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Diffusion in generalized lattice-gas models
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A technique has been developed to calculate the exact diffusion tensor for the lattice-gas model in the
low-concentration limit for any complex elementary cell. The analysis takes into account the detailed structure
of the elementary cell and the structure of the diffusion barrier. The technique is also applicable to non-
Markoff diffusion and, consequently, can include polaronic and inertia effects. The calculation reduces to
simple matrix-algebraic operations which may be carried out analytically in many cases. Applications to some
one- and two-dimensional models are described, including disordered systems and non-Markoff diffusion, in
structures with complex elementary ce[IS0163-18208)04346-X

I. INTRODUCTION _
> (z81+AL0g( 62 =a(tlloste),  (3)
II

Diffusion is a fundamental physical process which is of

significant practical importance in applications such as crysyhere the right-hand side of E¢3) incorporates the initial
tal growth, heterogeneous catalytic reactions, emission eleggpndition.

tronics, microelectronics, ete¢see, for example, Refs. 1,2, For a periodic array of sites, it is convenient also to per-
a.nd r_eferences there)irOne widely used approach to diffu- form the spatial Fourier transform@(k)=2|eXQik(l
sion is based on the lattice-gas model. This model assume_slo)] g(I:lo), where the wave vectdk is in the first Bril-

that atoms occupy fixed lattice sites and can undergo jum - . - i . .
to other vacant sites with some probability. When the syste?nl%UIn zone. Assuming the initial condition(l;tollo;to)

consists of only a single atom which undergoes a random 5”0’ Ed.(3) becomes
walk on the lattice a key variable of the model is the condi- ~ _
tional (joint) probability g(I;t|lo;to), which is the probabil- [z+A(K)]g(k;z)=1. 4
ity that an atom that was at the sitg at timet,, is at the
lattice sitel at a later timet. The standard approach to the  Equation(4) has a trivial solution which exhibits diffu-
diffusional problem assumes that the random walk of arsional motion, i.e., in the limit—co the mean-square atomic
atom corresponds to a Poisson-Markoff process, so that thdisplacement is proportional to time. In particular, in the
distributiong(l;t|lo;tg) obeys the master equatide.g., see simplest model where the atom can jump only to the nearest-
Refs. 3,4 neighboring sites with a rate, and all jump directions are
equivalent(i.e., the model is isotropj¢ the result is(r?)
d , =(x?+y?)=2vDt for t—c, wherev is the dimensionality
Eg(“t“o;to)zz [v:9075tlloito) = %,9(15tlloito)]  of the system. The diffusion coefficiem in this case is
! equal toD = qa?y, whereq= k/2v is the “geometrical” fac-
— _E Arrg(3tl1oito), (1) tor, a_ndK is the coordir_lation numbdthe nu_mber of neigh-
I ' bor sites allowed for a jumpThroughout this paper we will
i . N _only consider diffusion in one and two dimensions explicitly,
wherey,; . is the probability of the transitioh’ —1 per unit  often with surface diffusion in mind, but the techniques dis-
time, andA.;» = 8- Zrynyr = w0 is the transfer matrix. cyssed are equally applicable to three-dimensional systems.
The matrix Ay, should satisfy the constrairt Ay, =0, The above approach has been studied in detail by Kutner
which follows from the conservation of atoms. The jump and SosnowsKaand Kehret al.; see also the review articles
rates y;,» are usually related to the corresponding energyof Dieterichet al” and Haus and KeHtlt may be extended
barriers through the Arrhenius law. straightforwardly to describe anisotropic lattices and to in-
Because the dynamics of the lattice-gas model is purelgjude jumps to more distant neighbors. In addition the
relaxational, it is useful to take the Laplace transform withmethod has been generalized to describe non-Markoff
respect to time, processe$? where the probability of a jump depends on the
history of previous jumps.

