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Traffic jams and hysteresis in driven one-dimensional systems

O. M. Braun,1,2 B. Hu,1,3 A. Filippov,1,4 and A. Zeltser1,4

1Department of Physics and CNS, HK Baptist University, Hong Kong, China
2Institute of Physics, National Ukrainian Academy of Sciences, UA-252022 Kiev, Ukraine

3Department of Physics, University of Houston, Houston, Texas 77204
4Physical-Technical Institute, National Ukrainian Academy of Sciences, UA-340114 Donetsk, Ukraine

~Received 12 January 1998!

The driven underdamped chain of anharmonically interacting atoms in the sinusoidal external potential is
studied. It is shown that due to the interatomic interaction the system exhibits hysteresis for any nonzero rate
of changing of the dc driving force. Before the transition to the running state the system passes through the
traffic-jam inhomogeneous state. The system behavior is explained with the help of two simple models, the
discrete lattice-gas model with two states of atoms, and the continuum mean-field model based on the Fokker-
Planck equation.@S1063-651X~98!10507-X#

PACS number~s!: 05.40.1j, 05.70.Ln, 46.10.1z, 82.20.Mj
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I. INTRODUCTION

Driven diffusive systems belong to the simplest models
nonequilibrium statistical mechanics. These systems
characterized by a locally conserved density, with a unifo
external field setting up a steady mass current. The syst
of this class have wide application in modeling of charge a
mass transport in solids. Recently the driven diffusive m
els have been used in tribology, where the driving fo
emerges due to motion of one of two substrates, which
separated by a thin atomic layer.

In the context of tribology, the generalized Frenke
Kontorova ~FK! model has been studied@1–6#. In this
model, a one- or two-dimensional atomic system is pla
into the external periodic potential, and the atomic currenj
in response to the dc driving forceF is studied by numerica
solutions of Langevin motion equations. The simulatio
showed that the functionj (F) exhibits hysteresis: when th
force increases, the system goes from the low-mobility
gime to the high-mobility state, where all atoms move w
almost maximum velocity. But if the dc force is then d
creased, the high-mobility state survives to quite small v
ues ofF, and then jumps abruptly to the low-mobility stat
In addition, during the transition the atoms have a tende
to be organized in compact groups of two different typ
one consisting only of slowly moving atoms~which re-
semble ‘‘traffic jams’’!, and another of ‘‘running’’ atoms
moving with the maximum velocity. To explain these issu
let us first describe the model under consideration in m
detail.

Model. We consider a chain ofN atoms subjected to th
sinusoidal external potential with the amplitudeE052 and
the perioda52p, the atomic mass ism51 ~this defines our
system of units!. The equation of motion for the atomic co
ordinatexi is the following:

ẍi1h ẋi1sin xi1
]

]xi
@V~xi 112xi !1V~xi2xi 21!#

5F1dFi~ t !, ~1!
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where 1< i<N, and periodic boundary conditions are a
sumed. The substrate potential hasM wells on the chain
length, so that the dimensionless atomic concentrationu
5N/M , and the average distance between the atoms isaA
5a/u. In simulation we used the valueu52/3 everywhere.
The coefficienth corresponds to the external viscous dam
ing due to energy exchange between the chain and the
strate. For the interaction of nearest-neighboring atoms
took the Toda~exponential! potential

V~x!5V0e2bx, ~2!

so that the characteristic radius of interaction isr 5b21. The
dimensionless elastic constant, which is the main param
of the classical FK model, is defined asg
5a2V9(aA)/2p2E0 ~e.g., see Ref.@7#!. For the potential~2!,
g is equal to

g5V0b2 exp~2baA!. ~3!

To all atoms we applied a dc forceF and also the Gaussia
random force dFi(t), ^dFi(t)dF j (t8)&52hTd i j d(t2t8),
which models a thermal bath with temperatureT. In the
simulation we calculated the average system velocity
then the mobilityB defined as

B5^^v&&/F, ~4!

where^^•••&& stands for the averaging over the system a
also the averaging over time. If the substrate potentia
absent, for anyF.0 after a timet;h21 the system reache
a steady state characterized by the maximum mobilityBf
5h21. In addition, we calculated the velocity correlatio
function

Kl5^^~ ẋi 1 l2 ẋi !
2&&, ~5!

which will be used to distinguish a homogeneous steady s
from inhomogeneous ones.

