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The growth of the p(2 X 2) domains in the lattice-gas model with anisotropic probabilities of atomic

jumps has been investigated using the Monte Carlo simulation.

The analytical approach as well as

the simulation results suggest that this model exhibits the anomalously slow growth of a characteristic
domain size R(r) = t'/> instead of R(t) < t'/> for the jump-isotropic model. The growth rate as a
function of the atomic concentration has a pronounced maximum at a concentration well below the

stoichiometric concentration of the p(2 X 2) phase.

PACS numbers: 68.35.Fx, 05.70.Ln, 64.60.Cn

The growth of ordered domains in a system exhibiting
phase transition at a temperature 7, for the case of rapid
quench from T > T, to T < T, is a very interesting and
important problem (see [1,2] and references therein). It
has been predicted that growth kinetics may exhibit a
self-similar temporal behavior with a single characteristic
length R(z) associated with the average domain or island
size. Therefore it should undergo to universal scaling
laws depending on the universality class of the system
only [3].

Analytical approaches to the growth problems are
usually based on the idea of domain walls (or island
boundaries) motion. A force acting on the wall is
assumed to be proportional to its curvature. In this way
the following equation:

R ~ C/R? (1)

is obtained for the Ising model with the conserved scalar
order parameter. First used by Lifshitz [4,5], these ideas
have been further developed by Huse [6], and lead to the
relation

R(t) = Bi'? + A. )

For the coefficient B the theory gives B = yDZX., where
x is the susceptibility of the system, D is the chemical
diffusion coefficient, and 3 is the domain wall energy per
unit length. The second term A in the right-hand side of
Eq. (2) arises due to the interaction between neighboring
domains. Monte Carlo simulations performed up to now
have confirmed the growth law (2) for the classical Ising
model [7] as well as for some other systems with a more
complex (vector) order parameter (e.g., [8]).

In real physical systems the interatomic interaction
is not reduced to the interaction of nearest neighbors
only. In submonolayer films adsorbed on crystal surfaces
the interaction may be anisotropic, and it may oscillate
with interatomic distance [9]. Ala-Nissild et al. [10]
demonstrated that the anisotropy of interactions results
in the anisotropy of growing domains. It is evident,
however, that anisotropic systems should be characterized
not only by the interaction anisotropy, but also by the
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anisotropy of probabilities of atomic jumps in different
directions. The jump anisotropy does not modify the
thermal equilibrium state of the system, but it must
modify the kinetics of phase transitions.

In the present work we investigate the extreme case
of the jump-anisotropic model, namely the model where
atomic jumps are allowed in a single direction only. Such
a generalization may not essentially modify the growth
kinetics for the standard Ising model, which should still
obey Eq. (2) with smaller coefficients A and B. The
situation, however, must be drastically changed for a more
complicated lattice-gas model where the ordered phase
corresponds to a degenerated rarefied structure.

We study the lattice-gas model with a fixed atomic con-
centration characterized by the “coverage” § = N /M,
where N is the number of atoms and M is the number
of the lattice sites. We take into account atomic interac-
tions up to third neighbors with the energies ¢, £, and &3
for the nearest, next-nearest, and third neighbors, respec-
tively, and assume a repulsion of nearest and next-nearest
neighbors and an attraction of third neighbors. For such
a choice of interactions the low-coverage ordered phase
for6 = ﬁ corresponds to the p(2 X 2) structure, and with
decreasing of temperature the system is to exhibit the first-
order phase transition to this phase. Below we restrict our
analysis to the low-coverage region 6 =< % only.

The p(2 X 2) structure is fourfold degenerate, so one
may recognize four sublattices denoted as X, X,, Y, and
Y,. The main aspect of the model under consideration is
that the atoms are allowed to jump for one lattice constant
in the x direction only. As a result, X; domains can be
transformed into X, domains (as well as Y, into Y,), but
the transformation of the X-type domains into the Y-type
ones is forbidden. Thus, four types of domains are split
into two classes X and Y.

The jump-anisotropic model exhibits two different
types of domain walls. The first type corresponds to the
X11X> (or Y,|Y,) walls which can be shifted by a jump of
a single atom for one lattice constant in the x direction.
Consequently, the dynamics of these walls has to be
described by the law (2). During a short time the walls
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of the first type have to disappear (if two domains of, e.g.,
the X, and X, types come into contact, a larger domain
has to devour the smaller one). Thus, the first growth
stage has to finish with a configuration where the X-type
domains are surrounded by the atoms belonging to the ¥
sublattice, so that only boundaries between the X and Y
types of domains remain.

