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Hysteresis in the Underdamped Driven Frenkel-Kontorova Model
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We study a commensurate chain of atoms subject to a periodic substrate potential, damping, and
a thermal bath, and driven by an external dc force. In the underdamped case the average system
velocity as a function of adiabatically varying force exhibits hysteresis at nonzero temperatures. The
hysteresis exists due to the instability of the driven motion of kinks at high velocities. In the force-
decreasing process, the system passes through two regimes: the “cavity-mode” regime (a standing wave
superimposed on the state of running atoms) and the “traffic-jam” regime, where the mobility is due to
kink-antikink pairs, the kinks being bunched into compact groups. [S0031-9007(97)04430-X]

PACS numbers: 66.30.—h, 05.70.Ln, 46.10.+z, 63.20.Ry

Nonequilibrium dynamics of simple systems of inter- particle is either locked or running, depending on its initial
acting atoms subjected to an external periodic potentiakelocity, the system exhibits bistability and the transition
damping, and a thermal bath, and driven by an externdletween these two states shows hysteresis. However, for
force, is a very rich and interesting theoretical problema single particle the bistability disappears in the presence
as well as having many important applications in such aref an external noise, because the fluctuations can kick
eas as mass transport, conductivity, tribology, Josephsdhe particle out of the locked state. Thus, the Brownian
transmission lines, etc. motion of a single particle driven by an external force

Two limiting situations have already been studiedshows hysteresis only far = 0.
in detail. The first one corresponds to a system of The secondlimiting case corresponds to the over-
noninteracting atoms; this case was studied, in particuladamped Frenkel-Kontorova (FK) model [2], when>>
by Riskenet al., and the results are summarized in thew, (wo is the vibrational frequency at the bottom of
monograph [1]. Under the influence of a dc forEea  the periodic potential). Interesting results were obtained
Brownian particle in a sinusoidal potential preferentially by reducing the time-independent Schmoluchowsky equa-
diffuses in the direction of the force and on average ther¢ions for a steady state of the driven system to a one-
is a drift velocity(v) which depends o#. The mobility  particle equation with an effective on-site potential, which
B is then defined a8 = (v)/F. For small forces,B  then was solved numerically by the transfer-integral
is independent ofF (the linear response regime), but method [3]. This problem was also studied by an ap-
for larger ones a nonlinear response takes place. Thgroximate solution of the many-particle Schmoluchowsky
total potential experienced by the particle is the sum okquation in configuration space [4]. The results show that
the periodic potential and the potentialFx due to the there is a region of highly nonlinear mobility, but without
driving force, i.e., it corresponds to a corrugated surfaceany bistability phenomenon.
whose average slope is determinedrhy At small forces However, simulation results [5] have shown that in the
the potential has local minima, therefore the particle isynderdamped-renkel-Kontorova model hysteresis exists
static and its mobility is zero at temperatufe= 0. On  even at nonzerd@. The goal of the present work is to
the contrary, for large forces there are no stable positiongind conditions under which hysteresis persists at nonzero
and the particle slides over the corrugated potentialy for the one-dimensional caseWe shall show that
reaching its maximum mobilityg; = (mn)~', wherem  nysteresis does exist 4t # 0 due to the instability of
is the mass of the particle angl is the viscous friction  pigh-speed kink motion.
coefficient. Denoting bye the height of the periodic  First of all, recall that in the FK model mass transport
potential and byz the lattice constant, th(? critical force glong the chain is carried out by kinks, the topologically
for which the stable positions disappeaﬂj%) = me/a.  stable quasiparticles which describe a local compression

In the underdamped case, however, the system mapr extension in the case of antikink) of the chain.
have a running solution even if the minima of the potentialMotion of a single kink which starts with a high speed
exist. Indeed, because of its momentum the particle map the highly discrete undamped FK model was studied
overcome the next hill, which is lower than the one frompy Peyrard and Kruskal [6]. They found two important
which it was falling due to the-Fx contribution to the phenomena. First, during its motion the kink experiences
potential, if the gain in potential energy is greater thang strong interaction with phonons; therefore, at resonance
the energy dissipated during this motion. One finds thagonditions (i.e., with kink velocities in certain intervals)
this second critical force ifl(,o) = (4/m)n/me. Asthe the kink motion is strongly damped and its velocity
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decreases quickly, while outside these resonance intervals 1.0
the damping is very low, and the kink moves with such a I
velocity for a long time. The velocity-locking effect for :
a driven kink was studied recently in detail by Watanabe 0.8
et al.[7]. Second, Peyrard and Kruskal observed that the I
very fast kink is unstable, while a pair of two coupled :
kinks can be stable and move as a whole with very high 0.67
velocity and practically without damping.

