adsystem, the mobility of these islands may 

either exceed the mobility of adatoms in the old 
phase, or may be lower than the latter. 

Appendix A: case of N = 2 

The two-atomic cluster has three stationary 

states: (O),, (O),, and (l), (see fig. 1). The state 
(0), is always the ground one, and it has atomic 
positions x, = z,,, x2 = 27r - z,,, where the value of 

z0 (0 < z0 ( m/2) is determined by a solution of 
the transcendental equation 

sin zo=2g[(n-a/2)-z,]. (Al) 

In limiting cases, this equation has approximate 

solutions: 

i 

(2n - a)g/(l + 2g), at g e 1, 

ZO= (9r-a/2)- [sin(+rf-a/2)]/2g, (A.2) 

at g> 1. 
7. Concluding remarks 

We have investigated the adiabatic motion of a 
one-dimensional cluster formed by atoms attract- 
ing one another and placed into the external peri- 
odic potential. The results have demonstrated that 
the mobility of clusters can either decrease (for the 
commensurate case of a -jr,, j being an integer) 
or increase (at a = (j + *)a,) with the increase of 
a cluster size. It should be reminded that for an 

infinite chain of atoms, the dynamics of the FK 
model does not depend on the parameter a (see 

ref. [9]). 
In the present paper, the main point of our 

interest has been how can the FK model explain 
some experimental data on surface diffusion of 

adatoms. It should be noted that the FK model 
can also be applied to a number of other physical 
systems which have been briefly mentioned in the 
section 1, so the results may be applied to that 

systems. 
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It can be easily shown that the state (0), is 
characterized by the following parameters: 

m((O),) = l/2, 

4m) = 4 1 - cos zo+g(77-u/2-zo)2] 

+g(l - 2g)(2q - u)~, at g C 1, 

= 2[ 1 - sin(( a - 77)/2)] 

-(1/2g) sin2(u/2), at g B 1, 

64.3) 

and 

a2((0),) = cos zo 

i 
1- +g2(2m-a)‘, at g< 1, 

2: 

i 

sin(( a - n)/2) + (1/2g) 

at g% 1. 

The state (l), with atomic positions 

sin2 ( u/2), 

(A.41 

x1.2 = *z; 

(see fig. l), where the value of z; (0 < zi 6 n) is 
determined by the equation 

sin zi=2g(u/2-zi), (A-5) 

is characterized by the effective mass m((l),) = 
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l/2, the energy 

fRI>,) = 211 - cos z; + g( z; - a/2)2] 

3: 

I 

+g(l - 2g)a2, at g e 1, 

2[ 1 + sin(( a - ~)/2)] 

-(1/2g) sin’(a/2), at g% 1, 

and by the minimum eigenvalue 

h, = cos z;. (A.7) 

According to (A.7), the value X, > 0 whenever 
zi < 71/2, and X, < 0 whenever zi > m/2. Sub- 

stltuting the critical value zh = m/2 into equation 
(A.5), we obtain an equation of the curve [Is], 

Q,,] = (a - n)-‘, (A.8) 

which divides the plane (a, g) of the system 
parameters into two parts: the “upper” one, g > 

g,,,] (or the “right-hand” one, a > a,,,,), where the 
state (l), is the saddle state, and the “lower” part, 
g < g,,,) (or the “left-hand”’ one, a < u[,,~), where 
the state (l), corresponds to the local minimum 
of the potential energy of the system. 

In the “lower” part of parametric plane there 
also exists the stationary state (0), (see fig. 1) 

with atomic positions xz = v + x,, x1 = 
-sin-‘[g(a -n)]. This state corresponds to the 

saddle point of the trajectory, and is characterized 
by the energy 

C((O),) = 2 + ig(u - 7r)“. (A-9) 

Thus, if the system parameters belong to the 
“upper” part, the dimer moves along the trajec- 
tory (Q), -+ (i), + (Cl), (see trajectory 1 in fig. 7) 
with the activation energy C, = r{(l),) - E{(Q),), 
and in the “lower” part of the parametric plane 
the motion is carried-out along the trajectory 
(@, + (O), -+ (I), + (0), + (c)), (see trajectories 
2 and 3 in fig. 7) with an activation energy 6, = 
t{(6),) - r((@,>. The function C,(U) at different 
values of g is plotted in fig. 3a, and the corre- 
sponding trajectories of the adiabatic motion of 
the dimer, x,(X) and x2(X), as well as the poten- 
tial energy E(X) are shown in fig. 7. In the case of 
weak coupling between atoms the following ex- 

