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studied within the earthquakelike model, and the conditions when stick-slip appears are determined.

PACS numbers: 81.40.Pq; 46.55.+d; 61.72.Hh

Introduction. The regime of motion of the frictional
interface—stick-slip or smooth sliding—is a rather old
but very important problem in tribology [1, 2]. In some
situations (for example, for violin playing) stick-slip is a
desirable regime, but in majority of cases (e.g., for wind-
shield wiper, car engine operation, earthquakes, etc.) the
stick-slip has to be avoided or suppressed at least. These
two regimes, the stick-slip and smooth sliding, and the
transitions between them are traditionally described by
a phenomenological theory based on the “velocity weak-
ening” assumption [1, 2]: if the friction force decreases
when the sliding velocity grows, the motion may become
unstable and could switch to stick-slip, either periodic
or irregular (intermitted) motion. The theory predicts
that generally stick-slip emerges for a soft system and
low driving velocities. However, a general physical the-
ory of this problem is still lacking.

In the present work we consider a multicontact inter-
face (MCI), when the contact between two surfaces is due
to many “frictional” contacts (asperities, bridges, etc.)—
a rather general situation in tribology. The MCI may be
described by an earthquakelike (EQ) model (based on the
famous spring-and-block Burridge and Knopoff model [3]
and adopted to the frictional interface, e.g., in Refs. [4–
6]), which allows an analytical description using the mas-
ter equation (ME) approach [7, 8]. The stick-slip motion
in the MCI may appear, if and only if two ingredients
are incorporated into the model: the elastic instability of
the system and ageing of the contacts [9, 10]. The aim
of the present work is to find the conditions when the
stick-slip regime emerges in the multicontact interface.

EQ model and ME approach. The EQ model is
shown schematically in Fig. 1 (inset). The top block (the
slider) is coupled with the bottom block (the base; we as-
sume it to be rigid and fixed for the sake of simplicity) by
N frictional contacts. Each contact is characterized by a
shear force fi = kxi, where k is the contact stiffness and
xi is its strain, and by a threshold value fsi. The contact
stretches elastically so long as |fi| < fsi = kxsi, but be-
comes plastic and breaks when the threshold is exceeded.
When a contact breaks at |fi| = fsi, its stretching drops
to xi ∼ 0, and evolution continues from there, with a new

∗E-mail: obraun.gm@gmail.com; Web: http://www.iop.kiev.ua/

~obraun

X

F
c
 /
N

FIG. 1: (color online): Rigid motion of the slider: the total
force from contacts Fc as function of the slider displacement
X for two initial distributions ∆f0/fs = 0.01 and 0.3 and
two values of the threshold distribution ∆fs/fs = 0.1 and
0.3 (see legend). Solid curves describe solutions of the mas-
ter equation, dotted curves show results of simulation of the
earthquakelike model with N = 103 contacts; the latter fluc-
tuate with the amplitude ∝ N−1/2. Inset: the earthquakelike
model.

value for its successive breaking threshold assigned. The
contact thresholds are characterized by some distribution
Pc(x) which is determined by interface structure, e.g.,
by surface roughness. In what follows we assume that
the normalized probability distribution of values of the
stretching thresholds xsi at which contacts break, Pc(x),
has the Gaussian shape centered at x = xs = fs/k with
a dispersion ∆xs = ∆fs/k.

The EQ model, being a cellular automaton model, al-
lows a numerical study only. Rather than studying its
evolution by numerical simulation, it is possible to de-
scribe it analytically with the ME approach [7, 8]. To
describe the evolution of the system, we introduce the
distribution Q(x;X) of the contact stretchings xi when
the sliding block is at position X. Evolution of the sys-
tem is described by the integro-differential equation (the
master equation)

[
∂

∂X
+

∂

∂x
+ P (x)

]
Q(x;X) = R(x) Γ(X) , (1)
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FIG. 2: (color online): Elastic instability.

where

Γ(X) =

∫ ∞

−∞
dξ P (ξ)Q(ξ;X) (2)

and

P (x) = Pc(x)/Jc(x) , Jc(x) =

∫ ∞

x

dξ Pc(ξ) . (3)