Hysteresis. Typical hysteretic dependencesB(F) are pre-
sented in Figs. 1 and 2 for the harmonic and exponen
interactions, correspondingly. These dependences were
1311 © 1998 The American Physical Society
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culated with the algorithm described in detail in Ref.@4#.
Namely, we slowly changed the force with small steps,
force was changed on the valueDF50.01 during the time
tR , then we waited the timetR to allow the system to equili-
brate, and after that we measured the velocity and corr
tions during the timetR , thus the average rate of forc
changing isR5DF/3tR . Four curves in Figs. 1 or 2 wer
calculated for four rates ofF changing, which differ by ten
times one from the next one. As seen, a width of the hys
etic loop decreases with decreasing ofR, but a well defined
hysteresis still exists even for the smallest rateR
55.331027. Thus, the simulation prompts that the hyste
esis could survive for any rate of force changing. As will
shown in the present paper, the hysteretic behavior sh
exist for any nonzero rateR. Taking into account the one
dimensionality of the FK model, the existence of hystere
at T.0 is not trivial.

Traffic-jam state. Comparing the hysteretic curves of Fi
1 for the standard FK model with those of Fig. 2 calculat

FIG. 1. HysteresisB(F)/Bf for the standard Frenkel-Kontorov
model. Solid curves correspond to increasing force and das
curves to decreasing force processes. The four curves are for
rates of force changingR5DF/3i Rt0, whereDF50.01,t052p is
the characteristic period of the system, and the value ofi R is indi-
cated by different symbols: diamonds fori R51, triangles fori R

510, asterisks fori R5102, and crosses fori R5103. The model
parameters areu52/3, N5256,g50.1, T50.1, andh50.1.

FIG. 2. The same as in Fig. 1 but for exponential interatom
interaction~2! with b51/p.
e
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for the anharmonic~exponential! interaction, one can see th
following essential differences between them. For the h
monic interaction, the system goes directly from the lo
mobility ~‘‘locked’’ ! state to the high-mobility~‘‘running’’ !
state. Although the system may be found in steady sta
with intermediate values ofB, e.g.,B/Bf;0.5, these states
as we checked by analyzing the atomic trajectories, alw
correspond to ahomogeneousstate on a spacial scale larg
than the lattice constanta. On the other hand, for anhar
monic interaction between the atoms, the system pa
through intermediate states which arespacially inhomoge-
neous. In this type of steady states, the system splits into t
qualitatively different regions, which differ by atomic con
centration and velocities. A typical picture of atomic traje
tories is presented in Fig. 3. One can clearly distingu
‘‘running’’ regions, where atoms move with almost max
mum velocities, and ‘‘traffic-jam’’ regions, where atoms a
almost immobile. The regions characterized by a lar
atomic concentration and smaller~almost zero! atomic ve-
locities are called ‘‘jams’’ in what follows. In Fig. 4, which
shows a small portion extracted from Fig. 3, one can see
dynamics of a single jam. The jam grows from its left-ha
side due to incoming atoms which stop after collisions w
the jam and then join to the jam. From the right-hand si
the jam shortens, emitting atoms to the right-hand-side r
ning region. In addition, in Fig. 4 one can also see a deta
scenario of the jam’s dynamics: when an incoming at
collides with the jam, it creates a kink~local compression! in
the jam. This kink then runs to the right-hand side of the ja
and stimulates there the emission of the atom into the rig
hand-side running domain. Thus, simulations show that
traffic-jam state may correspond to a steady state of the
tem. In the present work we show that this state is the sta
steady state, and find the conditions under which the traf
jam state should emerge.

Thus, in the present paper we concentrate on the follo

ed
ur

c

FIG. 3. Atomic trajectories for the exponential interaction wi
b51/p at the fixed forceF50.33. Other parameters are the sam
as in Fig. 1. The rectangle is shown enlarged in Fig. 4.
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ing two questions. Does the hysteresis really exist in a o
dimensional system? Does the state with jams correspon
a stable steady state?

The paper is organized as follows. First, in Sec. II w
show that a system state with jams corresponds to a str
attractor and, therefore, it should be dynamically stab
Then, in Sec. III we investigate conditions under which t
system state with jams should emerge, and show tha
anharmonicity of the interatomic interaction is the necess
condition for the transition to the traffic-jam state. Both the
sections are based on computer simulation. In the next
sections we introduce two simple models which allow
analytical description of the phenomena under investigat
Namely, in Sec. IV we develop and study a simplediscrete
lattice-gas model. This model is characterized by two sta
of atoms, the ‘‘immobile’’ state which is the same as in t
standard lattice-gas model, and the ‘‘running’’ state wh
the atoms jump in one direction only. The model exhibits
existence of traffic jams, a nonlinear dependence of mob
on the jump probability, and, moreover, it already shows
hysteresis. In Sec. V we reduce the set of Langevin equat

FIG. 4. A single jam of Fig. 3.
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~1! to a single mean-fieldcontinuousFokker-Planck equa-
tion, which then is used to explain qualitatively the existen
of hysteretic behavior in the FK model. Finally, Sec. VI co
cludes the paper with a summary of the results and a dis
sion of the general aspects of the traffic-jam behavior.

