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Role of long jumps in surface diffusion
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We analyze a probability of atomic jumps for more than one lattice spacing in activated surface diffusion.
First, we studied a role of coupling between thendy degrees of freedom for the diffusion in a two-
dimensional substrate potential. Simulation results show that in the underdamped limit the average jump length
(\) scales with the damping coefficientas(\ )=~ “» with 1/2<0,=<2/3, so that the diffusion coefficient
behaves a® =7~ 7 with 0<o=<1/3. Second, we introduced a realistic friction coefficient for the phonon
damping mechanism and developed the technique for Langevin equation with a velocity-dependent friction
coefficient. The study of diffusion in this model shows that long jumps play an essential role for diffusing
atoms of small masses, especially in two limiting cases, in the case of a large Debye frequency of the substrate,
when the rate of phonon damping is low, and in the case of a small Debye frequency, when the one-phonon
damping mechanism is ineffective.
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[. INTRODUCTION wherem is the atomic mass and(r) is the substrate poten-
tial. In the Langevin equatiof2), the energy exchange be-
A variety of phenomena in physics and other fields can baween the diffusing atom and the substrate is modeled by a
modeled as Brownian motion in an external periodic potenviscous frictional force with the coefficieny and by the
tial [1-3]. One particular example, the surface diffusion ofrandom force SF which corresponds to Gaussian white
atoms or small clusters, is of great fundamental and technaioise,
logical interesf4]. At low temperatureskgT<<g, wherekg
is the Boltzmann constant, is the temperature, anglis the (SF () SF(t"))=2ypmkgTS(t—t"). €]
height of the substrate potential, the diffusion proceeds by
uncorrelated thermally activated jumps over the barrier from A rigorous expression for the diffusion coefficient is
one minimum of the external potential to another, and th&known only in the overdamped limity>wo [here wg
diffusion coefficient takes the Arrhenius for,<A with A =(V"/m)*2is the frequency of atomic vibration at the mini-
=exp(—elkgT). Then, if the jump rate is known, the diffu- mum of the substrate potenfjawhen the Fokker-Planck-
sion coefficient can be found with the help of the lattice-gasKramers(FPK) equation corresponded to the Langevin equa-
model[5,6] for any symmetry of the latticE7]. Usually itis  tions (2) and (3), reduces to a more simple Smoluchowski
assumed that the atoms can jump to nearest neighborirgfuation. An analytical solution is known for the one-
(NN) minima of the substrate potential only. In this case thedimensional(1D) substrate potentidl8] and for the quasi-
diffusion coefficient is equal to two-dimensional case of a channel with periodically varying
width [9,10]. An approximate solution was found also for a
two-dimensional (2D) substrate potentia[11,12. In the

D= iR<)\2>, (1) overdamped limit the jump rate behavesRes7~ ! and the
2d jumps are allowed for one lattice spacing omys a, so that
Doy L.
whered is the dimensionality of the systend€1 or 2 for A typical situation in surface diffusion corresponds to a

surface diffusiof, R is the rate of escape from a potential CaS€ of_in_termediate or low _damping. In the case of interme-
well (the sum of probabilities of the jumps from a given site diate frictions, 7= w,, the diffusion can be adequately de-
to all neighboring sites per one time uniand the mean- Scribed by the transition state theofyST) [13], where\
square jump lengtA?) coincides with the square of the =@ and the total escape rate is given by the Kramers expres-
lattice constana®. To find the rate of atomic jumps, one has S1o0 [14] R~woA/ 7 which is independent om, so thatD

to study the diffusional dynamics, either by the molecular®77 - This case was studied in a number of papds].
dynamics(MD) method, or with the help of a more simple Molecular dynamics predicts that there always exist atomic

approach based on the Langevin equation jumps Ionger t_han a unit I_attice sp_acin@\)>a, but the
increase in the jump length is approximately compensated by

