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Supersonic and multiple topological excitations in the driven Frenkel-Kontorova model
with exponential interaction
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The criteria for the existence of supersonic and multiple topological excitatiings) in the driven
Frenkel-Kontorova mode{a chain of atoms placed into an external periodic potentiath anharmonic
(exponentigl interatomic interactions are studied.

PACS numbgs): 45.05+x, 82.20.Mj, 63.20.Ry, 05.66-k

I. INTRODUCTION (subsonic as well as supersonin the case of anharmonic
interaction were also studied numerically by Zolotaryuk
Topological excitations play a very important role in sys-et al. [9]. It was found that these multiple kinks are asymp-
tem dynamics, because they are responsible for mass aetically unstable. The dynamics of the generalized FK chain
charge transport in solids and on crystal surfaces. As classflriven by a dc external force was studied numerically in
cal examples, one can mention dislocations described by tHd 0,11, where we observed the existence of supersonic kinks
Frenkel-Kontorova(FK) model [1], where the topological and multiple(double and triple at leaskinks. Recently, the
excitations correspond to kinks that describe local compresgXistence of multiple kinks for certain kink velocities in the
sion or expansion of a commensurate structure. The FiiscreteFK-type model was proven rigorousfg2].
model has numerous applications in superionic conductivity, _The aim of the present paper Is to find the.crltena.for'the
surface physics, hydrogen-bonded chains, Josephson jun_@_(lstence of supersonic and multiple topological excitations

tions, tribology, etc(e.g., sed2] and references thergin in the FK?type models. We will show_that, first, the model
In the continuum limit approximation, the equation of must bediscreteas was already mentioned above. Second,

motion of the FK model reduces to the exactly integrablebecause kink's motion in a discrete chain is damped due to

. : . . radiation of phonons, we must appdydriving forceto sup-
;me-Gordor‘(SG) equatlon: But in COT“'”““"? models, even port the motion(this point was lost in the previous studies
in a model with anharmoniut loca) interaction, the topo-

. o : ) 3-5,7-9). Third, the interatomic interaction must lze-
logical excitations are always subsonic, the kink cannoyamonic Under these three conditions, the model admits

propagate with a velocity larger than the sound speed ot supersonic kinkand multiple kinks

because of Lorentz contraction of kink’s width. Moreover, in  The paper is organized as follows. The model is intro-
the classical FK model, the kinks of the same topologicaljuced in Sec. II. Then in Sec. Ill the problem is studied with
charge repel from one another and, therefore, they cannot
carry a multiple topological charge.

However, simulation demonstrates that supersonic kinks
as well as multiple kinks do exist. For example, Fig. 1 shows
the propagation of supersonic single and double kinks in the
FK model with exponential interatomic interaction. The mo-
tion of topological solitons withsupersonicvelocities was
firstly predicted, to the best of our knowledge, analytically
by Kosevich and Kovaley3] in the FK model with some
specific interatomic interaction in the continuum limit ap-
proximation. Later, supersonic topological solitons were ob-
served by Bishoet al. [4] in molecular dynamics study of
polyacetylene. Then the supersonic kinks were studied nu-
merically in the discrete FK model with anharmonic interac-
tion by Savin[5]. It was shown that for certain supersonic
kink velocities, when its width coincides with that of the
corresponding Toda solitof6], the kink propagates almost
without energy lossesMultiple fast (but subsonig kinks
were firstly observed numerically by Peyrard and Krugkal
in the classical highly discrete FK model. Alfimet al. [8]
have shown that multiple kinks exist also in continuum sys-
tems withnonlocalinteraction. The bounded states of kinks  FIG. 1. Atomic trajectories of the FK model with exponential

interaction forg=1/7, g=1, and »=0.05. (a) The single super-
sonic kink, f=0.45, v,/c~1.28, and(b) the double kink, f
*Electronic address: obraun@iop.kiev.ua =0.60, vy /c~1.75.

(a) f=0.45

time
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the help of the continuum limit approximation. We show thatit leads, in the first order of the discreteness parameter, to the
if the discreteness effects are properly taken into account, thequation
model formally allows both supersonic kinks and multiple

kinks. Moreover, we prove that for a given set of parameters U+ gu—d2u”(1— adu’) +sinu—f
the model admits either the single-kink solution or the - )
double-kink solution, but not both solutions simultaneously. —h“u"+(u")“sinu—u"cosu]=0, 3

Numerical solution of the corresponding ordinary differential ) ) o ] )
equation, which can be obtained with any desired accuracy¥hered=ayg is the width of the static kinkg is the elastic

does show the existence of supersonic and multiple kinks. igonstant defined ag=V"(a)=V,8”exp(-4a), the anhar-
Secs. IV and V we develop an approximate variational apMmonicity parameter is defined as
proach that helps to find the conditions for existence of su-

personic and multiple kinks. We show that supersonic kinks av”a) B
may exist in the model with anharmonic interaction only, e R (4)
and the multiple kinks may be stable for supersonic veloci- V'(a) g

ties only. These conclusions are confirmed by simulation.