II. ATTRACTOR

The first question we are interested in is the following.
the inhomogeneous state with traffic jams really a sta
steady state of the system? This question can be reformu
as the following two questions.~1! Is the corresponding con
figuration in the phase space an attracting one?~2! If it is
attracting, what is an attractive domain for the state w
traffic jams? In turn, this question is coupled directly wi
one of a possible choice of initial conditions leading to t
inhomogeneous state. Also, the same question can be r
mulated as one about the stability of the traffic-jam state
nonzero temperatures.

First, let us recall some facts known from studies of
more simple problem of Brownian motion of a single ato
~or a system of noninteracting atoms! in a periodic potential,
which has been studied widely~e.g., see Ref.@8#!. In this
case Eqs.~1! reduce to the set of equations forN indepen-
dent atoms

ẍi1h ẋi1sin xi5F1dFi~ t !. ~6!

Without the noise termsdFi(t) every equation from this se
becomes a deterministic one which reads simply

ẍ1h ẋ1sin x5F. ~7!

Equation~7! can easily be solved for any initial condition
The corresponding phase pattern on the (x,v) plane is shown
in Fig. 5~a!.

As is well known, for a Hamiltonian system differen
phase trajectories cannot intersect each other except the
going through singular~fixed! points ~the singular point is
defined as a point where bothẋ[v andẍ[dv/dt vanish!. At
large forces,F.F f[pE0 /a, Eq. ~7! has no singular points
at all. The total potentialUeff(x)512cosx2xF has no
minima atF.F f , and Eq.~7! has ‘‘running’’ solutions only.
On the other hand, at smaller forces,F,F f , Eq. ~7! has two
kinds of singular points. The first one corresponds to
.

-

o

n

FIG. 5. Phase pattern for a
single atom in periodic potential
~a! Flow lines for the determinis-
tic equation ~7! at h50.5, F
50.3. Only the trajectories within
one period of the substrate poten
tial ~normalized to 1! started from

the lineẋ50 are shown.~b! Phase
pattern for Eq.~6! with random
noise corresponding to nonzer
temperature T50.1. The grey
scale map presents the distributio

function W(x,ẋ;t) for the steady
state att→`.
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trivial static solution which describes the atom locked a

minimum of Ueff(x), e.g., at the positionx5sin21 F, ẋ50.
This fixed point is the stable~focal! one, and the trajectorie
approaching it are spiral in the underdamped case. The
ond singular point is the unstable~saddle! one. It corre-
sponds to the atom at a maximum of the total poten
Ueff(x). At small dc forces,F,min(Fb ,Ff), where Fb

.(4/p)hAmE0, almost every solution of Eq.~7! is finished
in the focal point whent→`. In the overdamped case,h
.hc , wherehc.p2AE0/4aAm'0.56, Eq.~7! at t→` has
either the locked solution~if F,F f) or the running one~if
F.F f). But in theunderdampedcase,h,hc , there is the
interval of forcesFb,F,F f , where Eq.~7! admits both
types of solutions, the locked solution and the running o
simultaneously. In this case there is a special traject
called the separatrix, which passes through the saddle p
and separates the spiral trajectories attracting to the fo
from the trajectories which go to the running solution. D
pending on the initial state, the evolution of the system e
up in one of two attracting configurations: the trajector
below the separatrix are attracted to the trivial fixed po
and finish in the locked state, while the other ones go to
attracting curve which corresponds to the running state.

The existence of two attracting domains leads to bista
ity of motion of the Brownian particle in the periodic pote
tial without noise. However, the situation is changed dra
cally when one turns on a noise: any small but nonz
temperature makes it possible for the trajectory to jump fr
one side of the separatrix to the other. Figure 5~b! shows the
transformation of the phase pattern of Fig. 5~a! in the pres-
ence of a small noise. Instead of trajectories, we plot in F
5~b! the gray-scale map for the distribution functio
W(x,ẋ;t) at t→` ~the method of its calculation is describe
below in this section!. As seen from Fig. 5~b!, the regions
near the T50 attracting trajectories are covered qu
densely by randomly perturbed trajectories. However,
could see~and also it can be directly tested for every flo
line separately! that the trajectories can ‘‘jump’’ across th
separatrix in the vicinity of the saddle points. These jum
show that fluctuations can push the atoms out of the loc
state as well as fix them back from the running sta
Namely, these jumps completely destroy the bistability~and,
therefore, the hysteresis! for the system of noninteractin
atoms at nonzero temperatures@8#.

