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Various mechanisms of energy exchange between an adparticle (adatom. admolecule) and a 

substrate such as phonon. electron-hole and plasmon (electromagnetic) mechanisms are conaid- 

ered. It is shown that in some cases. for example for a light atom adsorbed on a semiconductor 

surface the rate of energy exchange is so small that the absolute rate theory is unsuitable. In these 

cases the nonlinear coupling between the degrees of freedom of the adsystem leads to stochasttza- 

tion of the motion of the adsystem. This stochastization causes (a) “dephasing” broadening of the 

vibrational line of the adsystem; (b) change of the temperature dependence of the rate of 

admolecule dissociation; and (c) the limitation on the free path motion of diffusing adparticles. It 
is pointed out that in the low friction case the role of the stimulated processes can be significant. 

1. Introduction 

Energy exchange between various degrees of freedom of an adsystem plays 
a significant role in all surface dynamical processes such as adsorption and 
desorption, inelastic scattering of particles, surface diffusion and crystal 
growth. heterogeneous catalytic reactions and so on. Usually. the rate of a 
dynamical process R is inversely proportional to the rate of energy exchange 
y: R a y-l. However, as shown by Kramers [l], for an activated process (with 
an activation energy c,, and a substrate temperature T such that T-K c,,) and 
for a sufficiently small value of y the opposite relationship holds: R a y. 

It is natural to begin the investigation of energy-exchange processes with 
the simplest case of vibrations of an adsorbed atom or molecule. It is 
convenient to classify that various mechanisms of vibrational damping accord- 
ing to the type of quasiparticles created in the substrate: phonons, 
electron-hole pairs, plasmons and so on. Thus phonon, electron-hole (e-h). 
and plasmon (electromagnetic) decay mechanisms are introduced. Certainly. 
this classification is rigorous as far as it is correct to treat the substrate as a 
noninteracting quasiparticles system. In section 2 we estimate the rate of 
energy exchange y between the vibrations of the adparticle and other degrees 
of freedom with the help of the Green function technique. It will be shown 
that in some cases the rate y is very small. 
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For arbitrary motion of an adparticle it is convenient to describe the rate of 

energy exchange phenomenologically by a suitable friction coefficient. The 
methods of introducing the friction coefficient n are discussed in section 3. 

In section 4 we consider three typical examples of surface dynamical 
processes such as adparticle vibrations near the minimum of the substrate 
potential, the escape rate of an adparticle from the potential well and diffusion 
of an adparticle in a periodic surface potential. The relationship between the 
friction coefficient n and the vibrational linewidth r, the escape rate R and 
the diffusion coefficient D is discussed. 

In section 5 we give the conclusions and discuss the possibility of stimu- 

lated processes in the low friction case. 
We shall use the atomic units system, A = m, = e* = k, = 1, throughout. 

2. Energy exchange for adparticle vibrations 

Interest in the study of vibrations of atoms and molecules adsorbed on a 
crystal surface is caused by two reasons. Firstly, vibrational spectroscopy of 
adsorbates is a very informative method of investigation of adsystems (see 
surveys [2,3]). Secondly, the examination of local vibrations is the first step to 
the understanding of more complex surface dynamical processes. 

Experimentally, the energy exchange between the substrate and adparticle 
vibrations can be measured directly or indirectly. The direct method uses 
picosecond laser pulses and measures the rate of decrease of the occupation 
number of the vibrational state (so-called “laser induced fluorescence” [4]). 
The usual spectroscopic methods described in ref. [5] are indirect as they 
measure the shape of the vibrational line L(w) and the linewidth, r, which is 
connected with the rate of energy exchange y. The function L( w ) is determined 
by the generalized susceptibility (Y of the adsystem [6]: 

L(w) a Im (Y(W), 

CX(W) = fCmdt exp(iwt)a(l), (2.1) 

a(t) =i@(t)(k(t)P(O) - $(O)j(t)). 

Here j is the dynamical dipole moment operator, which is connected with the 
adparticle displacement ii away from the equilibrium position: P = e* u, 
where e* = LZlP,Gu for u = 0. If the dynamical charge e * is constant during 
vibrations, than L(w) CC Im Qr(w), where Qr is a usual retarded Green 
function for the adparticle displacements (the general case was considered by 
Langreth [7]). 
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2.1. Phonon decuy of vibrationa/ excitation 

Let us consider the simplest case of an adatom vibrating perpendicular to 
the surface for A-type (atop-bonded) adsorption and take into account the 
interaction of the adatom with the neighbouring substrate atom only. If we 
denote the displacements of the adatom and the surface atom away from the 
equilibrium positions by u;, and U, respectively, then the interaction energy 

H,,,, depends on their mutual displacement: 

H,,,, = I'( II ). u = II,, - u,. (2.1) 

For the case of zero substrate temperature it is convenient to introduce a 
causal Green function 

Q(r)= -i(?u(r)u(O)), Q(w)=/aXdrexp(iwt)Q(r). 
x 

(2.3) 

where f is the time ordering operator. 
The Green function (2.3) satisfies the Dyson equation 

Q = (2,) + QGQ = (1 - Qofl) ‘Q,,. (2.4) 

where the polarization operator II(o) is determined by the diagrams of fig. 1 
and can be calculated by standard rules [6]. The advantage of using the Dyson 
equation consists in the possibility of taking into account various perturba- 
tions in the interaction H,,, successively. For the zero-order approximation Q,, 
we take the Green function of the system in the absence of interaction 

( H,,,, = 0): 

Qo(~)=~r~,‘(ti7+iO) ‘+H~,‘S(W). (2.5) 

Fig. 1. Dtagrams for the polarization t>perator IT(w). C‘ontrlbutiona are shown from the external 

potential (a). the decay into substrate phonons (h, c. d. e). and the decay into substrate e-h pair 