) . the decrease in the escape rRtbecause of “recrossings,”
mr+mayr+dV(r)/dr=6F(t), 2 when the atom after its jump to a NN potential well does not
stop (thermalize there but immediately jumps back to the
initial well (the well of departurg so that Eq(1) still holds.
*Electronic address: obraun@iop.kiev.ua The present paper is devoted to an interesting case of low
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role. The problem of longmultiple) jumps, or flights, when which may be classified according to quasiparticles excited
an underdamped Brownian atom jumps over many a poterin the substratg¢28]. If the adsorbed atom has a nonzero
tial barrier before getting trapped again, has been discussegharge, it creates plasmons in the substrate during the motion
in a number of paperfl6-20. According to the famous (the electromagnetic damping mechaniswhen the ada-
Kramers work[14], the escape rate at low damping is re-tom is coupled with surface atoms of the substrate by chemi-
stricted by slow diffusion in energy spacBx7. On the  cal bonds, so that their electronic clouds overlap, the adatom
other hand, the probability of atomic jumps for many lattice motion results in creation of electron-hole pairs in the sub-
constants is highly increaseda)~(vs)m, where (vs)  sirate(the e-h damping mechanisimBoth these mechanisms
~(e/m)*?is an average velocity of the atoms that cross thgeaq to ;~102w, and approximately are independent on
energy barriew and 7~ * is the flight time, so thaf\)  the atomic velocity, because a frequency associated with the
=7 (for a more detailed discussion see R¢#st,17,21).  atomic motion is typically much lower than the plasmon fre-
Thus the diffusion coefficient should scale Bs<n = for  quency or the frequency corresponded to electrons on the
low damping. Analytical results are known for the 1D case inpgrmi level,wo<w,, ¢ /%. Finally, there always exists the
the 7—0 limit only [1]. Numerical simulations are also to0 phonon damping mechanism due to excitation of phonons in
time consuming in the low-damping limit. _ the substrate. The rate of this process is proportional to the
Although experiments do demonstrate the existence Ofiensity of phonon states in the substrate. Because the fre-
atomic jumps for several lattice constafi2?], a theory of quency associated with the adatom motignmay be of the
this phenomenon is still not too clear. There are two factorgame order of magnitude as the maximum frequency of
that may significantly reduce the jump length. First, the surphonons in the substratthe Debye frequency,,), the pho-
face diffusion always takes place in the configuration spac@on damping coefficienty,, may strongly depend on the
of two (or threg dimensions. In the 2D space the path con-atomic velocity. To study this effect, we have to develop a
necting adjoining sites may not coincide with the direction of .qrresponding technique, because the standard approach
the easy crossing of the saddle point. Besides, the trajectoy;seq on Langevin or FPK equations assumes const.
of along jump which goes through several saddle points mMagesjdes, due to the phonon mechanism, the total damping
not correspond to a straight line. These effects have to reducgefficient may be large enoughy~ wo, thus long jumps
the probability of long jump$23,24], so one could expect a || pe completely suppressed.
dependence The main goal of the present work is, taking into account
-0 both factors mentioned above, to find conditions when long
(N)yocp™ N 4 . ; . e >
jumps play an essential role in surface diffusion. The paper is

space should still behave Bs: 5 (see Ref[25]), we come to  different variants of the 2D substrate potential. The phonon
the dependence damping mechanism is introduced in Sec. Ill A, and the

technique for solution of stochastic equations with the
Doy ¢ (50  velocity-dependent damping coefficient is developed in Sec.
_ ) Il B. Then in Sec. Il C we study surface diffusion with a
with =20, —1<1. In particular, Chenetal. [26] had  realistic damping. Finally, Sec. IV concludes the paper with
found with the help of numerical simulation for the 2D sub- discussion of the results.
strate potential of centered-rectangular symmetry that  Throughout the paper we use dimensionless system of
=0.5 which givesr, =0.75. Then, Caratét al.[27] showed  ynijt. The period of the substrate potential is takenaas
that o is not universal but depends on a geometry of the=27 the energy barrier for activated diffusionds= 2, and
substrate pOtential. They considered the 2D substrate pOte['he mass Of the Substrate atommg 1. The temperature iS
tial of square symmetry without energy barriétse "egg-  measured in energy unitkg=1). In all simulations we used
carton” potentia) and found thair may vary from 0.76 to  T=1/3 which corresponds to activated diffusia/ T=6 so
0.64. A similar case of pure entropy barriers, when the atomnat A~2.48x 1073, Rrst= woAlm~7.89x 104, and
diffuses in a channel of periodically varying width but with- Drsr= sRrs7a?~1.56x 10" 2) but allows us to achieve a
out energy barriers, was recently studied in defthll. The  yeasonable accuracy. The diffusion coefficient is calculated
simulation showed that the dependefiSewith o<1 infact  from the solution of the Langevin equatigwith the Verlet
corresponds to a crossover region of intermediate frictionsgy Runge-Kutta method, see details in H&D]) by means of

At very low damping the diffusion coefficient again behavesihe memory expansion meth§29,30, which avoids the nu-
asDx 7! analogously to the 1D activated diffusion with merical evaluation of asymptotic slopes.

energy barriers. A width of the crossover interval, however,
depends on the shape of the substrate potential, so different
values of o may be obtained in this region. The case of

. . . II. DIFFUSION IN A 2D EXTERNAL POTENTIAL
activated jumps, when the energy barriers are large,

>kgT, is still unclear. In particular, the simulatioh$0] for Let us begin with the study of a role of two dimensional-
the activated diffusion in the channel of varying width pre-ity of the substrate potential assuming that the damping co-
dicted the valuer=1/3 which giveso, = 2/3. efficient » in Eqgs.(2) and(3) is constant. We consider sev-