— e This theory has assumed that the elementary cell of the
— zt
9(2)= JO dte “g(t), Re2)>0, @ lattice is primitive. Often, however, the lattice is character-
ized by a unit cell with several inequivalent sites. Although
so that Eq(1) reduces to there are some particular studies of models with complex
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unit cells>®8 there is no general solution to this problem. Il. TECHNIQUE
The aim of the present work is to develop a systematic and
practical method for evaluating the diffusion tensor for the
low-concentration limit of the lattice gas model for any com-  The sites in a periodic structure withsites per unit cell
plex unit cell. The approach of Bookout and Patfisyhich ~ may be labeled by two indicélsand «, wherel labels the
uses the mapping of a random-walk problem onto theelementary cell andv labels the different sites within the
imaginary-time Schidinger equation, is a possible approachcell, =1, ... s. In this case Eq(1) will have the index
but it seems to be more complicated than the method deeplaced by two indicesand «, so that the master equation
scribed below, and it does not allow a direct generalization tdor the joint probability takes the form
incorporate non-Markoff effects.

A quite direct method of obtaining the diffusion tensor for
Bravais lattices is to take the continuum limit of Ed) (see,
for example, Ref. 10 This leads to the diffusion equation

A. Non-Bravais lattice

J
59(|.a;t||o,ao;to)

with the diffusion tensor given by = [Yiwr o g1 @ t]lg, @0 to)
|"a a1,
1< = Yn,ar1,0 9(Last|lg, ag;to) 1. (7)
Dijzi §=:1 Ia,ila,j7a1 (5)

The limit t—o of the solution of Eq.(7) must be the
equilibrium distribution,
where the summation is over tkeallowed jumps and,, ; is
the i Cartesian component of the jump of lendth which lim g(I,oz;t|~--)=N|;tl Pas (8
occurs with frequency,. However, for complex unit cells 1o
the continuum limit of Eq(1) gives a set of coupled partial where p, is the average thermal population of the site
differential equations, rather than a single diffusion equationand the factoer—l (N, is the total number of unit cells in
because of the inequivalence of sites in a cell. It is not therethe systemis int%duc?ad for convenience.
fore possible simply to deduce the diffusion tensor in the In order to define the parameteys,.: .- in Eq. (7), we

same way as for the Bravais lattice case. associate with each site within the unit cell an enesgy

| Another useful agp_rozalgh to hdlﬁ;usmn Is to rewrite the 1, equilibrium occupation numbers should satisfy the Bolt-
ong-time equatio{x“)= 2Dt in the form zmann distribution

2D=-"t="F

() (AN
t N t

=a5f o 7). (6) po=2"texp(— Be,), Z=a§1 exp(—Bs,), (9

where B=1/kgT, T is the temperaturekg is Boltzmann’'s

wherea, is the mean distance between the sifésis the  constant, and the normalization fac®rcorrespondso one
total number of jumps of the atom in the tinig(y) is the particle per elementary cell

average jump rate, anid,,, is the correlation factor defined

asf o= (x?)/(Na3). For a system with a complex unit cell S

feor=1, and the equalityf.,,=1 only holds for a Bravais Z’l pa=1. (10
lattice. The average jump rate/) is straightforward to cal-

culate for a complex structure, but the correlation fadtgy; The simplestbut not uniqugway to satisfy the condition

is not. A calculation of the diffusion tensor, as described(8) is to explore the detailed balance conditi@ng., see Ref.
below, combined with a calculation of the average jump rate12) v, ..., .» pa'= Y o’ « Pa» Which leads to the following
provides a means of obtaining the correlation factor througftonstraint for possible values of the rate parameters:
Eq. (6).

The method developed here to find the diffusional tensor Vail',a' = Ve ila(Pal Par)
for a complex unit cell is based on the properties of the B _ 11
solution of an equation of the form of E¢d) in the smallk =V ari1,aXH B(E0r —€4) ] (11)

limit. The problem is reduced to a set of algebraic equationsQtherwise the parametets .. . are arbitrary; their values
which in many cases can be solved analytically, and in anwre determined by the activation energies of the transitions.
case may simply be solved with a computer. In addition, the The transfer matrix becomes
approach may easily be extended to study non-Markoff pro-
cesses as well as Langmuir-type lattice-gas models.