Cf. g). 
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Here m, and m, are the masses of the adatom and the substrate atom 
respectively. The adsite Green function, 

S(w) = -irn,/Tldf exp(iwt)(%,(t)uS(0)), (2.6) 

is connected with the local density of phonon states near the surface, Pi, 
by the relation 

Pi = -(2/77)w Im S(0). (2.7) 

The simplest diagram shown in fig. la gives the contribution 17, = V”(0) = 
Cl*v( u)/au* 1 u=. to the polarization operator and leads to the Green function 
in the harmonic approximation: 

al(~) = 
m;‘J( w) 

a’-w,2J(w)+iO’ 
J(w) = 1+ I&, 

s 
(2-8) 

where 

wa = (V”/m.)l’* (2.9) 

is the frequency of adatom vibrations on a “rigid” (immobile) substrate. 
Vibrations of substrate atoms cause a renormalization of the vibrational 
frequencies so that w,, is determined by solution of the equation 

wi=wzReJ(w,). (2.10) 

When the frequency o0 is lower than the maximum value w, of the 
vibrational frequency of the substrate atoms, the adatom vibrations are virtual 
and are characterized by the linewidth 

Y = -~0~,2(m,/mS) Im S(o0) = (m/2)(m./m,)W,2pb(WO). (2.11) 

In the opposite case, w0 > w,, the vibrations are local and the contribution 617 
to the polarization operator, determined by the diagrams of figs. lb-lg, leads 
to a shift of the vibrational frequency 

6w = ( wo/2mac$) Re 8II( w,,) s w,,, (2.12) 

and to an increase of the vibrational linewidth 

y = (-w,/m.&) Im 6II( wO) < wO. (2.13) 

Further on we shall use the Morse potential for V(U): 

V(u)=ed[l-exp(-KU)]*, (2.14) 

where zd is the adsorption energy and K = w,(ma/2cd)1’2. The rules of 
diagrammatic perturbation theory for calculating the rate y in the case of local 
vibrations can be formulated in the following form [6,8]: 
(1) a factor A,, 

A, = -i a”v(u)/au” 1 u=. = cd&(ma/cd)“‘*, (2.15) 



is associated with each vertex, in which n phonon lines meet; (2) the function 

iQ(o) corresponds to each phonon line (see wavy lines in fig. 1); for w 5 o,,, 
in the case of wg z+ w,, it can be approximately modified according to 

Im Qh = - (&p,( o)/2m,w,4) 

= -(I/m\W;)(W,/%)~: (2.16) 

(3) integration (1:: do’/2r) is carried out with respect to the free energy 
parameters; this procedure approximately gives a factor of order w,,. 

For example, the simple phonon loop of fig. lb, which describes the decay 

of the local vibration into two phonons, leads to the following contribution to 
the linewidth: 

y2 = r,(Im Q,,)‘X;W,, = W”(m./m,)2(0,~/~,,)(O*,,/Wg)i. (2.17) 

where r,, = (2rn.~,,)~ ‘P is the amplitude of quantum vibrations. The decay of 
a local vibration into three phonons caused by a higher anharmonic term in 
Hi,, corresponds to an increase of the order of the vertex (see fig. lc); as a 
result expression (2.17) is multiplied by a small parameter. 

E - (Im Qh)(W~i)Z~,, = (m,/m,>(W,/~d)(0,/Wg)3 -+c 1. (2.18) 

The decay of a local vibration into three phonons is also described by the next 
order of the perturbation theory (see fig. Id); in this case expression (2.17) is 
multiplied by a small parameter 

<’ 2 (Im Q,, )3A&, = (rn,/rn,)~(W,,/~d)(W,/O,~)‘< 1. (2.19) 

Comparing eqs. (2.18) and (2.19) we see that <’ < 5; therefore the higher 
orders of the perturbation theory can be neglected. For example, we can 
obtain for the H-W adsystem with wb’ ) = 3.7w,, m,/m:, = 184, cd = 3 eV and 

a”, = 35 meV the following estimate for the rate of the decay process of the 
adatom vibration into four substrate phonons (see fig. le): y = y2i2 = 10P”‘w,,. 

The decay probability of a local vibration into n phonons for n r; 2 must 
essentially depend on the substrate temperature T because phonons are 
Bose-particles. With the help of the temperature-dependent Green function 
method [6] we obtain for the phonon loop of fig. lb the expression: 

Im II(o,,) = I X3 I ‘Z( Qq Q: q,). (2.20) 

Z(Q,, Qz; a) 

zz 

f 

ti”‘(dw’/7r) Im Q,(o’) Im Q?(w-a’)[1 +v(w’) +Y(o-w’)] 
0 

+ ,iX(dw’/r)[Im Q,(w’) Im Q2(ti+~‘) f 
+Im Q,(o+w’) Im Q~(w’)][Y(o’)--(w+o’)], (2.21) 
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where Y(U) = [exp(w/T) - 11-r is the Bose distribution function. Neglecting 
the w-dependence of Im Q(w) in the interval w,, - w, -C w < o,, one can 

obtain an approximate expression: 

Y(T) = Y(O)A(T), 

A(T)= 2T In 
i 

sir&( w,/2T ) 

2&J, - wg sinh[ ( w0 - w,)/2T] ’ 
(2.22) 

thus at low temperatures T e (q, - 0,) 

A(T) = 1 + [2T/(2w, - we)] exp[-(we-%)/T], 

and at high temperatures T > q,, 

(2.23) 

A(T) = [2T/(2%, - dl ln[d(o, - wm>]. (2.24) 

Similarly, for the decay process into n phonons at high temperatures we have 
y(T) a T”-‘. 