As was mentioned in [8] and will be discussed in detail -
in the present work, it is this instability of the motion 0.4
of fast kinks that is responsible for the hysteresis, i.e., I
the sharp transition from the lo®-motion to the highs -
sliding regime is solely a dynamical effect which exists 0.21
only in the underdamped system.

In our simulation we studied a chain df = 128 atoms i
subjected to a sinusoidal potential with amplitude= 2 0.0 [rase
and perioda = 27, the atomic mass was = 1 (this
defines our system of units). The equations of motion for

n'B

the displacements; are FIG. 1. B(F) dependences: solid curve fér= 0.7 andg =
d 1, dotted curve forT = 0 and g = 1, dot-dashed curve for

X; + nx; + sinx; + Z V(xi = x;D) | = F, T =0 andg = 0, and dashed curve fof = 0.7 andg =1
i Li(i#0) ' for the initial configuration with one kink-antikink pair. (For

1 the last case we show the forward transition only.) Adiabatic

. ) L ,(,) increase and decrease of the force is denoted by diamonds
with 1 =i = N. We used periodic boundary conditions, and triangles, respectively. Notice that te= 0 forward

the potential hasM = 128 wells on the chain length, transition takes place d@ = 1 for both noninteractingg = 0)

i.e., the ground T = 0) state is trivial (commensurate). and interactingg = 1) cases.
For convenience (in order to study later the generalized

FK model with a transverse degree of freedom [9] The detailed behavior at the locked-to-running transition
with the same model parameters) we used the Todis clear from Fig. 2, where we plot the atomic trajectories
interaction potential, with the amplitudé&, = 47%¢ and  just at the transition point. As seen, the scenario starts
the exponent8 = 1/27. This choice corresponds to with the creation of one kink-antikink pair. The kink
the dimensionless elastic constant (which is defined agnd antikink move in opposite directions, quasielastically
g = a*V'(a)/27%¢; see, e.g., [10])g = 1, i.e., to the collide (because of the periodic boundary conditions), and
intermediate case between the strong coupling (sinequite soon a new kink-antikink pair is created in the tail
Gordon) case and a weakly coupled chain. (Recall tha@f the primary kink and then another pair in the tail of
the Aubry transition from the pinned to sliding state takes
place atg = 1 for the golden-mean case [11].) i g

To all atoms we applied the dc forcE which was o=

adiabatically changed (the details of simulation procedure

are described in [12]), and calculated the average system
velocity (v). The damping coefficient was taken as= 100
0.1 (recall that the frequency of atomic vibrations in the =
external potential isvy = 1 in our system of units), and 80
the temperature wa% = 0.7 (compare with the barrier _
heighte = 2).

The results are presented in Fig. 1. One can see that ="
during the force-increasing process the system jumps
at Fy = 0.53 from the B = 0 (locked) state directly
to the B = 1 (sliding) state, while when the force is
decreased, starting from the sliding stake,begins to
decrease arF' < 0.5, and reaches the “force-increasing” 20 =