The paper is organized as follows. The technique is de- Al air,ar= G Saar |2 Wart o~ Nagtrar - (12)
scribed in Sec. Il. Then in Sec. Il it is applied to the one- "
dimensional lattice, where we obtain the exact result for any-rom the periodicity of the lattice it follows thaX, .,/ o/
lattice structure, including disorder. In Sec. IV we consider=A4|-y 4,0, @nd we may perform the Fourier transform
some applications to non-Markov processes, including thavith respect to the cell index to obtain
triangular lattice and the “split”(110) surface of the body
centered cubic crystal. Finally, Sec. V concludes the paper A (k)IE exik(1—1p) 1A . (13)
with a short discussion of the results. *%0 T "o’
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Gaiag(ks) =2 exiflik(I=lo)] g(1,a;tllo, @0:0). (19
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transfer matrix cannot be transformed to the Jordan ¥orm
The lowest eigenvalue will be denotad(k).
(c) The eigenvectou®(k) is a continuous function df

Taking the Laplace transform, with the initial condition that around the poink=0, and for small values df the eigen-

the atom was at the site, within the celll; att=0

g(':aio“oaaoio): 5”05&&01 (15)
we obtain the transformed rate equation
D (2600 + B (K1 (K2) = Buye (16)

B. Eigenvalue problem

To solve Eq.(16) it is convenient to introduce a new

matrix A(k) with elements

A ()= p M8 o (K) pl

a' !

17
so that Eq(16) takes the form

2 [Z 5&&’ +Aa;a'(k)] [p;'llfg_a’;ao(kvz) pi/:]: 5aa0'

’ (19
The matrix A(k) for eachk is the Hermitian squarsXxs
matrix,Aa;a,(k):AZ,;a(k).

The eigenvalues and eigenvectors/Affk) are the solu-
tions of

A(K) u(k)=r (k) u(k), (19

whereu(k)={u,(k)} is a vector withs components. Label-
ing the s eigenvalues by the index, Eq. (19 may be re-
written as

D Apa (UK = (k) U (k), o=1,...5s
: (20

Because the matrixA is Hermitian, the eigenvectons(”)
form a complete orthonormal basis

> WK T U (K)= 8, (21)

2 LU ()T Ul (K) = S (22
Using the eigenvectons’(k) and the eigenvalues,(k), the
solution of Eq.(18) can be expressed as

U () Lug ()¢

- _ 1/2 -1/2
ga;ao(kvz)_g pa Z+)\o.(k)

ag

. (23

which may be verified by direct substitution of E&3) into
Eq. (18).

It has been proved? that the eigenvalueks (k) satisfy
the following conditions.

(@ All A, (k)=0, and\ (k) is an even function ok.

(b) One, and only one, eigenvalae(k) is equal to zero

when the vectok is equal to zergassuming that the lattice
cannot be separated into independent sublattices, so that the

value\ ;(k) has the expansion

N 1(K)=Dyki+ 2Dy keky + Dy kZ,  k—0.  (24)

As shown below, the coefficien@--- in Eq. (24) are the
corresponding diffusion coefficients. Thus, the calculation of
diffusion coefficients reduces to evaluating the-0 expan-
sion of the lowest eigenvalue; (k).

The above theory has followed the work of Kutner and
Sosnowska and Kehr et al® The following analysis de-
scribes a method which allows the coefficiefts-- to be
found in general.

C. General solution

To solve Eq(19) for the lowest eigenvalue, let us rewrite
it in the form

A(K) v(k) =N 1(k) v(k), (25

wherev is an unnormalized eigenvector. Consider diffusion
along thex axis, i.e. putk,=0, and evaluate Eq25) in the
limit k,—0. The Taylor expansions &£ (k) andv(k) are

A(K)=Ag+ Aske+ 3 AKE, ke—0,k,=0, (26)
V(K)=Vo+Viket+ 3VokE,  ke—0,k,=0,  (27)
where
) . J
Ao=limA(k), A;=lim =—A(k),
k—0 ko Ky
(28)

az
Ar,=1lim — A(k).
2= lim ~Ak)

Substitution of Eqs(26), (27), and(24) into Eq. (25) yields

(Aot Arky+ 2 Ak2) (Vo+ vike+ 3 Vok2)

=Dk (Vo + Viky+ 3 VoK) (29
which is satisfied if
AoVo=0, (30
Agvqi+A1vy=0, (31
AgVo+2A1Vi+ Ayvg=2D,, V. (32