Thus, the rate of the local vibration decay process into substrate phonons 
is, first of all, determined by the ratio oO/wm, and also by the anharmonicity 
of the interaction potential. The phonon decay mechanism plays an important 
role in the case wO/o, ,< 2-3. 

2.2. Electron-hole decay 

According to the well-known Gurney model [9] (see also ref. [lo]) the 
electron wave functions of the adparticle and the metal hybridize when 
chemisorption takes place. As a consequence of this hybridization the initially 
discrete electron level z, of the adparticle is transformed into a virtual level of 
halfwidth A. When the adparticle vibrates perpendicular to the surface the 
position and the width of the virtual level are changed periodically. Because 
the position of the Fermi level er is fixed, the vibrations cause a flow of 
electrons from the adparticle to the substrate and vice-versa. Due to the 
continuity of the substrate electron spectra the flow process proceeds non- 

adiabatically with the creation of electron-hole pairs in the substrate. If the 
adparticle, chemisorbed on a symmetric site at the surface, vibrates parallel to 
the surface, the electrons flow along the surface; this flow process leads also 
the creation of e-h pairs. It should be noted that the damping mechanism for 
perpendicular vibrations is often referred to as “charge transfer mechanism”, 
whereas for parallel vibrations it is called “potential scattering mechanism” 

[ill. 
For the sake of simplicity we consider the case of chemisorption of an atom 

with a single non-degenerate electron orbital 1 A) which is mixed by the 
matrix elements V, = (A 1 H 1 i) with the nearest substrate atom orbitals 1 i). 
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The Hamiltonian in the site-representation then takes the Anderson-type form 

[lo]: 

H=&+M,,(u) 

= H, + (cii + c’u)c:c;, + c( y + v,‘u)( c.f=c, + h.c.). (2.25) 

Here H, is the substrate electronic Hamiltonian, c and c* are the Fermi 
operators and u is the relative shift in any direction. Now the rules of the 
diagrammatic perturbation technique are formulated as follows [6.8]: the 
function iG(r), G(C) = (E - H,, - iO)- ‘, corresponds to the Fermionic line (in 
the diagrams of fig. 1 the Fermionic line is shown by a full line) and the factor 
_ iA, X = C’ or V,‘. corresponds to each vertex. 

Summing all the contributions from the diagram of fig. If with various 
indices (A, i) of Fermionic lines and summing over the electron spin, we 

obtain in the quasi-adiabatic approximation (A B w”) the following expres- 
sion for the rate of e-h decay [12]: 

Y = (2/Trn.)(B, +B,,). (2.26) 

B, = {~~~,(cF)[L’-((c,--~F)A’/A]}~, 

B,,=2~Ap,(e,){(A]~‘Im~(er)l/‘]A)/A-(A’/2A)2}, 

where P,(E) = 6’Im(A 1 G(C) ( A) is the local density of adatom electronic 
states. To simplify the notation we have used the matrix symbols: 

V= {K}, V’= {K’}. g= {g,,}, 

g,,=(iIg(c)( j), g(c)=(c-HH,-iO)ml. (2.27) 

As an example we consider the case of B-type (bridge-bonded) adsorption 
(see fig. 2). Let us suppose that the adatom interacts with the nearest surface 
atoms 1 and 2 only, and that the dependence of the parameter V, on the 
distance r between the adatom and the surface atom has the form 

V,(U)= Vexp[-(r-ra)/Fa]. (2.28) 

where Fa = ra, and ra = [ d2 + (a/2) ] 2 ‘I2 is the equilibrium distance (see fig. 2). 

Fig. 2. B-type adsorption. A-adatom. I and 2-substrate atoms 
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For the perpendicular adatom vibrations it follows from eq. (2.26) (for details 

see ref. [12]) that 

y1 = w,4m( 6n)2 = w,4m( e*r&$, (2.29) 

where Ye = d is the distance from the adparticle to the surface and 6n is the 
fluctuation in the occupation number of the valence electron orbital 1 A), 

6n=r,[6’-2(C, - 4(Jvq &+(e,). (2.30) 

The value 6n is connected with the experimentally measured dynamical dipole 
moment PO by the relation PO = e *r, = (&z)r,. For parallel adatom vibrations 
it follows that e’ = A’ = 0 and B, = 0 for reasons of symmetry. In this case we 
derive [12] from eqs. (2.26)-(2.28) 

YII = 4&,>A(VV2/% 

= (w,/2)dp,(E,)[(r,a)/(~~~,12, (2.31) 

where the value of A is determined by the electronic structure of the substrate: 

A = AP-(+)/P+(+), 

p*(e) = T.-i Im[g&) * g12(41. (2.32) 

For chemisorption systems the following relations are usually satisfied: 
e*<l, r, = 0.1 a.u. and r, = Fa = a = d = r, 1 1 a.u. It thus follows from eqs. 

(2.29) and (2.31) that for the e-h decay mechanism yI - y,, < lo-‘w,. In the 
interesting case of hydrogen adsorption the dynamical adatom charge is 
usually small (for example, e * = 0.053 for H-W and e * 2: 0.02 for H-Si 

adsystems; see ref. [12] and references therein); therefore in this case the decay 
rate for perpendicular vibrations is extremely small: yI < 10e3 wO. 

Thus, electron-hole decay is the main mechanism for the case of chemi- 
sorption on metals if w0 x=- w,. This mechanism is also efficient in the case of 
adsorption on semiconductor surfaces provided the density of surface electron 
states at the Fermi level, or, does not equal zero. The e-h mechanism has 
a simple isotopic effect: y C( m;‘. During the e-h decay process a single boson 
(e-h pair) is predominantly created, so that the temperature dependence of 
y(T) is negligible [12]. 