X. 
I 

0 

fbl 

-Jr 
X 3fl 4x 

Fig. 7. Plot of dependences of (a) potential energy E and (b) 
atomic coordinates .x1 and x2 on coordinate X for adiabatic 

motion of dimer. System parameters: u = 47r/3 and R = 5 

(curve l), 0.5 (curve 2, dashed), and 0.05 (curve 3). 

pression for the activation energy can be derived 

from eqs. (A.3) and (A.9): 

fn=2+9rg(a-3r/2), gel. (A.10) 

From eqs. (1.5) and (A.lO) it is seen that the 

activation energy of motion of the dimer is lower 
than for motion of a single atom as long as 
(a-n)<n/3 at g>>l, and if (a-m)<n/2 at 
g * 1 (see hatched area in fig. 4a). 

Appendix B: case of N = 3 

In the case of N = 3, only the symmetric states 
(O), and (l), (see fig. 1) can be analytically 
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considered. For the state (0), with atomic posi- 
tions x1 = zO, xZ = 2n, and xg = 4~ - zO, where .zO 
is determined by the equation 

sin zo=g[(2n-a)-~~], (B.1) 

the potential energy is equal to 

~((0)~) = 2(1 - cos z,,) + g(2s - a - .z~)~. (B.2) 

The lowest root of the quadratic equation, 

x2 - h(cos z0 + 3g + 1) + (1 + 2g) cos z0 + g 

Z 0, (B.3) 

is associated with the eigenvalue h,. It can be seen 
that h, turns to zero whenever 

cos z. = -g/(1 + 2g). (B-4) 

From eqs. (B.1) and (B.4) we obtain that the curve 
[OS] is determined by the equations 

i 

2n - a = z0 f g-’ sin zO, 

z,=cos-‘[--g/(l+2g)], 
(B.5) 

so that at g --, co this curve takes the form 

g[,,] = 1/(4n/3 - a)fi, if a + 4~/3 - 0. 

(W 

Above (g > gI,,J, or to the left (a < a& from the 
curve [OS], the state (0), is the saddle one, and 
below (or to the right) this state corresponds to 
the local ~~rnurn of the energy. 

Similarly, for the state (l)s with atomic posi- 
tions x1 = -z& x2 = 8, and xj = 277 + z& where 
.zG is determined by the equation 

sin zi=g[(a-a)-z;], V3.7) 

the curve [Is] is determined by the equations 

i 

U--77=2~+g-‘sin z(;, 

z;=cos-‘[g/(2g-l)]. 
03.8) 

It is evident that gIlsl 2 1. At g-, co, from (B.8) 
we obtain: 

gllsl = l/( (I - 4~/3)v5 if a --) 4~/3 + 0. (B-9) 

As distinct from the case of even N, in the present 
case the shape of the curve [ls] is more com- 
plicated (compare figs. 2 and 8): it is bent to the 
left with the decrease of g, so that at g L 1 

g[,,] = 1 f (1/8)(a - R)~, if a + w + 0. (B.lO) 

0 
a 

Q 
27r 

Fig. 8. Parametric plane (a, g) for three-atomic chain. Crosses 
with numbers 1 to 8 designate system parameters used to 

calculate adiabatic trajectories shown in fig. 9. 

To the right (a > allsl) from the curve [Is] the 
state (l>s is the saddle one, and to the left it 
corresponds to the energy local minimum. 

The parametric plane (a, g) for the three- 
atomic chain is shown in fig. 8. There are two 
regions, 0: and 0; {separated by the curve [a,]) 
characterized by different mechanisms of the 
chain’s motion. The curve [Is] divides the region 
0; into two subregions: the “upper” one, Ols, 

E 

3 

2 

1 

(0 ls x (1 ‘* 

Fig. 9. Potential energy c( A’) of three-atomic chain during its 
adiabatic motion for different system parameters (see crosses 

in fig. 8): (a, g) = (1.70~,2); (1.36~. 2); (1.30~, 2); (l.O2n,2); 
(l.OZ~, 0.9); (l.O2?r, 0.2); (4n/3,0.2); (1.70n, 0.2). 
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where the state (l), is the ground one, and the 
“lower” subregion, Olar where the state (I), is the 

ground state. Another difference from the case of 
even N consists in the fact that the curve [la], 

separating the subregion where the state (l), ex- 
ists, is merged with the curve [Is] whenever a is 

reduced (a -+ 4n/3). So, there are seven different 
types of adiabatic trajectories which are plotted in 
fig. 9. The dependent ~~(a) for different values of 
g is shown in fig. 3b. 
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