Let us return now to the system ofinteractingatoms. In
the state with traffic jams every atom can be found in b
the running state and the locked state at different time m
ments. This means that the projection of the atomic tra
tory onto the plane (x,v) should exhibit transitions from a
vicinity of the locked state to the running one and vice ver
Indeed, the respective 2N-dimensional phase pattern show
some regular channels which connect the running and loc
states of the same atom. To depict these channels expli
and to compare the results with those for the case of no
teracting atoms, we plot together in one Fig. 6 the (x,v)
projections of the trajectories of all atoms atT50. A direct
comparison of this figure with the analogous pattern of F
5~a! for the case of noninteracting atoms~both patterns are
for T50) shows that the interatomic interaction leads to
following new effects.
a
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~1! The atoms can visit both the locked and running
tracting regions.

~2! These regions are connected by two specific chann
Along these channels the atoms cross the separatrix@defined
above for Eq.~7!# in the vicinity of the saddle points eve
without the temperature driven jumps.

~3! When one starts with different random initial config
rations, the system reaches the typical trajectories in ph
space ‘‘stably.’’ Therefore, the configuration of flow line
presented in Fig. 6 is anattractor of the system under con
sideration, at least within the accuracy of the simulation.

~4! Even atT50 this attractor ischaotic.
The last statement needs an additional comment. F

Fig. 6 one can see that, in contrast with the noninterac
problem, the flow lines on the (x,v) projection can now
cross each other. Therefore, the focal fixed point of Eq.~7! is
transformed now to the so-called ‘‘focal-saddle’’ singul
point ~recall that the phase space of the many-body syste
2N dimensional!. Such a singular point is a typical configu
ration which produces dynamic chaos in systems with m
than two degrees of freedom. The chaotic nature of the
tractor of Fig. 6 was checked numerically by calculating t
largest Lyapunov exponent which has been found to be p
tive. Additionally, in Fig. 7 we plot the discrete mapping o
velocities for the attractor of Fig. 6v i@k#→v i@k11# with

FIG. 6. Typical flow lines of theT50 strange attractor for the
system of interacting atoms calculated for the following syst
parameters:u52/3, g50.1, b51/p, h50.5, andF50.3.

FIG. 7. Stroboscopic map of velocitiesv i@k#→v i@k11# for the
attractor of Fig. 6.
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FIG. 8. Gray-scale map for
continuous many-body densit

W(xi ,ẋi ;t→`) calculated for~a!
T50 and ~b! T50.1. Other pa-
rameters are the same as in Fig.
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the discrete time steptk115tk1t0 (t052p is the period of
oscillations at the minimum of the substrate potential aF
50). Figure 7 clearly demonstrates a chaotic nature of
attractor. Recalling now that the system under considera
is dissipative and, therefore, a phase volumeV of the system
must decrease with time,dV$xi ,ẋi%/dt}2h( i uẋi u, we come
to the conclusion thatthe T50 state with traffic jams corre-
sponds to the strange attractorof the system.~Notice that
every strange attractor contains a countable set of reg
trajectories, so one can always find an initial configurat
leading to the regular behavior. However, the set of ini
configurations leading to the stochastic behavior is unco
able.!

To study the stability of this strange attractor with resp
to temperature fluctuations, let us rewrite Eq.~1! as a set of
two stochastic equations

ẋi5v i , ~8!

v̇ i52hv i2sinxi1F2
]

]xi
@V~xi 112xi !1V~xi2xi 21!#

1dFi~ t ! ~9!

or, in a compact form for the variablesj j , j 51, . . . ,2N,
wherej2i 21[xi andj2i[v i , as

j̇ i52hi~$j i%!1(
j

gi j dF j~ t !. ~10!

The system~10! can alternatively be rewritten in terms of th
Fokker-Planck equation~FPE! for continual ~macroscopic!
variablesyi

]W

]t
5F2(

i 51

2N
]

]yi
Di

~1!~$y%!1 (
i , j 51

2N
]2

]yi]yj
Di j

~2!~$y%!GW,

~11!

whereW($y%;t) is the distribution function. The drift vecto
Di

(1) and the diffusion tensorDi j
(2) in Eq. ~11! are coupled

with the coefficients of Eq.~10! by the following relation-
ships@8,9#:

Di
~1!~$y%!5hi~$y%!, Di j

~2!~$y%!5 (
k51

2N

gikgk j . ~12!
e
n

lar
n
l
t-

t

The only method for a numerical solution of a many-bo
FPE is to employ the Monte Carlo technique. For Eq.~11!,
this technique reduces to the solution of the set of Lange
equations~10!. We used the following technique. Startin
with an appropriate initial configuration, first we waited
transient timet tr until the system reaches a steady sta
Then, for discrete time momentstk5t tr1kDt we calculated
the numbers of atoms within different small phase volum
$j i ,j i1Dj i% and accumulated the counts during an aver
ing time tav. The stationary distribution functionW($y%) is
just proportional to these counts, so we are left to norma
it according to the equation*dyi•••dyNW($y%)51.