Then, the total force experiences by the slider from the
interface is given by

Fc(X) = Nk

∫ ∞

−∞
dxxQ(x;X) . (4)

A typical dependence of the total force Fc from the
contacts on the slider displacement X is shown in Fig. 1.
Except the exotic case of delta-function distribution of
thresholds, the system always approaches the steady
state with the distribution Qs(x) in the limit X → ∞,
where the function Fc(X) takes the constant value Fk ≈
1
2Nfs. The value Fk corresponds to the kinetic friction
force, while the maximum of the Fc(X) dependence is
associated with the static friction force. We emphasize
that the shape of the function Fc(X) depends on the
initial distribution Qi(x) of the system: the strongest
initial oscillations of Fc(X) are achieved for the delta-
function initial distribution Qi(x) = δ(x), while in the
case of Qi(x) = Qs(x) the force is independent of X,
Fc(X) = Fk.

Elastic instability. Now let us consider a system
where the top block is driven with a velocity vd through
a spring of elastic constant K so that the driving force is
Fd = K(vdt−X); the role of spring may be played by the
elasticity of the slider itself, if the driving force is applied
to its top surface. For adiabatically slow driving, vd → 0,
if one starts from the relaxed state at t = 0, the increas-
ing driving force Fd has to be compensated by the force
Fc from the interface contacts, so that they grow together
at the beginning. However, when the slider displacement

X approaches the threshold value xs, the contacts start
to break (see the point marked by “1” in Fig. 2), the
growth of Fc becomes slower and then changes to de-
creasing as shown in Fig. 2. If the driving spring is stiff
enough, K > K∗, the driving force Fd will adjust itself to
the changed value of Fc. For a soft system, however, at
some point X∗ (marked by “2” in Fig. 2) the two forces
cannot compensate one another, an elastic instability oc-
curs, and the slider will undergo an accelerated motion
until the forces will compensate one another again.

An alternative explanation of the elastic instability
follows from the consideration of the effective poten-
tial energy of the system. The total force applied to
the bottom of the sliding block, which determines its
displacement X, is the sum of the applied force and
the friction force, Ftot(X) = K(vdt − X) − Fc(X). It
can be viewed as derived from the effective potential,
Ftot(X) = −dVeff(X)/dX, where

Veff(X) =
1

2
K(vdt−X)2 +

∫ X

0

dξ Fc(ξ) . (5)

The slider state at the position X is stable if

d2Veff(X)/dX2 = K + dFc(X)/dX > 0 (6)

and unstable otherwise. If we introduce the effective in-
terface stiffness

Keff(X) = −dFc(X)/dX , (7)

then the slider motion becomes unstable for displace-
ments X where Keff(X) > K. Thus, the critical stiffness
is defined by

K∗ = maxKeff(X) . (8)

If K > K∗, the system is stiff and does not undergo
elastic instability.

The critical value K∗ depends on two factors: on the
threshold distribution Pc(x) and on the initial distri-
bution Qi(x) = Q(x;X = 0); the maximum value of
K∗ is achieved for the delta-function initial distribution
Qi(x) = δ(x), while the minimal value—equal to zero—
for the stationary distribution Qi(x) = Qs(x). For the
Gaussian shape of the initial and threshold distributions,
the dependence of K∗ on the model parameters is shown
in Fig. 3; roughly it may be described by the formula

K∗ ≈ Nkfs/(∆fs +∆f0) , (9)

where ∆f0 = k∆x0 is the dispersion of the initial distri-
bution.