Finally, Sec. VI concludes the paper with the comment that

2_ 42 — 2 H i
supersonic kinks and multiple kinks may be considered agnd the parametd_n =ai12=m /.3 describes th_e discrete-
“disturbed” Toda solitons. ness effects. Looking for a traveling-wave solution of B].

in the formu(x,t) =u(x—vt)=u,(z), we obtain the equa-
tion
Il. MODEL
. _ , _ - h%2u)"+ (c?—v?—hZcosuy)uj + h%(uy)?sinu,— ad3uju,,
We consider the chain of atoms placed into the sinusoidal
substrate potential and driven by a dc fofcapplied to all + poug—sinu+f=0, (5)
atoms, so that the equation of motion is

wherec=2m./g is the sound spee@n our system of units

. : ] c=d).
X (1) + nx (1) + K[V(X'”_X') +V(X—X;_1)]+sinx(t) Although the traveling-wave ansatz may be too crude due
! to radiation of phonons by the moving kirlke.g., see Fig.
—f=0, (1)  1(@], Kink's asymptotic can be found with the help of Eq.

(5) rigorously, because the radiation has to decay due to

nonzero damping coefficien in the model under consider-
tion. Atz— oo, substitutingu,(z) — us<exp(-zd,) into Eq.

5), we obtain for the kink widttd,(v) the equation

wherey; is the coordinate of théth atom, 7 is the external
viscous damping coefficient introduced to compensate th
driving force, and

dj cosus+d3 v —d?(c?—v?—h? cosus) = (hv)?, (6)
V(X)= Vo exp(— Bx) 2

where cosy=(1—f?)2 Similarly, we can find the tail
describes the exponential repulsion between nearest neigsymptotic behind the kinky(z) — (us+ 27p) <exp(d,) at
boring atoms. We assume periodic boundary conditions wit#— —; the widthd,(v) has to satisfy the same equati@)
the number of atomdl=Ng+ p, whereNy is the number of ~but withv— —v. One can see that at low velocitigs| <c,
wells of the periodic potential, so we have one multiple fthe dlscreteness_ effects lead to a decrease of the kink width
kink (p excessive atomsinserted into the commensurate in agreement with theor{2]. However, now Eq(6) has a
structure. Similarly, to the Toda modd)], one may add also solution forany kink velocity v. Thus, the discreteness ef-
an attractive linear interaction, so that the interaction reducef€Cts remove the restrictiofy|<c of SG-type equations.
to the harmonic one in the limiB—0 (the classical FK Now even for the classical FK model with harmonic interac-
mode) and to the hard-core interaction in the opposite limittion the kink may move with any velocity.
B— . Throughout the paper, we use the dimensionless sys- A kln'k .solutlon. corresponds to a separatrix of the con-
tem of units, where the atomic massnis=1, the period of ~ tinuum limit equation. To find the separatrix of E§), let us
the external potential ia=27 and its amplitude iz=2.In  normalize the coordinate=z/d, the velocityv =v/c, and

these units, a characteristic frequency of atomic vibration at gefine the dimensionless discreteness parameteh/d

minimum qf the external potentia}l ®o=1, a characteristic =1/y12g. Introducing the new variablé=u(2) and the
time scale isro= 27, and the maximum value of the external . )~ .
functionw(&)=u,(z), Eq. (5) can be rewritten as

dc force, when the minima of the sinusoidal substrate poten-

tial disappear and the topological excitations cannot exist ~
anymore, 5 = 1. boiod (RZ2LW (OW(E)+ AW (W (EW(E)+[W' (£)]°]

—aw’ (HW(&) +(1—v>—h’*cosw’ (£)
[ll. CONTINUUM APPROXIMATION — - )
+(h2sin&)w( &)+ pulw(€)—siné+f=0. (7
The systematic procedure to derive the equation of motion
in the continuum limit starting from the discrete lattice wasA (multiple) kink solution has to satisfy the boundary con-
proposed by Rosend3]. For the anharmonic FK modél) ditions uy(— ) =us+27p, u(+*)=u;, u(£»)=0, or
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w(us+27p)=w(us)=0. (8) merically either the continuum-limit equatigi) or, better,
the original discrete mod€ll). The approximate variational

For example, ifw(&) is a separatrix for the double kinlp(  @pproach described below essentially simplifies this task.
=2), it has to connect the point€€u;+4m,w=0) and
(é=u;,w=0). However, due to periodicity of the substrate IV. SUPERSONIC KINKS
potential, the functionw(&+27) must correspond to the
separatrix solution as well. Thus, on théW) plane the
separatrices of the multiplep&2) kinks must intersect at
some point withv# 0. One can show that in the model with-
out the discreteness effects=0, when the phase space of
Eq. (7) is two-dimensional, such intersections are forbidden E[u(z)]:J dz

It is easy to show that in the casefof =h=0, Eq.(5)
corresponds to an extremum of the following energy func-
tional [15],

3

c®—v? ad
(u’)z—T(u’)3—cosu .