The parameters of the described procedure have to
chosen numerically in order to result in negligibly small fu
ther corrections to the densityW($y%). In the simulation we
used the parameterst tr530t0, tav5500t0, Dt50.02t0, and
the phase space was discretized withDx50.005 andDv
50.01. As the initial configuration we used a random dis
bution of atomic coordinates and velocities, although
checked that the final distribution does not depend on
initial one. To test this technique, first we calculated t
distribution function for the system of noninteracting atom
and compared the result with the one obtained by a num
cal solution of the one-particle Fokker-Planck equation o
2563256 grid. The distribution functions calculated by bo
methods were found to coincide; the corresponding funct
is shown in Fig. 5~b!.

The projection of the probability densityW($y%;t) onto
the plane (x,v) for the chain of interacting atoms with th
same model parameters as those of Fig. 6 is presente
Figs. 8~a! and 8~b! for T50 andTÞ0, correspondingly. One
can see that, first, the many-body attractor exhibits a cha
behavior atT50 already, and second, both the channels c
necting the running and locked states persist under appl
a thermal noise. Thus, we conclude thatthe traffic-jam state
remains stable at nonzero temperatures, at least for small
enoughT ~this statement is also confirmed by the simulati
presented in the next section!.

III. PHASE DIAGRAM

As was mentioned in the Introduction, for a slow chan
ing of the external force the transition to the state with ja
is not observed for the standard FK model, but does exist
the exponential interatomic interaction. Thus, the second
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portant question emerges: for what system parameters m
one expect the transition from the homogeneous state to
inhomogeneous traffic-jam regime? To find an answer,
made a series of simulations for different model paramet

First, the existence of jams could be expected only for
underdamped system, because the system must have tw
ferent states for atoms, the running state and the locked s
and this is possible only whenh,hc . Thus, the externa
damping coefficienth is an important parameter of th
model. Having this in mind, we modified the simulation a
gorithm used in the Introduction, in the following way: fo
given values ofg, b, and T, first we prepared the initia
configuration by relaxing the equidistant configuration atF
50 andT50, then we applied the dc forceF and the Gauss
ian random force corresponding to the temperatureT, and
allowed for the system to reach a steady state, waiting a t
t tr5100t0. At the beginning, the external damping was tak
to be large,h51 ~recall that the characteristic frequency
atomic vibrations isv051). Next, we decreased the dam
ing coefficienth with small steps~each new value ofh was
obtained from the previous one by dividing over 1.0183, i
we made 128 steps for the variation ofh from h51 to h
50.1), and at each step we first waited the time 100t0 to
allow the system to reach a new steady state, and then du
the next time period oftav5100t0 we measured system cha
acteristics such as the average system velocity and the v
ity correlation function. In the simulation we used the para
etersF50.5, N5256, T50.1, andg50.1. The dependenc
B(h) is similar to that ofB(F) described above: whenh
decreases, the system passes from the low-mobility loc
state~LS! to the high-mobility running state~RS!. For the
harmonic interaction, this transition occurs in one step,
the correlation functions exhibit a peak just at the transit
point. For the exponential interaction, the transition p
ceeds, on the contrary, in two steps. First the system pa
to an intermediate state characterized by a shell with 0,B
,Bf , and only then with a further decrease ofh is the
running state withB'Bf finally reached. As we checked b
analyzing the atomic trajectories, this intermediate state
ways corresponds to the steady state with jams. At the s
time the correlation functionK1(h) exhibits two peaks, one
at the transition to the inhomogeneous traffic-jam state~JS!,
and the second at the transition to the running state. From
definition ~5! one can see that the value ofK1 should be
proportional to the number of jams in the system because
velocities of nearest-neighboring atoms may differ ess
tially only at the boundaries separating the running and
domains. Therefore, we can use the fact that two peaks
the dependenceK1(h) exist as an indication of the jam stat
while the positions of these peaks show the parameter ra
for JS existence.

To study the role of the anharmonicity of the interactio
we made a series of runs for different values of the param
b, keeping at the same time the value of the elastic cons
g fixed, so that the limitb→0 corresponds to the harmon
interaction~the standard FK model!, while the limit b→`
describes a hard-core gas. The simulation results are sh
in Fig. 9 for the B(h)/Bf(h) dependences@recall Bf(h)
5h21# and in Fig. 10 forK1(h). Notice that the primary
dependences occur to be too noisy, so we had to sm
ht
he
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them by a standard technique before plotting them in
figures. Finally, in Fig. 11 we plot the phase diagram on
(h,b) plane by extracting the positions of maxima ofK1(h)
for every value ofb.