Dynamics. The elastic instability is the necessary
but not sufficient condition for stick-slip to emerge; the
second necessary condition is the ageing of contacts—an
increase of contact thresholds with their lifetime. Indeed,
if after breaking the newborn contacts obtain thresholds
from the same distribution Pc(x), then the dependence
Fc(X) will remain approximately unchanged despite the
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FIG. 3: (color online): The critical stiffness K∗ as function of
the threshold dispersion ∆fs for different values of the initial
state distribution ∆f0.

fact that the slider motion is accelerated in the interval
where Keff(X) > K∗ as demonstrated in Fig. 4a.
The simplest way to incorporate contact ageing is to

introduce a delay time τd, i.e., to assume that after
breaking the contact reappears after some time τd (thus,
for a lifetime shorter than τd the threshold is zero).
Within the ME approach, the delay effects may be in-
cluded as follows. Let N be the total number of con-
tacts, Nc be the number of attached (pinned) contacts,
Nf = N − Nc be the number of detached (sliding) con-

tacts, and v = Ẋ be the sliding velocity. The fraction of
contacts that detach per unit displacement of the slid-
ing block is Γ(X) =

∫
dxP (x;X)Q(x;X), i.e., when

the slider shifts by ∆X, the number of detached con-
tacts changes by NcΓ∆X, so that Nf = ΓvτdNc. Us-
ing Nc + Nf = N , we obtain Nc = N/(1 + Γvτd) and
Nf = NΓvτd/(1 + Γvτd). Introducing x̄ = 1/Γ and
v̄ = x̄/τd, we can write

Nc = N/(1 + v/v̄) . (10)

The pinned contacts produce the force Fc(X) defined
above by Eq. (4) (with Nc instead of N) by solution of
the master equation.
The slider motion is described by the equation

MẌ(t) +MηẊ(t) = K[vdt−X(t)]− Fc(X(t)) , (11)

where M is the slider mass and the coefficient η describes
the rate of energy dissipation (e.g., due to phonons emit-
ted inside the slider); the latter is responsible for de-
caying ringing oscillations at stick-slip and thus can be
found experimentally. Figure 4c shows that for a large
enough delay time τd > τ∗ the slider motion corresponds
to stick-slip provided K < K∗.
To find the critical delay time τ∗, let us consider the

slider trajectory just after the critical displacement X∗
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FIG. 4: (color online): (a) Dependence of the driving force Fd

(solid) and the slider velocity Ẋ (dotted curves, right axes)
on the slider displacement X for two values of the spring con-
stant: K/N = 5 (above the critical value K∗/N = 3.59) and
K/N = 2 (when the elastic instability occurs). (b) Depen-
dence of Fd on time for different values of the delay time
τd = 0, 0.09, 0.1 and 0.2 (see legend) for the spring constant
K/N = 5 and (c) K/N = 2. The parameters are the fol-
lowing: fs = 1, ∆fs = 0.1, ∆f0 = 0.01, k = 1, vd = 1,
M/N = 10−4 (so that Ω = (K/M)1/2 = 223.6 for K/N = 5
and Ω = 141.4 for K/N = 2), η = 200 ∼ Ω, and N = 104.
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FIG. 5: (color online): System dynamics at/after the elastic
instability for K/N = 2 and τd = ∞ (other parameters as in
Fig. 4).

(the point “2” in Fig. 2), when the elastic instability oc-
curs and the motion becomes unstable. The system dy-
namics is shown in Fig. 5. Before the instability, t < t∗,
the two forces, the driving force Fd and the force from
contacts Fc, approximately compensate one another, and
the slider moves with a constant velocity, Ẋ ≈ vd. After
t∗, however, the forces become unbalanced, the difference
Ftot = Fd − Fc grows with ∆t = t− t∗ (see Fig. 5a), and
the slider undergoes an accelerated motion with increas-
ing velocity (Fig. 5c). As was found in Ref. [10], for t > t∗
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FIG. 6: (color online): (a) The critical delay time τ∗ as func-
tion of the slider mass M at constant vd = 1, and (b) τ∗

as function of the driving velocity vd at fixed M = 10−4.
K/N = 2 and η = 0.3Ω; other parameters as in Fig. 4.

the slider position changes as

∆X(t) ≈ vd∆t

[
1 +

1

6
(Ω∆t)

2

]
, (12)

where Ω2 = K/M . When the delay time is nonzero, the
slider slips a distance ∆Xd = ∆X(τd) during τd. There-
fore, if ∆Xd & 0.5∆xs, then most of the contacts break
and reform with f ∼ 0 during the time τd, and the distri-
bution of stresses shrinks, Q(x; t∗+τd) → δ(x). Thus, the
next cycle begins with a narrow stress distribution, and
the elastic instability will occur again—that is stick-slip.
The critical delay time τ∗ may be estimated from