[14]. Thus, Eq.(7) with h=0 allows neither supersonic 2
kinks nor multiple kinks. On the contrary, bt~ 0 the phase (12)
space of Eq.(7) is four-dimensional, thus the separatrices o ;
corresponded to multiple kinks may not intersect, and muI—SUbStItUtIng a simple SG-type ansatz
tiple kinks are allowed in principl¢12]. Thus,the discrete Usa(Z) =4 tan L exp — 2/dq) (12)
model formally allows both supersonic and multiple topo-
logical excitations into Eq. (11), we obtain
Although we cannot find the separatrix solution analyti-
cally, the ordinary differential equatiof¥) can be solved c2—p2 27 3
numerically with any desired accuracy. Thus, if one could E(deﬁ):4d—ﬁ+ ?ad—2+4deﬁ. (13
e

find a separatrix solution corresponded to supersonic or mul-
tiple kink, this will prove their existence. Indeed, looking for o ) ,
a separatrix solution numerically for thg=1/7 and 7 Although t_he va_rlatlonal approach does not de_scrlbe rig-
—0.05 case, we found that at small discretengss10, so orously the kink tails because of neglecting the discreteness
thath~0.09 anda~0.1, the separatrix solution correspondse.ffe(,:ts’ it allows us to find analytically the shgpe of the
to0 the 2o Kink at forces’ as large ds=0.9, when the kink is kink's core and, therefore, to calculate approximately the

. . . kink velocity for the model with anharmonic interaction. In-
supersomcuk/c~41.13.~0n the other hand, for higher dis- deed, Iookixg for extrema of the functid®(dg), we come
cretenessg=1 so thath~0.29, we saw the 2 kink at f to the equatiorE’ (deg) =0, or

<0.2 whenv,/c=1, and the 4r-kink at f=0.6 when
v /c>1.3.Thus, both supersonic kinks and multiple kinks do

eff

2

v w
exist at least for some particular choices of model param- K3= 1_(E K+ 3 (14)
eters.
Near kink's tails, z—=x, e.g.,, for {=ug+27n+e€,  where we introduced the new variable= deg/d. For the
where|¢[<1, we can use the expansion harmonic interactione=0, Eq. (14) has a solution fofv|

<c only, which describes relativistic narrowing of the SG
kink, k=[1— (v/c)?]¥2. But for the anharmonic interaction,
a>0, Eq.(14) has a solution foanykink velocity v, includ-

ing supersonic velocitie|>c. We emphasize thauper-
wherea;=w’(u;), a,=w"(u¢), etc. Substituting this expan- sonic excitations are possible for kinks (local compressions)
sion into Eq.(7) and grouping together the terms of the sameonly.

1 1
W(§)=a1€+ §a2€2+ €a363+"', (9)

power ofe, we obtain the following equation fa; [cf. with Considering the kink as a rigid quasiparticle, the kink
Eq. (6)], effective mass can be introduced (8sg., sed2])
h%2aj+(1—v?—h?cosu)as+ yua; — cosu;=0, mkzifwdz[u’(z)]Z: 4 _ (15
(10 al de

which always has two roots, one positive and one negativeThen, assuming that kink’'s parameters at nonZed 7 are
for any kink velocityv. Then, equating the terms for higher the same as those for tlie- =0 case, the steady-state kink
powers ofe, we obtain the relations that uniquely determinevelocity can be found approximately from the equation
the coefficients,, as, etc. Thus, the separatrix solution of

Eq. (7) is unique i.e., for a given set of system parameters vi=fimgn=mctr(v)/4n. (16)

the model has either the single-kink solution or the double- . )

kink one but never both solutions simultaneously. Using Eq.(16), Eqg. (14) can be rewritten in the form
Thus, we have demonstrated the existence of supersonic )

and multiple kinks in the driven discrete FK model with 1+(7T_f K3:K+Za 17)

anharmonic interactior{note that the discreteness of the 4n 37

model and the anharmonicity of the interaction are the nec-
essary conditions But to find the parameter range for their Numerical solution of Eq(17) allows us to find the function
existence(the sufficient conditions we have to study nu- v{"®)(f) that is shown by the dashed curve in Fig. 2 together
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FIG. 2. The velocityv, of the single kink versus the force for FIG. 3. The same as in Fig. 2 for the double kink. Inset: the
B=1/m, g=1, and»=0.05. The solid curve is for simulation re- effective energyE(r) of the double kink as function of subkink’s

sults, and the dashed curve, for variational approximation. Inset; théeparatiorr for fixed kink velocitiesv,=0, 0.9¢ and 1.8c.
critical kink velocityv () at the fixed forcef =0.5.