2.3. Plasmon (electromagnetic) decay 

When an adparticle dipole vibrates, an electromagnetic field is generated. 
This field penetrates into the substrate and creates quasiparticles such as 
surface plasmons, e-h pairs (so-called Landau damping) or optical phonons. 
The electromagnetic decay mechanism was discussed in a number of surveys 
(see refs. [2,3,13]). This mechanism can be efficient in cases when other 
damping mechanisms are ineffective, for example for physical adsorption of 



molecules with a high frequency of internal vibration ( wg S+ o,, ). The corre- 
sponding rate has a value y < 10P’w, (see ref. [2]). 

It is obvious that electromagnetic damping is the main mechanism in the 
resonance case when the vibrational frequency wg is close to an eigenfrequency 
of some substrate excitation 0,. For example, for a semimetal or semiconduc- 
tor with a static dielectric permeability E,,, the frequency of the surface 
plasmons is equal to 

0, = [4Vn/m*(~,, + l)]‘? (2.33) 

where n is the concentration and m * is the effective mass of the electrons or 
holes in the substrate. The value of n can be easily changed by heating the 

substrate or by laser pumping; thus the resonance case (w, = a,)) can be 
achieved. 

2.4. Interaction between local modes 

In addition to energy transfer into the substrate, energy exchange between 
various vibrational modes of the adlayer is also possible. Let us now discuss 
these processes. Firstly, two identical atoms, adsorbed at points r, and rl. 
always interact with some energy Uint(r,, r2). Different interaction mecha- 
nisms between adparticles such as direct, indirect, electrostatic (dipole-dipole) 
and elastic interactions were reviewed in ref. [14]. In the harmonic approxima- 
tion these interactions lead to a shift in the vibrational frequency given by 

and to a frequency splitting 

If the first adatom is excited and the second is not, the value 7 = y ’ defines 
the time of transfer of the excitation from the first adatom to the second. In 
the case of a regular adatom lattice y determines the dispersion of the local 
vibrations. In the case of a random structure of the adatom layer the values 6w 
and y determine the value of the inhomogeneous vibrational line broadening 
yX [3]. Estimates of y for some adsystems were given in refs. [3.8] and lead to 
the value y = 10 -‘wg. 

It is necessary to point out that in general the interaction U,,, includes a 
nonadiabatic contribution, which is caused by a delay in the response of the 
substrate to the moving adparticles. For example, for an electrostatic interac- 
tion the nonadiabatic contribution is large whenever the frequency C+ is close 
to the surface plasmon frequency w,. Moreover, the harmonic approximation 
used above is valid only for small displacements of the adatoms from their 



O.M. Braun / Energy exchange in adsorbed layers 345 

Fig. 3. Diagrams for the decay of local model A into another local mode B and the substrate 

phonon (a) or the e-h pair(b). 

equilibrium positions. For large adatom vibrations the nonlinear interaction 

between adatoms and the finite value of the height of the surface potential 
should be taken into account. As a consequence, spatially localized modes 
such as the bion mode of the sine-Gordon equation always exist (see, for 
example, ref. [15]). 

Finally, interaction between different modes exists even in the case of a 
single adatom, because the various vibrational modes of an adatom are always 
nonlinearly coupled due to the anharmonicity of the potential well. If this 
coupling is small the energy exchange between two modes can be described by 
the diagram of fig. 3a: the local model A decays into another local mode B 
and a substrate phonon. The substrate phonon takes away the difference of 

the mode energies, o,b = 1 cd, - tdb I. For this process the rate of energy 

exchange, y, is proportional to the local density of phonon states, ~~(a,~), 
hence the condition oab < w, must be satisfied. Such processes were consid- 
ered for S-Ni and 0-Ni adsystems by Ariyasu et al. [16] and for H-W 
adsystem by Braun [17,18]. In ref. [17] the case when the excess of energy, wab, 
is taken away by the substrate e-h pair (see diagram of fig. 3b) was also 
considered. Estimates [16-181 show that the rate y has the value y = 10e2w,. 

The processes of figs. 3a and 3b correspond to the decay of the local 
vibration into two bosons; therefore the value of y significantly depends on 
the substrate temperature T. If w, > wb, then it is easy to show from eqs. 
(2.20) and (2.21) that for the “down” decay process A + B 

Y(T)/Y(O) = 1 + dub) + +ab), (2.36) 

and for the “up” decay process B + A at T # 0 

r(T)/y(O) = v(~,L,) - v(+,>- (2.37) 

It is important to stress that for the case of energy exchange between local 
modes the vibrational excitation remains in the adlayer. 



3. Friction coefficient 

To describe the dynamics of an adsystem one often uses a trajectory 
approximation which treats the adparticle coordinate x.,( t ) as the coordinate 
of a classical particle. The force F. 

F= dp,,/dt = -i[ p,,. H] . 

p,, = m;,.r;,, = - im,[.Y.,, H] . (3.1) 

acts on the moving particle. The full force F can be divided into three parts: 

F=<,+I;l+F,. (3.2) 

Both the adiabatic force F, and the retarded force F, are due to the creation of 
virtual quasiparticles with some frequency o, in the substrate. The value of fi:, 
is calculated for the immobile adparticle located at the point x = x,( t ). The 
last two parts of the force F depend on the whole previous trajectory of the 
adparticle. The contribution F, is due to a delay in the response of the 
substrate to the moving particle. It is significant if w, < w;,, where w;, is some 
characteristic frequency of the motion of the adsystem (for example, o, can 
correspond to the frequency for which the correlation function, K(o) = 
/ dt exp(iwt)(f(t)i(O)), reaches its maximum). For adparticle motion (ex- 
cluding scattering processes) the contribution F, can be usually ignored. The 
last term in eq. (3.2) is the friction force F,, caused by the creation of real 
quasiparticles. For a small adparticle velocity U, (for example, c’, < Ak F:~,,,, for 
the e-h decay mechanism) the value of Ff is proportional to the velocity I’,. 