Multiplying both sides of Eq(32) on the left byvg, and
taking into account thalg Ay=0 according to Eq(30) and
that the matrixAy is Hermitian, we get

Dyx= Vg (AqVi+ 3 ApVo)/ (Vg Vo). (33
The normalized vectov, is
(Vo)a=pa", (34)
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since it satisfies the normalization condition and Ef)): (xz(t)):ZDt as t—oo. (39

12 Equating the right-hand sides of Eq88) and(39) and tak-
AOVOZZ Ao (0) ps ing the Laplace transforms, we get
_ 2D 9 —
“Pa 1/22 E Yir—1,a";0,a Pa _2: —lim 2 z ga;a’(k;z) Pa’
AT A k—0 d x a,a’

_p;uzz El Y100 Pa=0, z—0. (40)

where we have used Eq47), (13), (11), and(12). Substituting the expressid@3) for g into the right-hand side

of Eq. (40) and taking into account Eq24), the normaliza-

The vectorv; can be found by solving Eq31
! y g Ed3D) tion (10), and also the equation

AgVi=—Aq Vg, (39
. e lim U (k) =vo={p¥3, (41)
which is a set oE linear equations for the componentsvef k—0
If v4 is a solution of Eq(35) thenv,+cvy, wherec is an , L
arbitrary constant, will also be a solution due to Eg0).  We finally obtainD=Dy,. _ o
Consequently, one component of the veatgrfor example To find the diffusion coefficient in an arbitrary direction,
(v1);, may be chosen arbitrarily. This choice does not effectV® N€ed to use the complete expansions instead of the ex-

D, because in Eq(33) pansions(26) and (27):
=~ X y 1 AXX[2 Xy 1 AYY L2
VIA Vo= lim % S p2AL (k) P2 A(K)= Ao+ Akt AL ky+ 5 AFKE+AS Kk + 3 AP,
e k—0, (42
=—j |2y |x2>0 |X(E’ ylx,|y,a;0,a’pa’ V(k)zVO‘FVi kx_l_vg ky+ %Véxki‘l'v)z(ykx ky+ %V%yk§,
k-0, (43

- 2’ 70,0(’;—|X,|y,apa) :01 Xy_1; 5
aa where Ay’ =limy_,o9°A(k)/dkydk, , etc.

where we have also used Eq7), (13), (12), and(11). Instead of Egs(30) to (32) we now get the equations

Thus, the problem reduces to the calculation of the matri- AnVa=0 (44)
cesAy, A4, andA, defined by Eqs(28), the solution of the oro ™
system of 6—1) linearly independent equatiori85), and AaVi= — AXy
finally the calculation oD,y as ot e 45

Y— _AY
D= VE Ay + 2 VE ALV, (36) AgVvi=—AlVg,
and
D. Diffusion coefficient 1

It remains to prove thab,, in Eq. (36) is indeed the §A§Xv0+A’1( Vit §A0V)2(X= Dxx Vo,
diffusion coefficient along thex axis. To prove this, recall
that according to the initial conditiofil5), the expression AP Vo + ALV ASV + AgVE=2D Vo, (46)

Ewog(l,oz;tﬂo,czo;O)pa0 is equal to the probability that

the atom at the origin in the cdlf att=0, where it occupies 1 1

the sites a=1,...s with probabilities p, so that EAﬁyVoﬁLAB{V{ﬂL §A0V¥y= Dyy Vo.

Za’aog(l,a;OHO,ao;O):5”0, will be found in any of the

sites in the cell at a later timet. Consequently, the mean- Multiplying Egs. (46) by v{ from the left, using the fact that

square displacement along tkexis is equal to Ay is Hermitian so thaw{ A,=0, and taking into account
the normalization, we obtain

OE0)=20 2 (1-lozg(,aitllo,a’;0) par . (37 1
aa'’ DXXZEVS A)Z(XVO+V3 A):I(. V):{v
Using Eq.(14), this may be rewritten as

1
92 - gAY *AY Y
(x3(t)y=—lim % E Jara' (Kit) pgr - (39) Dyy 2V0 A VotV A vy, (47)
k—0 x a,a’
On the other hand, according to the definition of the diffu- 1
sion coefficient, ° Dyy=5Vo A2'Vot+ 5 (Vg ATVi+Vg ATvY).
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y 1 memory index could take two values;=*1, where the
____________ ! valuem;= —1 corresponds to the atom arriving at gifeom