The second type of domain walls is the X|Y wall. In
the jump-anisotropic model the X|Y wall cannot be shifted
by an ordinary mechanism of a single atomic jump. To
shift the X|Y wall, an atom of, say, the X domain must
cross the area occupied by the Y domain and then join
any other X domain. To estimate the rate of this process,
recall that in the jump-isotropic model the elementary
act of the domain wall motion is a jump of an atom
in the domain wall region for one lattice constant, so
the prefactor C in Eq. (1) is proportional to 77!, where
7 is the mean time between consequent atomic jumps.
In the jump-anisotropic model, however, an “elementary
act” has to be an atom crossing a distance R over the
alien structure. This process will take a time of the order
7 ~ R?/D*, where D* is the diffusion coefficient over the
alien structure. Putting C = 77! into Eq. (1), we obtain
the relation R = R~* which leads to the growth law

R(1) = Bt'° + A. 3)

Thus, the jump-anisotropic model is characterized by two-
stage hierarchy of growth rates, and the late stage is
described by the slow growth law (3). Because of the
anisotropy of the model, the coefficients in Eq. (3) for
island sizes in the x and y directions are different so that
an island shape has to be anisotropic in a general case.

In Monte Carlo (MC) simulation we have studied the
60 X 60 square lattice with periodic boundary conditions.
As initial configuration we took a random distribution
of atoms, and then the system was allowed to evolve
according to the standard Metropolis algorithm. For the
interaction energies we have taken £, = €, = —¢&3 = |
and the temperature has been chosen as 7 = 1/3. This
temperature is expected to be lower than the melting
temperature 7. for the p(2 X 2) phase (recall that the
standard Ising model has 7, = 0.567). Simulations have
been performed for Monte Carlo time #x.

We calculated the number of islands (domains) of the
p(2 X 2) structure, the number of atoms in each island,
and the average island sizes in the x and y directions.
To find the number of atoms in a given island, we
used the direct method which is based on the cluster
labeling technique widely used in percolation problems
[11]. Namely, we looked for the atoms which have
no nearest and no next-nearest neighbors. To avoid the
influence of the percolation, we assume that a given atom
belongs to the given island if this atom has at least two
cross-situated third neighbors. Then we calculated the
number of atoms N in the given ith island as well as
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the average number of atoms R! and R! along the x and
v axes, respectively, by scanning the island along these
axes. At the same time we calculated the total number of
islands Nj,;. The mean island sizes N. R,., and R, were
determined by the relations [12]

S s°n(s) _ IR N E)

< . R\' - x .
> sn(s) } S sn(s)

where n(s) and n,(s) is the number of islands containing s
atoms either in total or along the x direction, respectively.
Finally, the results were averaged over runs; we have
made 102 runs for ta, = 10, 10 runs for fe, = 10°, and
only one run for fp,, = 105 MC steps per atom. The
obtained time dependences are compared with those for
the model with equal jump probabilities in all directions
which have been calculated for the same energy parame-
ters. Besides, we have also calculated the total number of
atoms within the ordered phase defined as

N = 4)

Nt = NigN . (5)

Time dependences for the mean island sizes N, R,, and
R, are shown in Fig. 1. We also have plotted the least
square fits of the v/N, R,, and R, versus time using the
formula (3). As one can see, the simulation results are in
good agreement with theoretical predictions [13].

In some physical systems, especially in layers adsorbed
on crystal surfaces, the atomic concentration may vary
within a wide range, so the question arises about the
concentration dependence of the growth rate. For the
lattice-gas model with the attraction of nearest neighbors
only, according to Huse’s theory [6] the coefficient B
is proportional to the susceptibility y which, on the
other hand, is proportional to 4. Thus, B(6) < §. For
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FIG. 1. Average sizes N, R,, and R, of a p(2 X 2) island
versus time for the jump-anisotropic model at 6 = 0.1875.
Solid curves are the best fits (3) for VN, R,, and R,. Inset:
comparison of N(t) dependences at § =~ 0.03 for jump-isotropic
(triangles) and jump-anisotropic (circles) models; solid curves
are the best fits (2) and (3), respectively.
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the jump-anisotropic model at small 6, 6 < 6y = 1/4,
growing islands are situated far from one another, and
grow independently. Therefore it is expected that the
coefficient B in Eq. (3) is to be proportional to 6 too,
B(A) x 8 at 6 < fg. On the other hand, at higher
coverages, 6 ~ 6p, neighboring islands which belong to
the different classes X and Y start to overlap. The
overlapping results in the decrease of the growth rate,
because an island of, say, the X type will impede the
growth of a neighboring island of the Y type. Thus,
there is a concentration 6. such that B(@) « 6 for 6 <
#. but B(8) decreases with 6 in the interval 6. <
6 < 8, i.e., B(f) has to have a maximum at 6 ~ 6..
Since the value 6. corresponds to the situation when
islands start to overlap for the first time, 6. is to be
coupled with the percolation threshold (which is ~ 0.5
for square lattices). So we obtain 6. ~ 0.56p = 1/8.
The simulation results presented in Fig. 2 confirm these
qualitative considerations.