Thus the motion of an adparticle can be described by the Langevin 
equation 

m,X - (4,) + m;, 
/ 
oXd&)i(t-T)=SF(t), (3.3) 

where the fluctuation force 6F = F - (F) satisfies the fluctuation-dissipation 
theorem [6] 

(SF(T) SF(O)) = m,Tp( t). (3.4) 

Following the well-known work of d’Agliano et al. [19] the parameters of eq. 
(3.3) must be chosen in such a way that in the simplest cases the adsystem 
characteristics, calculated from eq. (3.3) and the full quantum-mechanical 
theory. would coincide. For example, for harmonic oscillations of an ad- 
particle with (FE,) = -ma&x we obtain from eq. (3.3) a Lorentz lineshape 
with the full width at half maximum 

(3s) 

Therefore the value p(oO) should be identified with the value y. which was 
calculated in section 2. However, it is important to note that the experimen- 
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tally measured linewidth r always exceeds the rate of energy exchange y (see 
ref. [3] and appendix A). 

As was shown by Grote and Hynes [20] the non-M~ko~an Langevin 
equation (3.3) leads usually to the same results as the Markovian one with the 
suitably chosen value of the friction coefficient, q = p( wa)_ A natural generali- 
zation of eq. (3.3), made in order to describe complex adparticle motion (such 
as diffusion), consists in using the coordinate-dependent friction coefficient 

rt(x>: 

m,K + m,n(x)a - (F.} = W(x, t), (3.6) 

(W(x, t) W(x, 0)) = 2m,Tn(x). (3.7) 

The parameter 17 introduced in such a way describes the rate of returning of 
the adsystem to the equilibrium state, whenever the displacement from the 
equilib~um state is small: 

JE- (E)I r(E) exp(-nf), (3 .g1 

where E is the energy of the adsystem. Correspondingly, the Langevin 
equation (3.6) describes dynamical processes near the equilibrium state such as 
vibrations or diffusion. However, for adsorption (sticking) or inelastic scatter- 
ing processes the described technique can lead to a large error. 

The regular procedure for calculating the effective friction tensor follows 
from eqs. (3.4) and (3.5): 

n&x) = (mJ’)-‘Re/ d”dt exp(iw,t)(W,(x, t) SFi(x, O)),. (3.9) 
0 

Here (. _. )* means that the average is taken over the substrate degrees of 
freedom for fixed position of the adparticle at the point x. The quantum 
generalization of expression (3.9) is given in appendix B. 

The friction coefficient introduced above coincides with the rate of energy 
exchange, y, which has been calculated in section 2. For example, for the e-h 
friction mechanism, from eq. (2.25) it follows 

SF= --c’c,*c, - c ~‘(c,*ci + h.c.). (3.10) 

By substituting eq. (3.10) into eqs. (B.4)-(B.6) one obtains ?J = y where y is 
determined by eq. (2.29) or (2.31) (see also ref. [21]). Following eq. (2.29), for 
perpendicular vibrations of the adparticle, the friction n,_ varies slowIy as the 
adparticle moves along the surface. However , the parallel friction coefficient, 
v ,, , depends significantly on x. Taking the potential (2.28) and the geometry 
shown in fig. 2, eq. (2.31) yields the relationship 

(3.11) 



For the phonon friction mechanism the fluctuation force is 

&F(~,. Us) = -a~+~,, K,)/au,, (3.12) 

where Y is the energy of interaction between the adparticle and the substrate. 
As the simplest approximation we can assume 

6F( u,) = V”(O)U,, (3.13) 

where V”(0) = m;,wi according to eq. (2.9). From eqs. (B.4) and (2.6) it 
follows that n = y. where y is equal to the rate of one-phonon energy 
exchange (2.11). Of course, in this approximation n = 0 whenever w, > w,,. 

If the interaction potential, V, can be described by the Morse potential 
(2.14) the transition 11) + 10) of the adparticle in the potential well occurs 
due to the fluctuation force, 6F( u,,) = r&O 1 V( u,, u,) 1 l), and expression (B.4) 
for the friction coefficient can be evaluated exactly [22]. In this case all the 
important multiphonon processes are taken into account. 

In the general case the correlation function, (u,(t)u,(O)), should be calcu- 
lated self-consistently in such a way that the correlation between the motion of 
the adparticle and the substrate atoms is included (see ref. [23]). Similarly, in 
the quantum case expression (3.12) should be substituted into eq. (B.5); thus 
the friction coefficient, 9, is expressed through the polarization operator, 
II( It is to be noted that the results of the self-consistent perturbation 
theory [8] differ from those of the non-self-consistent calculation [24,22] by the 
last factor in the expressions (2.16))(2.19). As shown by Wahnstriim [23], the 
phonon friction coefficient, 7 ,, (x), depends significantly on the position of the 
adparticle, X. 

Following eq. (2.13), the full friction coefficient can be divided into two 
parts. One part is the “external” friction n = y; it is described by the diagrams 

shown in figs. 1 and 3 and it is caused by energy exchange processes. The 
second part is the “internal” friction n, = yL; it is represented by the “dephas- 

ing” diagrams (see appendix A) and it is closely related to the chaotization of 
the adparticle motion (see next section). The value of qt is only significantly in 
the low friction case. 