1A the left-hand side, andh;=+1 corresponds to arrival from

! X! the right-hand side. Thus, in the non-Markoff case the tran-
a-8 : sition rates depend on three indidesx andm. Contrary to

: the Markoff case, a proper choice of the valugs,: m:1 o.m

! — cannot now be guaranteed by the detailed balance condition
0 X because this condition is not necessarily satisfied for a non-
Markoff process. In the non-Markoff case it is necessary to
find the stationary solutiogq(a,m) of the master equation

FIG. 1. Calculation of the anisotropic diffusion coefficient.

Consider the atomic displacement along #iedirection,
which is at an angl® to thex axis. From Fig. 1 it follows > Yiami,a’m Jeql@’,m")
thatx’ =r cos(@—6#)=xcos9+y sind, so that the mean-square I a"m'
displacement along the’ direction is equal to
=Gedm) 2 Warmiem (6D

(rpy=(x)? i’
=<x2> cos’-0+<y2> sin20+2<xy> sin 6 cos 6 and to test whether this solution satisfies the Boltzmann dis-
tribution
(92 072
=—lim{ | cog6—; +sirfo—;
kﬁo‘ ﬂki 19k)2/ ; geq(avm) = NI;tlpa . (52
+2 sin6 cos o 99 2 Uu o (Kit) P Another problem in the non-Markoff case is that the ma-
Ik Ky | 5o trix A(k) is not Hermitian. This situation is analogous to that
49) for the Fokker-Planck equation, where the Smoluchowsky
equation corresponds to the Markoff case, while a more gen-
_ eral Fokker-Planck-Kramers equation, which takes into ac-
=2D(0)t ast—ee. (49) count inertia effects, corresponds to the non-Markoff ¢dse.
Repeating the procedure described above, we obtain the ahtowever, the technique described above was based on two
isotropic diffusion coefficient in the form requirements: first, on the completeness of the base of eigen-
vectors of the matrixAy which is satisfied provided\, is
D(6)=D,,cos 0+ Dyysin20+ D,y sin 260 Hermitian at least in the limik—0, and second, on the
second order expansig24) which follows from the law of
= 3 V§[AScog 0+ AYsirt o+ A%sin 260]v, conservation of atoms. If both these factors are satisfied for a
N non-Markoff process, the technique can still be applied to
+Vg [Alvicos o+ Ajv] sir’o find the diffusion tensor.
+ (AJVi+ Alv))sin 6 cos 6]. (50

Ill. ONE-DIMENSIONAL LATTICE

E. Jumps with a memory As examples of applications, we begin with a one-
dimensional Markoff model with nearest neighbor jumps.
Crhe sites may be enumerated in increasing order by an index
non-Markoff processege.g., see Ref. 9 and the survey of .

i, and the atom can jump to the left-hand and right-hand sites
Haus and Keh?,and references ther@imamely, to random

with the ratesy;—,.;. The elementary cell of the lattice has

walks for which the memory is not lost after each step, burIattice constant and consists 08 sites enumerated by the

only after a finite number of steps. o . o
indexa (=1, ... s) with site energiez,. The site index
There are at least two reasons for such a generalization, 4
i may be ertten ad =Is+a, wherel enumerates the el-

(@ Inertia effect After a jump, the inertia of an atom
results in persistent motion in the same direction. Thereforeementary cells. It is convenient to define the rajgs, as

the probability of a jump in the same directiof;, may -

exceed the probabilities of backward and sideways jumps. Yazla= Nazila I @=23,...5-1,
(b) Polaronic effect Just after an atomic jump, the sur- _
rounding substrate atoms do not immediately adjust to the Y1:s=Vi+11d.s (53

new position of the atom. As a result, the energy of the atom
in the new site will exceed the energy which it had in the old
site before the jump. This may result in the probability of the
backward jump,y,, exceeding the probabilities of the for- and it is assumed that they satisfy the detailed balance con-

Ys1=Yi-151,1

ward and sideways jumps. dition (11). It is also convenient to assume that the indeis
To generalize the above technique to include memory efeyclic, so that the valuee=s+1 is equivalent tax=1, and
fects, we introduce a “memory” indexn; for each sitej. a=0toa=s.