Second, long jumps may exist only in the case of loweral variants of the 2D potential. First, let the potential have
damping. Generally, there are three mechanisms of damping shape of a channel of periodically varying width,
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FIG. 1. Diffusion coefficientD normalized on the 1D over- FIG. 2. The same as in Fig. 1 for the 2D substrate potential of

damped valu® g,,,1pas a function of the damping coefficientfor square symmetry, E().
the channel of varying width, Eq6), for different values of the
transverse curvature, at the saddle point. down to »=0.1. At lower damping;<0.1, the 2D effects
lead to a qualitatively different behavior. While the 1D dif-
1 1 fusion coefficient slowly approaches thge—0 limit Dg
V(x,y)= Es(l—cosx)+§mw§y2 =mwD;A/2 (see Ref[1]), so thatD/Dgne1 5 7D tends to a
plateau, in the 2D case the valu® continues to decrease
1 s o 5 with 7. The effect becomes strong enough for the coupling
+ 7 M(wz~ w1)(1-cosx)y?, 6)  g>0.75 (@,<0.5).
Now let us consider a pure 2D substrate potential of

, . square symmetry,
where we putw;=wg=1 (through this section we assume q 4 y

m=1), so that the atomic vibrations at the minimum of the 1

substrate potential are symmetric, and the parantgten? V(X,y)= Es(l—COSX)erwf(l—cosy)

- w% controls the coupling of the (along the diffusion path

andy (the transverse directiordegrees of freedom. Fay 1 s

=0 the modes are decoupled, and we come to the 1D sinu- + 5 M(wz—wy)(1-cosx)(1-cosy). (7)
soidal potential, Vip(X)=1—cosx. At g>0 the saddle

points are characterized by a smaller value of the transversgnhe potential(7) describes the atoms adsorbed on (th@0)
curvature than at the minima. The potenti@] describes a surface of the bcc or fce crystal. Along a diffusion path the
quasi-2D diffusion of atoms adsorbed on “furrowed” sur- potential(7) is similar to the “channel” potential6), except
faces such as th€l12) surface of the bce crystal, @10 that now both directiong andy are equivalent. The simula-
surface of the fcc crystal, or the (10} surface of the hcp tion results are plotted in Fig. 2. One can see that the behav-
crystal, where the surface atoms create “channels” where th@r of the diffusion coefficienD (%) is similar to that of the
external atoms are adsorbed and along which they can movéchannel” potential (6), although the 2D effects begins to
Similar “channels” appear on the (21)-reconstructed play a role at smaller coupling between the modes. Already

(100 surface of Si. for w,=0.75, wheng~0.44, the functiorD(7) essentially
The simulation results for the dependence of the diffusiordeviates from the 1D behavior at low damping 10 2.
coefficient on the dampingy for a wide interval 103< 7 The functionsD (%) for two substrate potential&) and

<5 and different values of the coupling between the mode$7) are compared in Figs.(8&-0, where the error bars are
are summarized in Fig. 1. The diffusion coefficiéhis nor-  also plotted. One can see that at intermediate and large fric-
malized on the exact value for the diffusion in the 1D sinu-tions, »>10"2, these dependences almost coincide, although
soidal potential in the overdamped limitl], Dgynoip  the diffusivity for the square lattice is slightly higher. More-
=DfI52(s/2kBT), whereD;=kgT/m7» andl, is the modi- over, at small damping#<10~?) and large enough cou-
fied Bessel function. The overdamped limit was studied anapling between the modesvp<<0.5 for the “channel” poten-
lytically in Refs.[9,10]. The coupling between the modes tial and w,<0.75 for the square potentjathe functions
produces the so-called entropy barriers. In the cagedd, D(#n) coincide as well within the accuracy of our simulation,
when the channel is wider at the saddle point than at thand behaves according to the power I&@ywith o=1/3. In
minimum, the entropy barrier is negative, so that it worksthe case of square symmetry and=0.1 we made simula-
against the energy barrierand thus leads to an increase of tion down to very small frictiony=5x10"° to see whether
the diffusivity. From Fig. 1 one can see that this effect re-there were changes in the slope. These low-friction data also
mains approximately the same for intermediate frictionssupport the evidence that the slope is close to 1/3.
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As a next example we consider the “most isotropic” two- case of wide barriersg=0.99) and the case of narrow bar-
dimensional substrate potential, the one with the triangulariers (g=—0.99). Figure 3 demonstrates that the same is
symmetry, true for pure 2D cases. Both the square potertiaih dif-
ferent couplingsw,<0.75) and the triangular potential give

1 y 1 2y the dependenc® « 2. This leads to the scalin@) of the
V(X‘y)_i 1-cosx CO%+2 1 Co%) - @ jump length with the exponent, =(1+0)/2=2/3. In Fig.

3(d) we plotted also the fiD o« 7~ "2 proposed by Cheat al.