4. Rate of dynamical processes 

Let us consider three typical examples of surface dynamical processes such 
as vibrations, dissociation and diffusion. They can be characterized by the 
following parameters: (a) the vibrations of an adatom or admolecule with 
frequency o. can be described by the full width at half maximum r: (b) the 
dissociation of an adsorbed molecule can be characterized by the rate R; for 
activated processes the rate R usually takes the Arrhenius form 

R = R,, exp( -cJT). (4.1) 
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where et, is the activation energy; (c) the diffusion of an adparticle in the 
surface periodic potential V(x) can be characterized by the diffusion coeffi- 

cient D; it usually has the form 

D = R12, (4.2) 

where I is the mean free path of the adparticles. 
In some cases it is convenient to use the Fokker-Planck-Kramers (FPK) 

equation for the distribution function f(t, x, p) of coordinate x and momen- 
tum p of an adparticle: 

which is equivalent to the Langevin equation (3.6). Following Kramers [l], any 
dynamical process can be described by a one-dimensional FPK equation, if 
the coordinate x corresponds to the line which connects the saddle point and 
the minimum of the potential energy surface along the line of steepest descent. 
In our three cases the solutions of the one-dimensional FPK equation lead to 
the following results: 

(a) Obviously, for a harmonic oscillator (V(x) a x2), r = TJ. As shown by 
Renz and Marchesoni [25], in the case of an anharmonic oscillator, r > n. 

(b) The rate of dissociation, or the escape rate from the potential well was 
first calculated by Kramers [l]: 

( 

net/T for n +C Q= (~~/2r)(T/e~), 

R,= @o/257 for 9e”v5~o, (4.4) 

w~/27r77 for n>wo. 

In the high friction case the reaction rate is limited by the diffusion of reagents 
in coordinate space. In the opposite case of low friction the reaction rate is 
limited by the diffusion in energy space (space of quantum numbers), because 
the distribution function is depleted (compared to the equilibrium function) by 
the particles with high energy. The result (4.4) was repeatedly verified in a 
number of works (see survey [26]). In the cases of adsorption of light atoms 
such as H, D or Li with v 5 10-2wo (see section 2) and eb = 0.25 eV (see ref. 
[27]) at room temperature, estimates give a value ne= 10-2wo; thus the regime 
of low friction can be acquired. 

(c) The diffusion coefficient is determined by eqs. (4.2), (4.1) and (4.4) 
where in the intermediate and high friction cases we must put I= a (a is a 
period of the surface potential). The low friction case when I > a is more 
complicated. Following Risken and Vollmer [28] the “self-diffusion” coeffi- 
cient in the equilibrium state is equal to 

(4.5) 



This result is in accordance with eqs. (4.2) and (4.4), if I = I, = V’ ‘a~/n. 
However, the “chemical-diffusion” coefficient, D,+,, = -.i/q, which relates 
the diffusion flux j and the gradient of adparticle concentration y. has 
opposite dependence on friction: Dchem a q (see appendix C). In this case the 

adsystem is in a nonequilibrium state and the values j and q are only caused 
by deviation of the distribution function from its equilibrium form. Therefore 
the mean free path of the adparticles is reduced, I < I,, due to the depletion of 
the distribution function by the high-energy particles [29]. 

It is obvious that for the adparticle motion we always have N degrees of 
freedom (N > 3) which are coupled due to the anharmonicity of the adsorp- 
tion potential well. When the rate of energy exchange y between the substrate 
and adlayer (adatom, admolecule) is large, y > yex, the energy exchange 
between adlayer modes proceeds through the substrate, and inclusion of other 
(N - 1) degrees of freedom leads only to a small correction to expression (4.4) 
for the reaction rate: R + RA, where A = 1 is the so-called entropy factor (see 
ref. [26]). However, in the case of low friction when the value of y is lower 
than the rate y,, of energy exchange between adlayer modes (following section 

2.4, yc\ - 10P2w,) the nonlinear interaction between the modes becomes 
significant and leads to stochastization of the motion of the adparticle. We 
now discuss this case for our three typical processes separately. 

4.1. Vihrutions 

The interaction between modes leads to dephasing broadening, y,. of the 
vibrational line. For example, the coupling of two modes (one perpendicular 

and one parallel to the surface) can be described by the Hamiltonian 

H = :m,( tit +i(; +o:u: +,;,u;) + H,,,,. (4.6 

where for symmetry reasons (see fig. 2) 

H,,, a ~1 uf . (4.7 

The model (4.6) (4.7) belongs to the well-known Henon-Heiles type model 
[30]. On increasing the vibrational energy the adatom motion becomes stochas- 

tic and the nearest trajectories of motion in phase space become exponentially 
divergent with a rate which is equal to the so-called Kolmogorov-Sinai (KS) 
entropy h [30]. Therefore the time correlation function decays exponentially: 

(u(t)u(O)) a exp( -y,t/2), with yt a h. (4.8) 

The dependence (4.8) in conjunction with eq. (2.1) leads to the linewidth 
broadening (A.l). A numerical estimate [18] for the H-W adsystem gives the 
value yt = 10P2w0. Calculation of y, by the diagrammatic perturbation tech- 
nique is presented in appendix A. 
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4.2. Dissociation 

As shown by Berne and co-workers [31], the escape rate in the low friction 
case is equal to 

(4.9) 

Here D is that part of phase space (from the whole available phase space) 
where the motion of the adsystem is chaotic. 

4.3. Diffusion 

The motion of the adparticle from one minimum of the potential energy to 
the next nearest one through the saddle point is the motion along the 
separatrix. Because of perturbations from other degrees of freedom the sep- 
aratrix motion is always stochastic and has diffusion character even in the case 
n + 0 [30]. Therefore as n --* 0, the mean free path, I, tends to some finite 
value I,, which is determined by the KS-entropy h. In this case eqs. (4.2) and 
(4.9) yield the relationship 

(4.10) 

It should be noted that for a curved trajectory of the adparticle the relation- 
ship D a q was first predicted by Zhdanov [32]. 