Eq. (12); for Ωτ∗ ≪ 1 this gives τ∗ ≈ ∆xs/vd, while for

Ωτ∗ ≫ 1 it leads to the relation τ∗ ≈ (6∆xsM/Kvd)
1/3

.
These relations agree well with the numerics (see Fig. 6)
which suggests the dependences τ∗(M) ≈ A1 + A2M

1/3

and τ∗(vd) ≈ A3v
−1
d + A4v

−1/3
d , where A1...4 are numer-

ical constants. Numerics shows also that τ∗ increases
with the damping coefficient η; τ∗ also depends on the
parameters ∆fs and ∆f0.
As follows from Fig. 6b, for a fixed nonzero value of

the delay time τd the system should undergo a transi-
tion from smooth sliding to stick-slip when the driving
velocity increases. Such transition is demonstrated in
Fig. 7a. The system exhibits hysteresis: when the driv-
ing velocity increases, the smooth to stick-slip transition
occurs at some velocity v1, while when vd decreases, the
stick-slip to smooth sliding transition occurs at a lower
velocity v′1. The hysteresis takes place because, as men-
tioned above, the criterion of the elastic instability to
occur, depends on the initial distribution for a given cy-
cle of stick-slip, which is different in the vd increasing
and decreasing processes. Thus, depending on the sys-
tem initial state and the model parameters, the motion
corresponds to either stick-slip or smooth sliding. These
regimes are stable, both correspond to regular motion, in
particular, the stick-slip motion is strictly periodic.
The simplest “delay time” variant of ageing predicts

the transition from smooth sliding to stick-slip with the
increase of the driving velocity, as indeed was observed
experimentally [11]. More traditional, however, is the
opposite scenario, when stick-slip is observed at low vd
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FIG. 7: (color online): The friction force as function of time,
when the driving velocity vd (thick red line, right axes) con-
tinuously increases/decreases with time. (a) Fixed value of
the delay time τd = 0.1. (b) Delay time takes random values
from Gaussian distribution with ⟨τd⟩ = 0.2 and ∆τd = 0.12.
Insets show the smooth to stick-slip transitions. K/N = 2,
M = 10−4 and η = 0.3Ω; other parameters as in Fig. 4.

and changes to smooth sliding when the driving velocity
increases [1, 2]. The EQ model does demonstrate such
a behavior, if we assume that the parameter τd takes
random values from some distribution Pτ (τd) with a dis-
persion ∆τd, as shown in Fig. 7b. Moreover, in this case
one may expect an irregular stick-slip as well [12–14].
This second transition occurs because the elastic insta-
bility disappears at large velocities—after slip phase at
the stick-slip event, the newborn contacts have the dis-
tribution with the dispersion ∆x ∝ vd∆τd which grows
with vd.

Ageing. In a more general approach one has to in-
clude ageing of the contacts [5]. Indeed, the threshold
value of contact after its reattachment should grow with
the time of stationary contact, e.g., because of plastic
deformations at the level of contacts or a slow formation
of chemical bonds.

Although we do not know the actual ageing mecha-
nism, one may assume that the evolution of newborn
thresholds can be represented as a stochastic process
described by the simplest stochastic equation dfsi =
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H(fsi) dt+Gdw with ⟨dw⟩ = 0 and ⟨dw dw⟩ = dt, where
H(f) and G are the so-called drift and stochastic forces
correspondingly [15]. Alternatively, this process is de-
scribed by the Langevin equation

dfsi(t)/dt = H(fsi) +Gξ(t) , (13)

where ξ(t) is the Gaussian random force, ⟨ξ(t)⟩ = 0 and
⟨ξ(t) ξ(t′)⟩ = δ(t − t′). The Langevin equation (13) is
equivalent to the Fokker-Planck equation (FPE) for the
distribution of thresholds Pc(fsi; t):

∂Pc

∂t
+

dH

dfsi
Pc +H

∂Pc

∂fsi
=

1

2
G2 ∂

2Pc

∂f2
si

. (14)

Following Ref. [16], let us assume that the drift force
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is given by the expression

H(f) = β2 (fs − f) , (15)

while the amplitude of the stochastic force is equal to

G = βδfs
√
2 , (16)

where δ ≡ ∆fs/fs and β defines the rate of age-
ing described by the timescale τβ = β−2. With
this choice, the stationary solution Pc0(f) of the FPE
corresponds to the Gaussian distribution Pc0(f) =
(2π)−1/2(δfs)

−1 exp
[
−1

2 (1− f/fs)
2/δ2

]
.