The minima of the potential8) are organized into the trian- [26]. One can see that such a dependence may be used for an

gular lattice with the period= 2. The atomic vibrations at interval of intermediate frictions only, 0.8d%<0.1, but it

the minimum are symmetricw,=w,=wo=1. The NN cannot be considered as the low-damping asymptotic behav-

minima are separated by saddle points with the bawier ior.

=2. The maxima are approximately flat and produce the To study long jumps in more detail, we calculated the

hexagonalhoneycomb lattice. The transverse frequency at distribution of jump length®(\) and the escape rakfor a

the saddle point is smalk,=1/{/3~0.577. The potential fixed value of the damping coefficient=0.01. We assumed

(8) is widely used in studies of atomic layers adsorbed orthat the atom is trapped in a given well if it has sojourned in

isotropic triangular and hexagonal substrd@k32 as, e.g., this well for a time lapse not shorter thans2 * [17,19,21.

the (111) surface of the bcc crystal. The simulation results forThe results are presented in Figs. 4 and 5. In agreement with

the triangular substrate potential are presented in Rid).. 3 the results of Refd.17,21], the distributionP(\) undergoes

Comparing the dependen€¥#) of Fig. 3(d) with those of a fast drop for short jumps=(2-3)a and then approaches

Figs. 3a-¢ for the potential with square symmetry, we seeto a slower exponential decay. Surprisingly, this drop is

that again they are qualitatively similar. much larger in the 1D system than in the 2D lattice with
In the previous worK10] we found numerically that the strong coupling between the modes, the probability of jumps

activated diffusion in the channel of varying width at sm@ll  for several(2-5) lattice constants in the 2D system is much

can be fitted by the power la{b) with o=1/3 both for the larger. The very long jumps\(>10a) are, however, sup-
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FIG. 4. Distribution of jump length®(\) for a fixed damping 10" 3

7n=0.01 for the triangular and square substrate potentials.

¢ O square @=1.0 oo 6,=0.902

pressed in the 2D system, thus the average jump lefidth I * square 001 ----- 6,060 |
decreases when the coupliggpecomes strong enough. Ac- A triangular lattice 6,=0.879

cording to Fig. 5{\)~3.5a in the 1D case and decreases to 10° 1(')_3 : S— '1(')_2

n

(\)~3a at w,=<0.5. The decrease in the jump length due to
2D effects is, however, not too strong. Figure 5 demonstrates FIG. 6. (a) Average jump lengti{\) and (b) escape rat® as

aﬂso that thefescap;]e r;ﬁégrows f?lsl thellc:puplrl]ng |ncre.asgst,) functions of the damping constant for the 1D caseopen dia-
the escape from the 2D potential well is characterized by "f‘nonds), the square potential with strong coupliigg=0.99 (solid

higher probability. _ diamond$, and the triangular latticésolid triangles. The lines de-
From the simulation results presented above it becomegyine the power-law fit.

clear that the earlier results of Chenal. [26] and Caratti
et al. [27] correspond in fact not to the low-damping

asymptotic behavior but to a crossover region of intermedi—values of the damping in the interval 19< 7<10"2. The
ate frictions. The result=1/3 ando, =2/3 obtained in the ¢ is presented in Fig. 6 can be fitted by power laws

present work, seems to be more close to the asymptotic vah( 7)< 77" and(\(7))= 5 with different exponentsrg

ues. A complete numerical study of the case of very IOWand o, . The escape rate exponami~0.9 is close to the

damping (7= 10"?) is, unfortunately, too time consuming. gy act'1p valuarg=1 which should not be changed for the
Howﬁge“ in the case where we Ealcylsated downmte5 oy system[25]. A small decreasing obrr from 1 can be

X 1(.) the slope optamed a_lrounal— 1(.) was c_onflrmed_ explained by a beginning of the crossover to the intermediate
To find an asymptotic behavior &f and its multipliersR and damping regime where=0 (e.g., see Fig. 3 in Ref33))

The results for the exponeni, are, unfortunately, much less

(\) for small », we calculated them separately for three

O o soor definite. The simulation leads t@, ~0.45-0.55 for the 2D
:fquare attice: m=1 T=1/ 11_/ system, which is much lower than the valog=2/3~0.67
sal T " 104 predicted by theD ()= " dependence.
) Finally, we considered the case of a substrate potential of
{03 hexagonal symmetry. Contrary to the potentials discussed
Q Su above, in the honeycomb lattice the path connecting the
Y lop ™ next-nearest neighboring sites does not coincide with a
straight line. Thus a ballistic motion corresponded to long
loa jumps should be suppressed, and the average jump length
) may be strongly reduced. We constructed the hexagonal sub-
strate potential as a product of two triangular potentials ap-
2= T T 0r o6 o3 10™ propriately scaled and shifted with respect to one another,
('02
3 X y 1 2y
FIG. 5. Average jump lengtb\) in units of a (left axis, solid V(x,y)=0.64 E—cosﬁcosg—zcos?
diamonds, and solid curyend the escape raf (right axis, open
diamond, and dashed cuivi®r the 2D lattice of square symmetry 3 X y+m 1 dy+mw

as functions of the transverse frequeney at the saddle point for X
7=0.01.