For example, in the case of the one-dimensional lattice, the Applying the theory of Sec. Il gives
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barrier is equal to the difference between the saddle energy

5Vo AgVo=a%y1,ps, (54 &*,,, and the well energy,. Writing the activation en-
ergy as
(Av1)1= (A1) 1 Ws= —a%y1.5ps\Z exp(Be1/2), Sustia={Eas1a)+ %y 10— B, 63)
(AVq),=0, a=2,...5-1, (55) whereée},, , , is the saddle energy relative to its mean and
dg, is the well energy relative to its mean, the correlation
(AVi)s=(Ap)s.aWs = +a2TZ exp(Bey2), factor (62) may be rewritten as

Fl=(exp—B de,)) (exp( B S, 1.,))- (64)

In this formulation the frequencyy, in D; is
where 1I' is the residence time averaged over all sites Toexp(—B(eqti14)), Which is the jump rate for the mean
activation energy barrier.

> 1 If the fluctuations of the well energies are Gaussian so
2 —=—. 57 that

VS Alvl:az[_;’l;sps"_r]- (56)

1
F a=1 pa7a+l;a

The diffusion coefficient36) is therefore Prob(8e,) = \/_ex;{ _ ( sa)z
D=aZl. (59) oe 2w 2(d¢)

_ _ where de is the dispersion, and the saddle energies fluctuate
The result(58), (57) has been obtained previously by in the same manner but with the dispersigst, then
Kehr et al® (see also Refs. 13 and &r a simpler valley

, (65)

model for which all barriers have the same height. The same —poen_ | d(s
result has also been obtained for the general case recently (e )= e (),
using a different techniquésee Ref. 18, and references (66)
therein but the present method is simpler and more general. 1
The result(57) enables the calculation of the correlation Prob( de ,) e‘ﬁ‘%a:ex;{z(ﬁ 8e)?|,

factor f ., for this one-dimensional model. Using the defini-
tion of f ., the general expression for the diffusion coeffi- and, consequently,
cient given above, and calculating the average jump rate as 1
s F=exp[—§,82[(5s)2+(5s*)2]]<1. (67)
(n Zl Pal Vet tiat Y10, 69 In particular, if we putde~ de* ~kgT, we obtainF~e ™,
, so that thermal fluctuations in the shape of the potential
it follows that lower the diffusion coefficient by a factor efin the case of
the one-dimensional model. Madt all’ have shown that
iz + Egs.(61) to (62) are also true for a two-dimensional valley
25:=1 PalYariat Va-1:a) | model for which all the barriers have the same energy but the
(60) well energies are random.

S

iy

Sa=1 paya+1;a

S

taking into account thaé,=a/s.
. . . IV. NON-MARKOFF JUMPS
The expressiong58) and (57) for the one-dimensional
model may be rewritten in the form A. Bravais one-dimensional lattice

In order to include a memory of one previous step into the
theory, we associate with each site an indgex =1 such

whereDf=a§y0, a is the mean distance between sitgg, thatm= —1 for an atom arriving at a site from the left-hand

is some average transition rate, and the dimensionless corr@€ighboring site, andn=1 for arrival from the right-hand
lation factorF is defined by the expression site. Denoting the transition rate of an atomic jump in the

same direction as the previous jump by, and the rate of

D=D;:F, (62)

Fl=(e Poa) (®ayol Yai1.a)s (62)  the backward jump byy,, the transition rates take the fol-
lowing form:

where the operatio( - - ) is defined as~ 123 _, - - -. Taking

the limit s—oo, we can apply the expressioffl), (62) to a N—-11-1-17 Vi

disordered lattice. The resul61), (62) has been obtained

previously by Lyo and Richard$using another technique. N-1i1-1+17 Yb>

According to Kramers’ theoryf the transition ratey, , 1 , B (68)
is mainly determined by the activation energy., ; , which NoAni+1017= Y

is to be overcome by the atom, and depends on the latter
exponentially,y, 1 ,=I0€Xp(— Be,+1,.) Where the prefac-
tor Iy will be assumed independent of. The activation The Fourier transform of the transfer matrix is