The ME approach described above should now be mod-
ified, because the distribution Pc(x) is not fixed but
evolve due to ageing of the contacts. Equation (14) de-
scribes how the distribution of the thresholds evolves un-
der the effect of ageing alone. This equation may be
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rewritten as

∂Pc

∂t
= β2L̂Pc , L̂ =

∂

∂ϕ

(
ϕ− 1 + δ2

∂

∂ϕ

)
, (17)

where ϕ = f/fs. However, because the contacts con-
tinuously break and form again when the slider moves,
this introduces two extra contributions in the equation
determining ∂Pc/∂t in addition to the pure aging effect
described by Eq. (17): a term P (x;X)Q(x;X) takes
into account the contacts that break, while their reap-
pearance with the threshold distribution Pci(x) [e.g.,
Pci(x) = δ(x)] gives rise to the second extra term in
the equation. Therefore, the full evolution of Pc(x;X) is
described by the equation

∂Pc(x;X)

∂X
− β2

v
L̂Pc(x;X) + P (x;X)Q(x;X)

= Pci(x) Γ(X) . (18)

In the result we come to the set of equations (1–3, 18).
If now one will drive the slider through an attached

spring, then the motion may correspond to either stick-
slip or smooth sliding depending on the rate β; the stick-
slip regime appears for the rates within some interval
β1 ≤ β ≤ β2, while for smaller or larger values of β the
motion is smooth (see Fig. 8).
Thus, when the driving velocity continuously increases,

the system should undergo two transitions, the smooth
to stick-slip transition at v1 and the stick-slip to smooth
sliding transition at v2; if then vd decreases, one again
observes two transitions at v′2 and v′1 (see Fig. 9). The
critical velocities v1 and v2 depend on the ageing rate β
as v1,2 ∝ β2 (Fig. 10). Both transitions may be explained
in the same way as above, if we remind that τβ ∼ τd: the
first transition at v1 occurs when τβ > τ∗ (provided the
instability criterion is satisfied), while the second transi-
tion at v2 takes place when the elastic instability disap-
pears (see Fig. 11).

Conclusion. We presented the detailed study of the
stick-slip behavior of the multicontact interface described
by the earthquakelike model. The stick-slip emerges be-
cause of two factors, both of which are the necessary
conditions. First, the driving spring must be soft enough
for the elastic instability to emerge. Second, it must be
ageing of the interface—the growth of the static thresh-
old with the lifetime of the stationary contact. The first
factor is controlled by the dispersion ∆xs of the distribu-
tion Pc(x) of the static thresholds. Therefore, using the
interface with a large value of ∆fs/fs, one may avoid the
elastic instability and thus stick-slip. Besides, the value
K∗ also depends on the distribution of stretchings in the
initial state—if one starts with the stationary distribu-
tion Qs(x), the system will stay in the smooth sliding
regime forever. Because of the second factor—the con-
tact ageing—the stick-slip exists only for the interval of
sliding velocities v1 < vd < v2; both boundary velocities
v1,2 depend on the ageing rate β as v1,2 ∝ β2. There-
fore, the stick-slip may also be avoided by an appropriate
choice of the operating velocities.

Contrary to the phenomenological approach widely
used in description of stick-slip behavior, our approach is
based on the model with well defined parameters which
may be measured experimentally and even calculated
from first principles. However, a weak point of our ap-
proach is that we do not know the actual ageing mech-
anism. Although it is quite hard to study this slow dy-
namics experimentally as well as with simulation, the
problem of interface ageing is very important not only
for tribology, but for other topics such as, e.g., seismol-
ogy [16].
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