5. Conclusion 

In principle, the energy exchange mechanisms in the adlayer and in the 
bulk of a crystal are identical. The difference between the surface and bulk 
cases consists in fact that in the surface case the translation symmetry in the 
direction perpendicular to the surface is broken. This leads to the appearance 
of specific surface mechanisms such as high anharmonicity for phonon damp- 
ing, charge-transfer processes for electron-hole damping, Landau creation of 
e-h pairs for electromagnetic damping mechanisms, and to the appearance of 
specific surface quasiparticles such as surface plasmons or electrons in surface 

states. 
In the present work the rate of various decay mechanisms of vibrational 

excitation has been estimated. It was shown that in some cases the rate of 
energy exchange y between the adlayer and the substrate is small. Namely, 
this situation takes place in the case of high adparticle vibration frequency 



(i.e., vibrations of a light adatom or the internal vibration of an admolecule) 
and small overlapping of electronic orbitals of the adparticle and substrate 
(i.e., the case of physical adsorption or chemisorption on a semiconductor 
surface with ~~(6~) = 0). In this regime the effect of stochastization plays a 
significant role and the rate of surface dynamical process R is proportional to 
the friction coefficient 9. Of course, in these cases the rate R is sensitive to 
surface phase transitions and reconstructions. 

In the case of slow energy exchange between the adlayer and substrate the 
adsystem is extremely sensitive to external effects. Irradiation of the surface by 
infrared light, by low energy electrons or by field emitted electrons will cause a 
transition of the adlayer to a nonequilib~um state. In this state stimulated 
surface processes such as desorption, diffusion, ordering and disordering can 

occur; and the rate of these processes can essentially exceed the equilibrium 
rate. 

The energy of external excitation can be divided into two parts. One part is 
smoothed out between the adparticles (i.e., it is “chaotic” or “ termalized”). 
This energy heats up the adlayer to some effective temperature r&r > T. 
Therefore the rate of surface dynamical processes is increased and becomes 
independent of the substrate temperature T. In ref. [33] it was supposed that 
the absence of temperature dependence of the diffusion coefficient at low 
temperatures Ts 130 K for the H-W(llO) adsystem. which was observed by 
DiFoggio and Gomer 1341, can be explained in such a way. Similarly, the 
experimentally observed [35f ordering of the hydrogen layer adsorbed on the 
Mo{llO) surface, when the adsystem is irradiated by a low energy electron 
beam, can be explained. 

If the excitation happens locally in space, than the excitation energy 
remains localized during some short time 7 = y-l. Moreover, a part of the 

excitation energy remains localized on the spatially local modes (such as bion 
mode, see ref. [15]) for a sufficiently long time. These excitations can lead to 
nonequilibrium transitions of adparticles from one adsite to the nearest 
unoccupied adsite; therefore defects can be created in an initially ordered 
adlayer. This process is similar to the well-known generation of defects in 
solids when they are exposed to external radiation.In this way the experimen- 
tally observed [35] electronically stimulated disordering process in H-Mo(ll0) 
and H-W(l10) adsystems can be explained. Obviously, the rate of these 
stimulated processes should be proportional to the intensity of the irradiation 
beam, if saturation effects were absent. 
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Appendix A: Dephasing broadening of the vibrations line 

The experimentally measured linewidth r can be divided into three parts 

131: 

r=Y+Yx+Yt. (Al) 

Here y is caused by energy exchange (see section 2). The inhomogeneous 
broadening, y,, is a result of the spatial chaos of the adsystem caused by 
defects (vacancies, steps, impurity atoms) of the crystal surface or adlayer. 
Finally, the effect of dephasing broadening, yt, is caused by the temporal 
chaos of the adsystem motion 

To calculate yt the diagra~atic perturbation technique is practicable. For 
example, the “self-action” diagram of fig. 4 describes the “elastic” scattering 
of quasiparticle X by the local vibrational mode A and leads to the following 
contribution to the polarization operator: 

Im 817(wO) =A$bf;(dw/r) Im Qx(w) Im Q,(w)A(w; T), 

h=[_‘(dw/r) Im Q,(w)=&, 

64.2) 

where 

and 

A(w; T)=v(w)[v(w)+l]. 

If the quasiparticle X corresponds to a substrate phonon, then the rules of 
section 2 lead to the result (see also ref. [24]): 

Yt =A(T?w,( z)‘( g2( $)2, (A.3) 

where A(T) = (T/w,)~. This estimate shows that “phonon” dephasing is not 
effective. However, the coupling of high-frequency mode A with the low- 
frequency mode B of the same adparticle is more effective. In this case 
Qx(w) = r&(, - wi, - ir,)-r near w = wb, and integration procedure (A.2) 

A; wa 

Fig. 4. Diagram for the dephasing process: elastic scattering of the local vibration A by a 
quasiparticle X. 



leads to the factor r,‘. The corresponding contribution to the linewidth is 

given by the expression 

yt = 2A(o h: T)( x4r&g?h)2/rh 

= 2A(w ,,; j”)( 6@,,)‘/&,. (A.4) 

where SW,,, is the shift in frequency of the A-mode when the B-mode is 
excited. Here A(o,; T) = exp( -wJT) at low temperatures. and A( oh;T) = 
( T/cab)2 at high temperatures. It should be pointed out that the density matrix 
method (see ref. [36]) leads to the same results. 

If perturbation theory is used, chaos is introduced artificially when the 
averaging procedure is done. It is interesting to note that, contrary to the exact 

results (see ref. [18] and section 4), the third-order nonlinearity (4.7) in this 
case is not effective. Therefore, in order to obtain the correct value of yt an 
exact solution of the cluster motion equations must be made as has been done 
by Tully et al. [37]. The dephasing effect can be viewed as the process of 
changing the vibrational phase due to elastic scattering of the vibrations by 
another degree of freedom, or as the effect of fluctuations in the vibrational 
frequency [3]; both the events occur at random time. 