. ——
values only atF < F, = 0.2, so the system dynamics = —
shows a large hysteresis. To compare, we plot also the 0
B(F) dependence for the noninteracting system Tot= 0 5 10 15 20 25
0, where Fj(f)) — 1 and F\” ~ 0.18, and the hysteresis time/2m
disappears & > 0. FIG. 2. Atomic trajectories foF = 0.53.
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the new kink. This process continues, resulting in arpairs are generated in the kink tail, and this results in the
exponential (avalanchelike) growth of the kink-antikink avalanche leading to the running state. Notice also that
pair concentration, finishing in the totally running state. the kinks (the primary kink and the kinks from the newly
For the chosen model parameters, the kink-antikinkcreated kink-antikink pairs) are bunched, and move to-
creation energy i%p.ir =~ 31.7 (this value is higher than gether as an entity. We note that the kink-antikink pair
SO _ 16 the value for the SG system; the difference isgeneration behind a moving domain wall was observed in
pair ’ . .
due to the exponential interaction used in the present simib€ 2D FK model [14], and kink bunching was also ob-
lation), so that the expected number of kink-antikink pairsSeérved in [S]. _ _ _
is [13] npair = 107°M, ie., it is negligible for the chosen The critical kink vglocny causing the gvalanche is
system size af = 0.7. WhenF increases, the barrier for €stimated as. ~ 12 (this value may be found in two ways:
kink-antikink creation decreases, and at large forces it disom the slope of the kink trajectory in Fig. 3, and from
appears completely (this scenario is described in detail ifh€ B value at the threshold’, if we suppose thav, ~
[4]). To check if the pair creation event plays the domi-N{v)). Note. that the sound velocity for the chosen system
nant role, we started with the initial state which already hagarameters is = 277; recall also that in the SG system the
one kink-antikink pair at smalF = 0.23 (this state was Kink cannot move faster than with the velocity .
taken from the backward trajectory of Fig. 1) and then adi- Thus, we conclude that a sharp locked-to-running
abatically increased the force. Again, the above scenarif@nsition exists in systems for which the driven kink
repeated (although the locked-to-running transition take§eaches the critical velocity. before the atomic motion
place now aF =~ 0.41): the atomic trajectories at the tran- P&comes significant (i.e., it is still activated and may be
sition look like those in Fig. 2 except that the kink-antikink neglected compared with the kink-antikink contribution
pair exists much earlier. From this we may conclude thaf0 B)- The origin of this “primary” kink is insignificant;
the main mechanism responsible for the transition is not may be either a thermally excited kink-antikink pair,
the creation of a pair, but the kink motion itself. or it may be created at an impurity site (both processes
To check the last assumption, we studied the systerfi’® _stlmulated by the force which decreases t'he creation
with N/M = 129/128, where one (residual) kink ex- barriers). The only dlff_eren_ce may emerge in a finite
ists from the beginning. Now the low- mobility is ~ SYStem, whem,;; < 1;in this case the initiating event
determined by motion of this kink, which is activated May be the creation of an initial kink-antikink pair. _
(Arrhenius-like) at smalF and unactivated af > 0.08, e emphasize that the sharp locked-to-running transi-
when the Peierls-Nabarro potential for the kink motion istion of necessity leads to hysteresis in theF) depen-
suppressed due to the forfe However, atF =~ 0.42 the dence; clearly the'avalanche cannot go backwards, and
system exhibits the transition to the totally running stathe system cannot jump back to the Idstate wher¥" is
just as was described above. The atomic trajectories at tfdightly decreased below; .

transition are shown in Fig. 3. As seen, new kink-antikink Finally, we briefly discuss the backwai{F) depen-
dence. The transition from the running to locked state

for the underdamped SG model at= 0 was studied

in [15]. As was shown there, it proceeds first through
a series of “cavity-mode” states, and then a series of
kink-antikink wave train states (in an infinite system this
sequence should be infinite, so the transition is contin-
uous). A similar scenario is exhibited by our discrete
FK system (see Fig. 1). First, the system passes through
the “cavity-mode” states. For thE = 0 case one may
clearly resolve five steps on th&(F) curve; each step

is characterized by an approximately constant velocity
((v) = 3.43,3.18,2.88,2.63, and2.34). Note that the dis-
crete system differs from the continuous SG one in that
the former may have resonances with phonons, and this
may result in locking of some states.

After the cavity-mode regime, the system jumps to the
kink-antikink-pair regime. An important difference from
the SG case is that in the discrete system the kinks have a
tendency to be bunched and to move in groups. A typical

0 20 40 60 80 example of such a state is shown in Fig. 4; as seen it
time/2m resembles a “traffic jam.” Contrary to thé < M case
FIG. 3. Trajectories for the system with one residual kink atS'fUdle(_ii in Ref. [_51, in the present work we did not observe
F = 0.42. bunching of antikinks.
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should exhibit hysteresis in if8(F) dependence. A study
of the nature of the forward and backward transitions
shows that this hysteresis exists in bditfite andinfinite
systems. (That it is not merely a finite-size effect has
been verified in a simulation of th&v = M = 256
system [16].) The reason for the sharp locked-to-running
80 transition is the existence of a critical kink velocity
v., above which the kink destroys itself and causes an
60 avalanche driving the whole system to the totally running
state. The nature of this critical velocity merits a more
detailed study.
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