- +C0S—CO0S + =sin

g heosgeos3 TS |- ©
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FIG. 7. Diffusion coefficientD versus the damping constant
for the substrate potential of hexagonal symméy

The minima of the potentiald) are organized in the honey-
comb lattice as, e.g., on the graphite surface. The NN
minima are separated by the spacarg 27+ and the energy
barriere=2. The frequency of small-amplitude vibration at
the bottom of the potentidb) is wy~0.98. .
The simulation results for the dependeri2ér) are pre- FIG. 8. () Average jump lengti(\) and (b) escape rat® as

sented in Fig. 7. One can see that now at small frictions functions of the damping constant for the hexagonal potential
— e e ' lid diamondgsand for the triangular latticéopen triangles The
<102, the diffusion coefficient goes to a plateds 7°. (so

Such a behavior reminds us that of the intermediate dampinl\c']neS describe the power-law fit.

regime, when the TST operates. In the present case, however,
the diffusion coefficient approximately does not depend orthat D does not saturate aj—0, but it increases with an
the friction because of the compensation of the decrease @Xxponento~1/3.
the escape rate and the increase in the jump length as shown
in Fig. 8.

Thus the simulations predict that, is within the interval lll. DIFFUSION WITH VELOCITY-DEPENDENT
1/2< 0, <2/3. The following speculation leads to a conjec- DAMPING
ture thato, =1/2 for all 2D systems where theandy de- A. Phononic damping
grees of freedom are coupled. Indeed, if the 2D external
potential V(x,y) is not separable, i.e., if it cannot be pre-
sented in the fornv(x,y) =V(x) +V(y), the Newtonian mo-
tion in the conservative system should be stochastic in
general casg34]. For some initial conditions the atomic tra-

As was mentioned in the Introduction, the energy ex-
change between the moving atom and the substrate is caused
Qy the electromagnetic angth mechanisms which are ap-
proximately independent on the atomic velocity, and by the
jectory is regulafe.g., the atom oscillates in the same poten-phonOn mechanlsm' whu;h strongly depends on the veIouty.
For a general atomic trajectory, the energy loss due to exci-

tial well or moves ballistically over the barrigrsfor other i £ oh i th bsirat be found icall
initial conditions the motion is chaotic and corresponds to-aton orphonons in the substrate can be found humerically

anomalous diffusiof34,35, (r?)oct” with 0<»<1. For the only by, eg. the MD technique. However, for small-

atoms that cross the barriers and have energies within a n ?U;?/:/lttljld?hwbdrag]or;ﬁ ofmthehatr?immat Lhev b%tto': Otf t(;]ie dp(i)r:e;_
row “skin” layer close toe=2, the atomic trajectories are a wet, the damping mechanisms have been studie e

. . ) . tail theoretically as well as experimentally by different
close to the separatrix trajectory in the X) phase space, S0 gpectroscopic methodgs). The rate of decay of the energy

one could expect that these trajectories will be totally chaoticys the atom vibrating with a frequenay due to one-phonon
and thus the motion will be pure diffusional~1. If we damping mechanism is equal 28,36

now include the external damping, then in the limi-0 the

jumping atoms all belong to a thin skin layer of width T m

~(7T)¥2 (e.g., see Refg1,21]), so their trajectories should (@)= 5 szp(w)- (10

be close to the chaotic trajectories of the conservative system S

for timest< 1. Thus one could predict that, =1/2 and

o=0 in the »—0 limit. The local density of phonon stajgw) at the surface of a
This line of reasoning seems to work well for the case ofsemi-infinite crystal can in principle be calculated for any

the hexagonal honeycomb lattice, where straight trajectoriesrystalline structure. However, we will use an approximate

are not possible, while in the other cases our data indicatexpressior{36],
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20 2 2\3/2 > -
plw)= 33% (11) dg(t) =K, (q)dt+ >, Gin(q)dwi(t),
ar m

m

which has the correct behavior in the limits—0 and w (dwp(1))=0, {(dw(t)dw,(t))= Sndt, (13
—wpy. The one-phonon damping mechanism operates for
frequencies lower than the maximuidebye frequencyw,,  where the first term in the right-hand side of the first equa-
only, and its rate is small at small frequencies w,,, where  tion of the set(13) is called the drift term and describes the
7pn(@) < 0. At @>wp, the phonon damping is due to mul- action of the regular force, and the second term is called the
tiphonon mechanism and is characterized by a vE2836  diffusion term and describes the action of the random force.
7oh=10"2wg. The function 7,,(w), Eq. (10), achieves its The set of equation&l3) is equivalent to the Fokker-Planck
maximum 7~ 1.47w,m/ms at = (4/7)"w,~0.76w,. equation