Appendix B: Calculation of the friction coefficient 

Of course, in quantum theory the friction coefficient can only be introduced 
phenomenologically. One way used by Volokitin [38] consists in calculating 
the full force (3.1) and extracting the term proportional to the velocity of the 
adparticle. We will use another method of d’Agliano et al. [19] based on linear 
response theory. Let us suppose that an adparticle moves along the trajectory 
x(t) and is subjected to a fluctuation force 6F. This action can be described 
by the operator 

fiint = -x(l)SP. (B.1) 

We introduce the generalized susceptibility according to the definition 

(GF(t))=~~d7P(i)l(f-T). (B.2) 

The imaginary part of the Fourier transformation of the function ,8( t ) is equal 
to (see ref. [6]) 

Im p(o) =: tanh(o/2T)/ +%dt exp(iwt)(8p(O)8p(t) + h.c.),. (B.3) 
pm 

If the adparticle vibrates near the point x with some amplitude x’;, and 
frequency o,, x(t) = x + x,sin(o,t), then it loses its energy with the rate 
(Z?) = :w;,xi Im p( aa). The total energy of the harmonic vibrations is equal 
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to (E) = :m&l,2x,2. Following eq. (3.8) we now introduce the friction coeffi- 
cient with the help of the relation 17 = (g)/(E). Thus, the desired expression 

is: 

exp(iw,t)(SP(O)GP(t) + h.c.),. (B.4) 

In the classical case (TX- 0,) eq. (B.4) reduces to eq. (3.9). 
In the trajectory approximation the symbol 

(.-.),=Sp[exp(-H,/T)...l/Sp[exp(-H,/T)] 

means the average over the independent motion of the substrate atoms. 
Generalization of the trajectory approximation uses the fact that the motion of 

the substrate atoms is correlated with the adparticle motion: 

(...)s~(...>cf,s=Sp[exp(-~/~)...l/Sp[exp(-~/T)I. 
Then the friction coefficient, 7, can be related to the causal Green function: 

77 = -(maw,)-‘tanh(tiJ2T) Im o(w,; T), (B.5) 

Q(t; T) = -i(T%~(t)8#(0)). 

Of course, in this case n depends on the whole previous trajectory of the 
adparticle and therefore must be calculated self-consistently. We recall (see 
ref. [6]) that for a system of noninteracting Bose-particles (phonons or e-h 

pairs) 

tanh( w/2T ) Im 0 ( w; T) = Im o(w; 0). (B.6) 

Appendix C: “Chemical” diffusion in a one-dimensional periodic potential 

In order to solve the one-dimensional FPK equation (4.3) we will use the 

fact that this equation has on exact stationary (but nonequilibrium) solution 
for the harmonic potential U(x) = + +mw’x’ (see ref. [l]): 

f,(x, P)=exp[-(p*/2mT)-U(x)/T][C,-C* Kecp,(x, P)], (G.1) 

where C, and C, are arbitrary constants, 

‘p*(x, P)=&(P~*-xs~,‘), 

s = ~*/277T, 

c&(w) = &(4mT)-‘[l - (1 $4w2/q2)*‘*], 

and 

4+(z) = (2/G)k’dz exp(+t*) 
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are error 
particles 

P*(X) = 
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functions. The distribution function (C.l) leads to the density of 

/+“dpf,b> P> 

= (27rmT) “lexp[ - U( x)/T] [c, - c,+ t (xq/m)] , (C.2) 

and to the constant flux of particles 

.iZ 
Em--’ 

/ +%vfdx, P) 
-CC 

= C,(4mT271/~) Re a’,. (C.3) 

At 9 < 20, LX+ and the function cp+(x, p) become complex. In this case due to 
linearity of the FPK equation we will take the real part of the solution only. 

Now let us construct the periodic potential V(x) by periodic repetition of 
the following function, determined in the interval ( -x0? a - x,,): 

V(x) = /Q - mw2,x2/2 for 1x1 6x,, 

\(mwi/2)(x-n/2)’ for x,<x<a-x,, 
(C.4) 

where 

w, = (4/u)( E&)“2 

The resulting periodic potential has period u and height eh (see fig. 5). In the 
intervals, where the potential V(x) is harmonic, the solution of the FPK 
equation has the form (C.l) with the corresponding values of o = w, or w,,. 

Joining the solutions (C.l) at the points x = +x, + na, n = 0, + 1, in 
such a way that the density (C.2) and flux (C.3) of particles are continuous, we 
obtain the exact stationary solution of the FPK equation. It is characterized by 

r-\,‘\i 
x, 0.5 1.0 x 1.5 

Fig. 5. Surface potential (C.4). 
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the constant flux j and the mean gradient of the concentration of particles, 
which is determined by 

By introducing the diffusion coefficient according to the relation j = - Dq, 
the following relationship of the diffusion and friction coefficients is obtained: 

D= (u2~~/2~)~(~) exp(-et/T), (C.6) 

where 

B(n) = w,K,K/~L,L~, 

K, = 4mT Re a:(~,), 

K_ = 4mT&(w,); 

L, =++ exp(-%/T)#+(#- + +,@-(yl)K+r 

L, = a, exp(-~,/T)++(y,) + wL(Y~Y~)~ 

r1=&G7E Yz=&?X 

L, = (rnW,2/2)(./2 - XJ. 

At low temperatures, T-=x (cc, eb - cc), from eq. (C.6) it follows: 

for rlKnc, 
for nc en * w,; 

for n*w,, 

where 

qc = 2w,(T/re,)“2exp[ -(et, -e,)/T]. 

At high temperatures, T B cb, eq. (C.6) leads to 

Dz (vT,‘2m~,2)[~‘(~-2x,)] for n-=%,, @b, 

i T/W for n z+ @,, @b. 
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