The simulation results provide the answer we were lo
ing for: the transition to the steady state with jams emer
for the exponential interaction~2! for b.a21 only. Because
r 5b21 corresponds to an effective radius of the interatom
interaction, this result means that for a slow variation of t
system parameters the jam states appear only if the at
occupying the next-nearest-neighboring wells of the s
strate potential are almost not interacting.

Thus, we come to the conclusion that the transition to
traffic-jam state emerges only for short-range interatomic
teractions when the radius of the interaction is smaller th
the period of the external periodic potential, and only f
small damping coefficients in an interval just preceding
transition to the running state. Other parameters of the mo
such as the temperature or the elastic constant, are not e
tial for the problem under study. In particular, recall that
Sec. II we observed the traffic-jam state for even zero te

FIG. 9. The dimensionless mobilityB/Bf as a function ofh for
different values of the exponentb at a fixed value of the elastic
constantg. N5256,g50.1, F50.5, andT50.1.

FIG. 10. The same as in Fig. 9 for the velocity correlation fun
tion K1. For a better view, every dependenceK1(h) is normalized
on its own maximum.
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perature, although in this case we had to start with a rand
distribution of atoms as the initial configuration.

IV. GENERALIZED LATTICE-GAS MODEL

As was shown in Sec. III, the transition to the traffic-ja
regime emerges only in the case of short-range interato
interactions. Therefore, let us try to model the traffic-ja
behavior with the help of a lattice gas~LG!, where atoms
occupy the sites with at most one atom per site and ju
stochastically to vacant nearest-neighboring sites. Let us
sume that an atom may jump to the right with the probabi
a and to the left with the probability 12a, where 1

2 ,a
<1. Recalling the FK model, the probability of a jump to th
right at small external forces isa'(11e2aF/T)21, so the
parametera in the lattice-gas model plays the role of th
driving force in the FK model. Such a variant of the L
model is known as the partially asymmetric exclusion mo
@10,11#. The a51 variant of this model, called the totall
asymmetric exclusion model, has recently been solved
actly @12#.

The underdamped FK model has, however, one more
portant aspect: an atom after the jump does not stop in
next potential well but continues to move until it meets
stopper, e.g., an immobile atom in front of itself. To inco
porate this feature into the lattice gas model, we assume
an atom may be in two different states: the ‘‘immobile
state, in which it jumps as usual in the LG model, and
‘‘running’’ state, in which the atom always jumps to the rig
provided the right-hand site is empty. The important asp
of the model is that an atom can change its state from
immobile state to the running state and vice versa: the
mobile atom is in the running state after a jump to the rig
and the running atom becomes immobile after a collis
with an immobile atom. Such a model may be called
traffic-jam LG model, because the atoms behave simila
cars in a one-lane road.

Thus, the simplest model may be introduced as follo

FIG. 11. Phase diagram on the (h,b) plane. LS is the locked
state, JS is the steady state with jams, and RS is the running s
Diamonds correspond to maxima ofK1(h) and the dashed curv
corresponds to theB(h)50.9Bf threshold. The parameters are th
same as in Fig. 9.
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Consider a one-dimensional lattice of lengthM with periodic
boundary conditions. Each site is either occupied by o
atom or is empty. LetN be the total number of atoms and l
the dimensionless concentration be defined asu5N/M .
Each atom may be in one of two states, the immobile stat
the running state. The system evolves in time according
the sequential dynamics, i.e., atoms jump independently
randomly according to the following rules.

~1! At each time stept→t11, one chooses a sitei at
random.

~2! If this site is occupied by an immobile atom, it jump
to the sitei 11 ~if this site is empty! with probabilitya or it
jumps to the sitei 21 ~if the left-hand site is empty! with
probability 12a as in the partially asymmetric exclusio
model. After a jump to the left the atom remains in the im
mobile state, whileafter a jump to the right the atom is in th
running state.

~3! If the atom in the chosen sitei is in the running state,
it jumps to the right provided the right-hand site is emp
and remains in the running state. Otherwise, if the sitei 11
is not empty, the atom in the sitei remains in the running
state if the right-hand site is occupied by the running atom
becomes immobile if the site i11 is occupied by the immo
bile atom.

A typical picture of system evolution started from a ra
dom distribution of immobile atoms is shown in Fig. 12. A
seen, from the very beginning the system splits into comp
domains of immobile and running atoms. The immobile d
mains ~jams! are characterized by the local atomic conce
tration us51. The jams are separated by running doma
characterized by a local concentrationu r,u. One can see
that Fig. 12 looks similar to the trajectories in Fig. 3 of th
FK model.