Although Eq.(10) describes the rate of phonon damping
for the harmonic oscillations, one may expect that it will lead (@G0 3
also to a reasonable accuracy for Brownian motion of atoms, __~ "~ _ _ ' ﬁ[Kl(q)f(q't)]

if we will use w~ wq for the atoms vibrating close to the ot

bottom of the potential well, ane~ w,,s=(27/a){v) for 1 2

the atoms flying over the barriers with an average velocity + = Gin(9)Gim(q)F(Q,t

(v) when the velocity oscillates with the washboard fre- 2 47 90kdq Em: nl(@) Gl ). )
guencywy,sh- In the Langevin equation, however, we have (14)

to use a dependence of the damping coefficient on the instant

velocity of the atom[in a rigorous approach based on the o i -

n(w) dependence, the diffusion will be non-Markovian andfor the distribution functiorf (q,t). _

the Langevin equation has to be replaced by a more compli- T0 obtain the Langevin equatid@), we have to putin Eq.
cated integro-differential stochastic equation, see R&f. (13 di=x andd,=v (to shorter notations, we consider a
and references therdirTo couple the atomic velocity with Single atom with one degree of freedom onlK,(x,v)

the frequency in Eq(10), we will use the relationshipp =0, Ka(Xv)=—n(x,v)v=V'(x)/m, and G;;=Gy,
=(2m/a)v. Thus in what follows we use the damping coef- =G21=0. The unknown functionGpy(x,v) in Eq. (14)
ficient is coupled with the random forcéF in Eq. (2) by the
relationship SF(X,v,t)/m=Gyy(x,v)dw,(t)/dt, so that

(V) = Pin+ M 2770/, (12) (6F (x,0,t") 6F (x,v,t))=m?G3,(x,v) 8(t—t'). The corre-

sponding FPK equation takes the form

where 7, describes the velocity-independent contribution
to the external dampin¢the total action of the electromag-  f af V' (x) of

netic, e-h and multiphonon damping mechanismsand EJFU&_ m  ov

7pon(@) is given by Egs(10) and(11). In the simulation we

put 7,in=0.01 which is in agreement with the discussion d Jd 5

presented above. = ’7(X'U)< vt o (x0) EGZZ(X’U)> f(X,v,t)}.
The approach described above should lead to a good de-

gree of accuracy for fast atoms that cross many saddle bar- (15

riers and correspond to long jumps, which is of the main
interest of the present work. As for atoms that move around The Maxwell-Boltzmann  distribution f(x,v) = exp{
well bottoms, their average velocity is~vr=(T/m)*%  —[imu2+V(X)]/ksT} must satisfy Eq.(15). Substituting it
while the vibrational frequency isso=(s/2m)*2 For the into Eq. (15), we obtain the following equation on the un-
parameters used in the simulation=(1/3 ande=2) we  known functionG,(x,v):
havev1~0.577 andwy=1 for m=1. Thus the total damp-
ing is close to the interval of intermediate frictions, where
the TST operates and the escape Rtgpproximately does -
not depend on the damping, so that the described approach v kgT
should lead to a correct description of the escape rate as well.

Because the standard technique of Langevin equations ai-is easy to check that Eq16) has the solutiorG%Z(x,v)
sumes a constant damping coefficient, in the next subsection 2 5,(x,v, T)kgT/m, where
we develop the technique for the case when the damping
depends on the velocity.

&Gz(x,v) mu
= GZ(x,v)+25(x,0)v=0. (16)

2kgT

€.

(17)

nR(x,v,T)=J dee < y[x,v(€)],0%(e)=v?+
B. Langevin equation 0

In a general case the stochastic equation for a measurable
variableﬁz{q,} has the following forn{37]: Indeed, from Eq(17) we have
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FIG. 9. The coefficientp(w), Eq. (17), which determines the FIG. 10. Diffusion coefficienD (times the mass) as a func-
amplitude of the random force according to E81), for different  tion of the atomic masm for the 1D sinusoidal substrate potential
temperatures. with different Debye frequencieso,,= (small open circles and

dotted curvg ;=10 (solid diamonds and dashed cuyvend
wn=1 (open diamonds and solid cupve