Yi+1;1+1,-1= Y-
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A(k ( B A_+)
=l AL,
(it vee “ika — ype k@ ©9
— ypetika (yi+ ) — yreT k3

and the matriced\o, A; and A, are equal to
b

_'}’f,

|

It can be seen that while the matri(k) is non-Hermitian,
the matricesAy and A, are Hermitian, and the technique of
Sec. Il may be applied. It is easy to show that

Yb ~— 7

Yo

(70

Vi
Yo

Yb
Yt

A2: az

1/1
VO—E 1 ,
(71)
Vi=— ,
! V2w (1
and the diffusion coefficient is now equafto
1 +
Do g2 (¥et ¥0) s . 72
2 Vb

If we introduce a parameteh using the relationsy;
=y exph and y,=vy exp(—h), so thath determines the

! At

6y—yie, —yiey — &1
—vies  By—we; —viey
“Me i€ 6y
A(K) = ) o -
— Y€1 ~ Y€1 Yi€1
— e ey ~ Y82
—yi€  — e Y€
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et Ny ) ah

N\ 2\ ffn\/zfoo) (19 \/
/\/\/\ AW v

_+% [o -4, 1) a

a
AVAVAVAVAVINE

m=57‘\ m=5\ /\ /\ LA

b

O

T

X

FIG. 2. Non-Markoff diffusion on the triangular lattice.

strength of the memory of the previous step, tilemay be
represented as the productdf=a?y (the diffusion coeffi-
cient for uncorrelated random walkEmes the correlation
factor F = coshf)exp(2).

B. Triangular lattice

A second example of non-Markoff diffusion is the trian-
gular lattice, for which the memory indem can take six
different valuesm=1, . .. ,6,corresponding to jumps from
the six nearest-neighboring sites. Taking into account the
symmetry of the lattice, we introduce four transition rates
Yo, Yo, vi and ys as shown in Fig. 2. Depending on the
model under investigation, the following variants may occur.

(@) Theforward jump modelwherey,= y{= y;<y¢, SO
that the atom has a larger-than-average probability of making
a transition in the same direction as the previous transition,
while the probability for a transition in any other direction is
reduced compared to the average value.

(b) The reduced reversal modelwhere y,<y,=y;
= v, S0 that the atom has a less-than-average probability of
returning to the site visited at the previous step.

(c) The backward jump model, where y,> )= y;
=y, SO that the atom has a larger-than-average probability
of returning to the previous site.

Using the notation shown in Fig. 2, after a long but
straightforward calculation we get for the transfer matrix
A(k) the expression

— Y€ —per —yiey
B T 7 S 7
—vie;T —de we
B o o , (73
6y—vi€; — i€ ~ Y&
—yie; " 6y—ye; T —yiey
— € —vie;  6y—ye;
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where e; =exp(+ika), €; ~=exp(xika/2+ikja,) and y y A Y, \/’ \\/
=5 (2 + 295+ ). B ez S
The vectorsyy andv,; are now equal to \/ \/ \/ g \\/Tl;l 5
1 J o-+€ [0 &g x] Yo
\\/ - \/ \// ~N
1 ~_ - . N -7 4/\\
— <~ 0=>»
1 - \\; m=-1 k\// \\‘/ 7;”//
_ 1 o0 T ek <
VO_% 1]’ Sye ANy <
d=1 2 / 7; Tf -
1 \\ ~ ~
1 X
1 (74) FIG. 3. Non-Markoff model for the “split”(110) bcc surface.
1/2
iay\6 12 model, since polaronic and inertia effects could play a sig-
VIZL nificant role, especially for jumps between the adsites within
3ypt2ytyi| 1 a cell.
—1/2 To include the memory of a previous jump, we associate
12 with each adsite a memory indexin addition to the index

a= 1,2 enumerating the sites within the cell. lnet=1 for an

and the isotropic diffusion coefficient is given by the expres-atom arriving at a given site from an upper sites- —1 for

sion

D=D¢(1+F),

whereD=2a?y is the diffusion coefficient for the Markoff
model, andF describes the non-Markoff correlation

e 2wt Y~ Yb)

arrival from a lower site, anth=0 for arrival from the left-
or right-hand sites. It is now necessary to introduce five tran-
(75 sition ratesy;, f, ¥}, s, andy;, as shown in Fig. 3.