To characterize the system state, let us introduce the
mensionless ‘‘mobility’’ B as the ratio of the number o
running atomsNr to the total number of atomsN,B5Nr /N.
The dependences ofB on a for different values ofu are
shown in Fig. 13. To calculateB analytically, let us suppose

te. FIG. 12. Evolution of the lattice-gas model. Immobile atoms a
shown as black circles and running atoms as gray circles. Tim
measured in Monte Carlo attempts per site. The system size iM
5103, u50.8, anda50.7.
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that there is only one jam in the chain. Let this jam ha
length s. Because the local concentration in the jam isus
51, we can apply the following simple arithmetic@4#:

s1Nr5N, s1Mr5M , ~13!

whereMr is the length of the running domain~RD!. Taking
into account thatNr5Mru r and N5Mu, we obtain s
5M (u2u r)/(12u r), so that the mobility is equal to

B5
u r~12u!

~12u r !u
. ~14!

Evidently, Eq.~14! should be valid as well for the stead
state with any number of jams providedu r corresponds to
the mean atomic concentration in the RD’s.

According to the rules accepted above for the LG mod
the most left site of any RD is always empty~this is clearly
seen in Fig. 12!. Therefore, the running domain grows fro
its left-hand side at the ratea due to the injection of new
atoms from the left-hand-side neighboring jam. At the rig
hand side of the RD, the atom which occupies the most r
site of the RD leaves the RD and joins itself to the neighb
ing right-hand-side jam. Thus, the RD shortens from
right-hand side at the ratepr , wherepr is the probability that
the farthest right site of the RD is occupied. Clearly, in t
steady statepr5a. Neglecting by a possible deviation of th
RD concentration at its right-hand side from the mean va
u r , we may take approximately

pr'u r , ~15!

and finally we come to the expression

B'
a~12u!

~12a!u
, a,u. ~16!

FIG. 13. Mobility B as function of the jump probabilitya for
different values ofu: u50.65 ~diamonds!, u50.80 ~triangles!, and
u50.95 ~squares!. Each data point is an average over 53103 at-
tempted jumps per site. The averaging was started after 53103 MC
steps. The data were averaged additionally over 28 indepen
runs. The system size isM5103. Solid curves are the predictions o
Eq. ~16!.
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For a.u the jams all disappear, andB51 in the steady
state. The dependences~16! shown by solid curves in Fig
13, describe the simulation results with good accuracy.

Now let us dwell on the steady state in more detail. A ja
of lengths loses atoms from its right-hand side at the ratea,
and it receives new atoms to the left-hand side at the ratepr .
These two rates are equal to one another in the steady s
so in averagê ṡ(t)&50. However, because of the random
ness of joining and losing events, the values(t) will exhibit
random walks, i.e., at long times,t@1, t8@1, and ut2t8u
@1, s(t) should behave according to the equation

^@s~ t !2s~ t8!#2&'2aut2t8u. ~17!

Thus, ata,u the infinite system has no steady state
all. Indeed, when a jam reaches the sizes50, it disappears
forever, while the motion ofs(t) to higher values is not
restricted in the infinite system. The distribution of jam siz
P(s) continuously changes with time shifting to larger a
larger values as shown in Fig. 14, so that instead of the n
‘‘steady state’’ it is more reasonable to use the name ‘‘q
sisteady state’’ or ‘‘coarsening state.’’ However, the mobil
of the coarsening state does not change with time@13#. Ac-
cording to Eq.~16!, B is determined by the system param
eters only and does not depend on the distributionP(s).

The transition to the running state in this simple L
model is of second order in the sense that the current cha
continuously at the pointa5u. However, the simplest mode
exhibits a trivial hysteresis: whenall atoms come into the
running state, this state then remains unchanged fore
even if a is changed back to lower values. In this sense
transition may be considered as first order.

Keeping in mind that we want to describe qualitative
the behavior of the FK model, let us now improve the L
model to make it more realistic, allowing the running atom
to spontaneously change their state back to the immo
state with some probabilityg,1. Namely, let us slightly
modify the third rule of the system evolution in the followin
way: (38) If the atom in the chosen sitei is in the running

nt

FIG. 14. Distribution of jam’s sizes at different times:t510
~dotted curve!, t5102 ~dashed curve!, t5103 ~dot-dashed curve!,
andt5104 ~solid curve!. The chain’s length isM5103, u50.8, and
a50.7. The histograms were averaged over 100 independent r
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state, it comes to the immobile state with the probabilityg,
or evolves according to the rule~3! with the probability 1
2g.