KeT d7r(v) kBTF __on(v)
— =——| dee
0

1%
Mo v mu dv v substrate. To study a role of,, we made simulations for

. B (97](;) two values ofw,,, for a realistic(in our dimensionless units
= f doe ) "~ (18  valuewy,=10, and also for a quite small valug,=1 which
[v] v may correspond to a soft substrate with low-frequency pho-
non spectrum, when the phonon damping could be very im-
Then, integrating by parts, we obtain portant.
KeT 97m(0) m Because we fixed the mass of the substrate atoms in our
Rl omRr\V) _ M ey T dimensionless unitsnfs=1), now we will vary the mass of
mv  dv 7o)ty va|dve v(v). (19 the diffusing atom in a wide rangm=10 2-1C". In this

case the frequency,=m 2 changes from 10 to 0.1, so
or even for the largest mass= 100 we still haven,,<w, and
may occur in the regime of small or intermediate friction.
kB_T dnr(v) _ " f"’d e Let us first consider the one-dimensional substrate poten-
mv  dv 7v) 0 ce “lv(e)] tial. The dependence of the diffusion coefficidhton the

atomic massan is presented in Fig. 10, where the functions
=—n(v)+ nr(v), (20 p(m) for wy=1 andw,,=10 are compared to that for the
, L case when the phonon damping is abdém curve forw,
which satisfies Eq(16). _ _ =0 in Fig. 10, wheren= 7,,,=0.01 so that the value of the
Thus the random forc@F(t) in Eq. (2) in the case of g sion coefficient is close to thg— 0 limiting value Dg
yelocng—dfependeng fnr(]:uon coleff_|C|e?t must be determined,_ 7DA/2~0.13h). Also, in Fig. 11 we show the average
instead of Eq(3), by the correlation function jump length and the escape rate as functionsndfor the
P\ o same values ob,,.
(OF(OF(L))=2nr(v)migTo(t-t"), @1 Due to phonon damping the total friction coefficient in-
where the coefficientys(v) is defined by Eq(17). If the creases. This leads to an increase of the escap& rhté the

external damping does not depend on the velocity, we hav8Verage jump Iength)x}_decreases, and the common actior_l
of both effects results in a decrease of the diffusion coeffi-

f@?ggin ?ksg)Lallr?ge\t/Trf eséﬁgggf expression for the ranclomcientD. Let us _first consi.der a realistic casewf,= 10 plot-
The coefficient 7z as a function of the frequency ted by open dlamo_nds_ln Figs. 10 ar12d 11. When the atom
= 2v/a for different temperatures is presented in Fig. 9. 90€S Over the barrier, its energy isn N_‘zzz’ so that
One can see that a deviation pf(w) from 7(w) is more ~2/Jm. Thus, for the lowest masn=10 ? plotted in the
essential at small frequencies and becomes important fd{9ures, & characteristic atomic frequeney-20 is higher
temperatured > 10‘2mw§1(a/27r)2 only. than the Debye frequenay,,= 10, the one—phono.n damping
does not operate, the average jump length is lafge,
>10a, and the diffusivity is high. Then, when the mass
increases within the interval 16<m<10"!, we havev
The rate of phonon dampiri&qgs.(10) and(11)] depends ~20-6, so that the washboard frequeney:2nwv/a pen-
on the Debye frequency,, which is a characteristic of the etrates into the phonon zone, the one-phonon mechanism

C. Simulation results
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100_"| LA | T T T T
[ m=0.3 T=1/3 nmm=10'2 triangular lattice ]

<Afa>

10

FIG. 11. Average jump lengtt\) and the escape raf (insej)
as functions of the atomic mass for the 1D potential withw, FIG. 12. Diffusion coefficientD as a function of the Debye
= (small open circles and dotted cujye,,= 10 (solid diamonds ~ frequencywy, for the substrate potential of triangular symmetry
and dashed curyeandw,,=1 (open diamonds and solid cujve ~ (M=0.3, T=1/3, and#p;,=0.01).

starts to work, the damping sharply increases, goes througbne-phonon damping does not operate because of large ve-
the largest value)~ 1.4Tmw,,~ 1 corresponding to the over- locities of atoms which cross the barriers. For intermediate
damped case, and then decreases down to values correspoMalues of the Debye frequency,,~3-10, the jumps are

ing to an intermediate-friction regime. Simultaneously themainly for one lattice constant. Although the escape rate is
jump length decreases to\)~a, while the escape rate high for these Debye frequencies, in total the diffusivity is
grows as shown in Fig. 11. Then, with further increase of thdower than in the case of absence of phonon damping. How-
mass in the interval I0"<m< 107, the total damping corre- €ver, even in the worst case the probability of jumps longer
sponds to the intermediate-friction regime, so that the jumghan one lattice constant is still not negligibR(2a)/P(a)
length remains smal\)=a, and the escape rate and the >0.1, if the atomic mass is smath<1.

diffusion coefficient decrease witim, DxRxwgxm™ 12,

Note that for large masses> 10, the phonon damping co- IV. CONCLUSION

efficient decreases back to the region of small frictions be-
cause of zpcv®ecm™2, but the long jumps are still sup-
pressed due to large mass of the atom.

A similar behavior demonstrates the “soft” substrate with
wn,=1 (see open diamonds in Figs. 10 and.1ilow the
one-phonon damping mechanism comes into playmat
~wr;1=l. It is interesting that around this point, &8
<3, the diffusion coefficient remains as high as it was for
the 7,,=0 case. Although the jump length decreases to
(\)~a, the escape rate sharply grows and compensates the
decrease of\).