It is useful to introduce a single indeg=a?+m+1,
which varies from 1 to 6, instead of the two indicesndm.
Using the symmetry of the model, the stationary solution
p:=0Jeq(a,m) of the master equatiofsl) is p;=p3=p4
=pe=Vi12(yi +2v5) and p,= ps=y;/2(y; +27), so that
(76)  the vectorv, is equal to

3¥p 27+ ¥1
¥
C. The “split” (110 bcc surface \/—,
As a final example, we consider t£10 face of the bcc 7;
structure which gives a rhomboidal lattice for an adatom, and 1 Vi
suppose that owing to local substrate distortion around the Vo= W \/_// (77
wing 19 ate distortion ar 2(vi+29)|
adatom, the original single adsorption site is split into two
symmetric sites separated by a small energy barrier. Such a \/?{
distorted honeycomb lattice was introduced and studied by \/—,,
Ala-Nissila et al1* to described théd-W(110) adsystem in i
the framework of the Markoff random process. However, it
seems reasonable to include also the memory effects into th@mitting a lengthy calculation, the matrix(k) is
3y 0 0 —yet?t —%e** —)/be+Jr
0 3y’ 0 ~ 7 ~ ~ s
0 0 3y —ye " —;/fe*’ —yet”
A(k)= N : (78)
—yieT T et —we 3y 0 0
~ ¥ ~ b ¥ 0 3y’ 0
— e —ye T —vye 0 0 3y
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where y=(y¢+vi+ )3, ¥ =¥+ )3, v=\vi ¥
ande” * =exp(+ika.tik,a,).

The solution of the key equatidi35) leads to the follow-

ing expression for the vectar;:

Wy wi
w3 0
| oW o it
V1= W] vi= w |’ (79
—Wj 0
W —wy
where
wi=—aA(yf + yp)[(2yi+ v +270)
X(vi+ve) = vivil, (80)

wi=a Ay /[(2yi+ v +2v) (Vi +vi) — ¥ ¥i1, (8D

wi=—a,Al(y{+2yp), (82
and
__i('yf+7f,+'yb)\/'y_,f, 83
V2(yi+2vf
As a result, we obtain the diffusion coefficients
N YeYi(vet ¥+ o) (29 + vp)
XX ’ " ' " ’ ' om!?
i 29Dy vi+ 270 (Vi v0) — ¥i ¥
(84)
Y (ye+ i+ )?

yy= ; (85

Ty + 29D (vi+2y)
and their ratio is

2
Dxx

5: _— =
Dyy

aX
ay

" ¥i (vt +290) (29 + vp)
(vt vi+ v [(2ys+ v+ 290) (¥f + ¥v5) — ¥ ¥1]
(86)
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For Markoff jumps this ratio reduces to

Dy 2y’

o= = .
Dyy y'+2y

(87)

V. CONCLUSION

A technique has been developed to calculate the diffusion
tensor for the lattice-gas model at low particle concentration
for any complex elementary cell and which can also include
memory effects. The calculation reduces to simple matrix-
algebraic operations, with the only step that could hinder a
complete analytic solution being the solution of the matrix
equation(35). For many cases analytic expressions for the
diffusion tensor may be obtained. Some one- and two-
dimensional models were analyzed as examples, some of
which have been studied previously by other techniques,
while others such as the one-dimensional model with an ar-
bitrary elementary cell and the two-dimensional non-
Markoff models, have not been treated previously. Although
we have concentrated on one- and two-dimensional ex-
amples, having in mind applications to surface diffusion, the
technique described is equally applicable three-dimensional
models, so that it will also be useful in applications to bulk
diffusion problems—®

The technique developed in the present work may be pro-
gramed for a computer calculation in cases where an analytic
solution is not possible, so that the exact diffusion tensor for
walks of a single atom may be found in practice for a wide
class of lattice-gas models. Moreover, the technique allows
the study of diffusion of a pair of interacting atoms, or a trio
of atoms, etc., so that it may be used for the calculation of
the exactdiffusion tensor for stochastic motion of adsorbed
islands.
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