Now let us consider the concentration dependence of
the number of islands on a given area, Ni5(0,t). Nisi(0,1)
can be represented in a form Ny (6,1) = N P(6,t), where
the function P(6,t) depends on 6. Besides, we can also
write P(8,t) = > P,(0,t), where Ps(0,t) is the proba-
bility of finding an island consisting of s atoms. Att = 0,
when the atomic configuration is random, the probability
of finding an “island” consisting of a single atom is
equal to the probability of finding an atom surrounded
by eight empty lattice sites, so that P;(6,0) = (1 — ).
Next, we may take approximately P;(6,0) = Pi(6,0).
Because N = 6 M and M is fixed, we finally obtain
Niq(6,0) « 62(1 — ). This function has a maximum at
6 = 0.2 < 8y. The results of simulations show that the
shape of the function N (8, r) does not change essentially
at least up to the time 10* MC steps per atom.

Now we can predict the concentration dependence for
the total number of atoms in the ordered phase Ny, =
NisiN. Combining the results obtained above; we see

that N, as a function of @ should have a maximum
at & ~ 0.56y. This maximum is more pronounced if we
consider the relative rate of island growth, defined as

Thus, in the jump-anisotropic model the most effective
growth of islands of the ordered p(2 X 2) phase takes
place at atomic concentration 6 ~ 0.56p, i.e., at the
concentration much lower than the commensurate one
(see Fig. 3). Notice that the atomic configuration at § =
0.56p = 1/8 consists of isolated slowly growing islands
separated by the disordered “lattice-gas” phase. This
situation is different from that for the jump-isotropic
model, where, first, islands must grow much faster,
second, the maximum growth rate H(@) occurs at 8 =
0o = 1/4 (Fig. 3), and, third, the resulting configuration
should correspond to compact continuous phase.

Now let us discuss the applicability of the described
model to surface diffusion combined with phase transi-
tions. If we prepare an initial state where atoms ran-
domly occupy half of the surface only (for x = 0) with
a coverage 0i,;, the step in the coverage will smooth as
the time increases, and a phase transition occurring at
0 = 6y < 6i,; may manifest itself in the shape of the cov-
erage tail f(x) at x > 0. At the first-order phase tran-
sitions the chemical diffusion coefficient D falls to zero
[14], because at the transition point the equilibrium state
corresponds to coexistence of two phases. As a result the
tail shape 8(x) should exhibit a sharp drop at x* from the
ordered phase coverage 6y at x < x* to the value 6, at
x > x* where 8, (6, < 6y) corresponds to the lattice-gas
phase. We emphasize, however, that the tail function 6(x)
monotonically decreases with x.

For the jump-anisotropic model the situation, however,
is different. Actually, because the rate of island growth
has a maximum at 6 = 0.56,, the growth of islands
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B, [Eq. (3)] for the jump-anisotropic model.
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FIG. 3. Relative rate (6) of the p(2 X 2) islands growth
versus coverage at different MC times for the jump-anisotropic
model: 102 (open circles), 103 (triangles), 10* (squares), 10°
(stars), and 10® (rhombs) MC steps per atom. Similar quantity
for the jump-isotropic model is shown by filled circles.
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of the ordered phase will proceed most effectively at
distances x* where the tail concentration 8(x*) is about
6. ~ 0.56,, while the growing islands should correspond
to the concentration 6y. As a result the tail function
6(x) might become nonmonotonic, and a “hollow” would
appear at distances x*. Such a peculiarity has in fact been
observed in experiment [15] performed for lithium atoms
adsorbed on the furrowed (112) plane of molybdenum,
where the diffusion in the [111] direction (along the
furrows) has been studied. The initial step was taken to
be 0;,; = 0.04. Two remarkable features were noticed in
the diffusion tail 8(x): first, the formation of the extended
plateau 6y =~ 0.015, second the shaping of the clear-cut
hollow immediately behind the spreading plateau with the
concentration 6’ ~ 0.56( (for details see [15]).

If the theory developed in the present work could
be applied to the experiment [15], the plateau would
have a structure of 6 islands separated by the lattice-
gas phase. The ordered phase should correspond to a
long-period rarefied structure of a p(m X m') type with
m ~ m' ~ 7, i.e., the adatoms have to attract each other
at distances r ~ 7ajuice but repel at smaller distances.
Such an interaction can really exist due to the competition
between the dipole-dipole repulsive and the long-range
oscillating indirect interaction of adatoms [9]. Low
energy electron diffraction (LEED) experiments for the
Li-Mo(112) adsystem (as well as for a number of other
adlayers on the anisotropic surfaces [9]) showed that
along the furrows the interaction is oscillating and may
exhibit a local minimum at the distances r ~ 7ajaice. SO
it may be supposed that a similar oscillating interaction
may also exist in the direction across the furrows.
Unfortunately, there are no reliable LEED experiments at
coverages 6 < 0.1. Moreover, according to the results
of the present work, it is too conjectural to prepare
the ordered rare phase in the strictly anisotropic system
because its growth kinetics would be extremely slow.
However, the rarefied phase in the diffusional tail may
be observed by the scanning tunnel microscope technique.
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