Thus long jumps have to exist for a small mass of the
diffusing atom,m< wrgl, when the atom goes over the bar-
riers so fast that the washboard frequency exceeds the maxi-
mum phonon frequency of the substrater w,a/27, and
the one-phonon damping does not operate.

Finally, let us study a common action of the phonon
damping and the two dimensionality of the substrate poten-
tial. We choose the substrate potential with the triangular
symmetry, a relatively small mass of the diffusing atam
=0.3 so that long jumps may be expected, and will vary the U " = =10
Debye frequency in a wide range 16<w,<10?. The
simulation results are presented in Figs. 12—14. As expected,
the diffusivity is large and the long jumps exist in two re-  F|G. 13. Average jump lengthieft axes, solid diamondsand
gimes, for large values ok, when the phonon damping the escape ratéight axes, open diamongas functions ofw,, for
coefficient is small, and for small values af,, when the the triangular substrate potential.

Thus in the present work we studied the role of long
atomic jumps, or flights, in the activated surface diffusion.
First, we analyzed the effects of two dimensionality of the
substrate potential, when tlxeandy degrees of freedom are
coupled. Simulation results predict that in the underdamped
limit the average jump length scales with the damping coef-
ficient as(\ Yo = 7 with 1/2< o, <2/3, so that the diffusion

A 01

<Ma>
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' T ! g spacing substitutes more than 10% of the jumps to the NN
"‘\?1:0'3 T=1/3 m,,=0.01 triangular lattice sites.
; Thus, atomic jumps over a distance of 2—-3 lattice spacing
are not negligible for most adsystems. The two-
dimensionality effects even increase the probability of such
jumps, although in total the average jump length decreases,
the very long jumps are suppressed in 2D systems. The
phononic damping which always operates in the case of sur-
face diffusion, also does not kill long jumpsni<mg. Thus
the approach based on the lattice-gas models of surface dif-
fusion [38], where the jumps to the NN sites are taken into
account, can often claim to qualitative description only. Al-
10% h - though it is easy to include multiple jumps in the LG model
1 2 3 4 5 [39], the increase of the number of poorly defined parameters
Aa makes such an approach not manageable.
Experimentally long jumps can be detected using surface

FIG. 14. Distribution of lengths of atomic jumps on the trian- imaging techniques, when one makes “snapshots” of atomic
gular lattice for a realistic velocity-dependent friction coefficient, configurations before and after an atomic jump. There are
Eq. (12), for different values of the Debye frequency. two techniques of this type, the field ion microscao®fM)
and the scanning tunneling microscop$TM). The FIM
method, unfortunately, operates only for adatoms which do
not evaporate at huge electric fields>10® V/cm). The
STM technique can in principle be used for any substrate/

universal in thep— 0 limit for all nonseparable 2D substrate ) ; .
potentials. Our data support this conjecture only for the hex@datom pair, but a speed of taking a snapshot is much slower
than in the FIM. For both experimental techniques one

agonal symmetry potential, which has no straight diffusion - .
paths, while for the other potentials, which have straight dif-Should try to follow for the motion of a single adatom and to
fusion paths, the exponentis close to 1/3. avoid collective effects due to interaction between adatoms.

The most important is to choose the adatoms which cannot

Second, we proposed a realistic friction coefficient for the . ;
phonon damping mechanism, which describes the energy eRenetrate into the substrate, because otherwise one may ob-

change between the diffusing atom and the substrate. gserve “fictitious” jumps over large distances as, e.g., in the

cause the rate of phonon damping strongly depends on trPlitonic-exchange diffusion mechanisi#0]. - Probably,
frequency associated with the atomic motion, we had to defamely such an effect was recently observed experimentally

velop the technique for Langevin equations with a velocity-[41|]:'_ I Id lik . . : f
dependent friction coefficient. The simulation of diffusion in inally, we would like to mention an interesting case o

this model showed that long jumps do exist in the case Ofiif'fus,ion of_adsprbed clus:ters, for_ e_xample, the practically
adatoms of small massesi<m,. The long jumps are the Important situation of motion of Sidimers on the $100
S surface. In this case the energy exchange between the vibra-

most important in two limiting cases, in the case of a large> ) .
Debye frequency of the substrate, when the rate of phonoHonal' rotational and translational degrees of freedom may

damping is low, and in the case of a small Debye frequencyStrongly affect the dimer diffusivity.

when the one-phonon damplng_mech_anlsm_ is meffeqtlve, be- ACKNOWLEDGMENT

cause the atoms cross the barriers with a high velocity. How-
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coefficient behaves aB o7~ 7 with 0<¢=1/3. One can
make the conjecture that the dependeftes° could be
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