repelled from one another. On the other hand, for the anhar-
with the dependence,(f) obtained by solution of the dis- monic FK model the functiof(r) has a minimum at some
crete equation of motiofil). One can see that in the anhar- I =I'min<%, SO two klnk_S attract one anc_;ther and thus have to
monic model we always have(k"a’)>c at f—1, and al- couple into a double kink. The “dissociation” energy of the
though the simulation velocity is lower tha’f(var) due to double kink is very small at subsonic velocities, but becomes

additional damping of the moving kink because of phonon!i9h €nough at supersonic velocitiege inset in Fig. B The
radiation, the discrete kink still may reach a supersonic ve-SiZ€" Tmin Of the double kink decreases with| increasing.
locity. Thus, the variational approach predicts that the super! NUS, although the variational approach with the SG-type
sonic kinks may be expected in ta@harmonicFK model ansatz is too crude, it neve_rtheless prgdu_:ts that thg multiple
only. kinks (;ould be stable for hlgrsypersonl): kink velocities. _
Returning back to thaliscrete model, note that in the  AS is well known, the SG kinks of the same topological
classical FK model the driven kink cannot reach even théharge always repel from one another. The same is true for
sound velocity, because it exists some critical kink velocityStatic ©=0) kinks of the discrete FK model, including the
ve<c above which the driven kink becomes unstable and th@hharmonic &+0) model[2] (contrary to the variational
system goes to the “running” state, where all atoms move2PProximation that mistakenly predicted a weak attraction at
with the velocityv~f/7 [16]. However, in the anharmonic |v/<€). Thus, there must exist a threshold kink veloaity
FK model, the critical kink velocity may exceed the soundSuch that at small velocities<v <v, the steady-state solu-
speed as has been observed already in the simulpt@n  ton o'f'the mode! corresponds to therXink, while at h|gh
The dependence af, on the anharmonicity parametgris ~ Velocitiesv>uvy, it corresponds to the double 3 kink (if
shown as inset in Fig. 2. In this calculation we used the’ iS lower than the kink velocity aft=1, that is true at low

following algorithm [11]: for a fixed value off (we tookf  €nough values of)). Indeed, the simulation results presented
—0.5), the friction was decreased starting from the overdn Fig. 3 demonstrate that the double kink is stable within the

damped casey=1 to the underdamped valug=102 in  force interval 0.5:f<0.8 but becomes unstable at higher as

256 steps. At each step of decreasing we waited until the well as smaller forces, while thes kink is stable forf

steady state was reached and then checked if the transition t00-5 only. Similarly, one could expect the existence of a
the running state took place. second threshold velocity, such that av>uv, the steady-

state solution will correspond to thentkink, etc.

V. MULTIPLE KINKS

To study multiple kinks with the help of a variational VI CONCLUSION

approach, let us consider the double kink as a sum of two Thus, we have shown that supersonic kinks as well as

single kinks separated by a distance multiple kinks do exist in the driven discrete FK model, if
the interatomic interaction is anharmonic. Note that both su-
Up(2) = Use(Z— 112) + Usd(Z+ T /2). (18) personic kinks and multiple kinks remain stable at nonzero

system temperatures as well, at least for the time scale of our
numerical simulation.
Substituting the ansatd8) into the functional(11), we ob- Notice also that at high forces the kink velocity is close to
tain the effective energi(des,r), which is now a function  that of the Toda solitof6]. Indeed, the Toda soliton is char-
of two parametersles and r. Looking for a minimum of  acterized by the “jump”Au=2ual/B, whereu is the pa-
E(defr,r) overdey atr fixed, we found that for the classical rameter coupled with the soliton velocity by the relation-
FK model «=0, the functionE(r)=ming_E(der,r) is @  ship v=csinhua)/ua. In the presence of the external
monotonically decreasing function of i.e., the kinks are substrate potential due to boundary conditions the jump
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must be equal to 2p for the p kink; thus we obtainua
=7 Bp, or 2u=pp. In particular, for the anharmonicity pa-
rameter B=1/7 used in the simulation, we have/c
=(sinhp)/p~1.18 for the 2r kink andv/c~1.81 for the 4r

SUPERSONIC AND MULTIPLE TOPOLOGICA. ..
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