To describe this variant of the LG model analytically, w
will use the mean-field~MF! approach and suppose that a
running domains are characterized by the same concentr
u r . In addition, we also assume that the probability of oc
pation of the most right site of the running domain is equa
u r as above in Eq.~15!. With these assumptions, a jam
lengths increases (s→s11) with the rateu r , and decrease
(s→s21) with the ratea. Denoting byns(t) the number of
jams of lengths at timet, we can write the following kinetic
equation forns(t):

ṅs52ans2u rns1u rns211ans11 , s>2. ~18!

Equation ~18! has a simple steady-state solutionns
5n1(u r /a)s21. The distribution of jam sizes is described b
the expression

P~s![
ns

J
5

a2u r

a S u r

a D s21

, ~19!

where J5(ns5n1a/(a2u r) is the total number of jams
The total number of immobile atoms is equal toNs
5(sP(s)5n1a2/(a2u r)

2. Applying now the same arith
metic as above in Eq.~13!, we can find the mobility

B5~11p!21 ~20!

and the average concentration in the running domains

u r[
Nr

Mr
5

u

11p2pu
, ~21!

which depend on the parameterp defined as

p5S n1

Nr
D S a

a2u r
D 2

. ~22!

To complete the set of equations, we must have a kin
equation forn1(t) which plays the role of boundary cond
tion for Eqs.~18!. It may be written as

ṅ15gNr1an22a~12u r !n12u rn1 . ~23!

The first term on the right-hand side of Eq.~23! describes the
creation of immobile atoms from the running atoms, and
other terms have the same meaning as in Eq.~18! except that
now n050 and the rate of the disappearance of one-ato
jams is nota but a(12u r), because these jams are emerg
mostly inside the running domains and the condition that
next-neighboring site to the right of the one-atomic jam
empty is not valid anymore. The steady-state solution of
~23! is

n15gNr /a~12u r !. ~24!

Substituting Eq.~24! into Eqs.~21!,~22!, we obtain an equa
tion on u r

~u2u r !~a2u r !
2~12u r !2gau r~12u!50, ~25!
ion
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which may be easily solved numerically. As we checked,
MF dependencesB(a) describe simulation results with hig
accuracy.

In the FK model, the rate of spontaneous transition to
immobile state depends on the external forceF, i.e., on the
inclination of the periodic substrate potential: it is zero f
F.F f and increases withF decreasing in the regionF
,F f . In the lattice-gas model this means thatg must be zero
at a51 but it has to increase whena decreases. For con
creteness, one may take the simple expressiong5g0(1
2a)2, whereg0 is a model parameter and the square dep
dence is chosen in order to avoid an unphysical peculiarit
the a→1 limit.

The model (38) has a true steady state and does not
hibit irreversibility anymore; thegÞ0 condition totally kills
the hysteresis. This is because in the LG model the proba
ity of the spontaneous transition of an atom from the runn
state to the immobile state does not depend on the stat
the surrounding atoms. This is true for the transition of
isolated atom, but is too crude an approximation for the
system which we are trying to model. Indeed, when an at
inside a RD becomes immobile, it will be immediate
pulled back to the running state by the running atoms beh
it. This ‘‘inertia’’ effect cannot be described rigorously in th
framework of a lattice-gas model. But let us try to simula
this effect qualitatively, modifying the third evolution rule i
the following way.

(39) In the case where a randomly chosen sitei is occu-
pied by a running atom and the sitei 11 is occupied by an
immobile atom, we will count the total numbers of immo-
bile atoms in the compact jam to the right of the bo
i 22( i 11), and the numberr of running atoms behind this
bond in the compact running block, i.e.,s is the distance
from the bondi 2( i 11) to the first empty site in the positiv
x direction andr is the same distance in the negativex
direction. Then the system is updated according to the
lowing rule: if r ,s, all r 1s atoms become immobile, oth
erwise ~if r>s) all r 1s atoms ‘‘belonging’’ to thei 2( i
11) bond become running. In all other cases the sys
evolves similarly to the model (38), i.e., if the sitei 21 is
empty, the atom either comes to the immobile state with
probability g, or remains in the running state with the pro
ability 12g, jumping to the right provided the sitei 11 is
not occupied.

The simulation results for this generalized LG model a
presented in Fig. 15. The main new feature of the mode
that now we have a nontrivial hysteresis similar to that of
FK model. Whena decreases starting from thea51 value,
the state without jams survives at values ofa lower thanu
before the RS jumps back to the state with jams. As s
from Fig. 15, the width of the hysteretic loop depends on
concentrationu, for higher values ofu the loop is wider. In
addition, the width of hysteresis depends on the rate oa
variation as seen in Fig. 16. The slowera is changed, the
more narrow the hysteretic loop, so that for the adiabatica
slow variation of a the hysteresis should disappear alt
gether. This means that the running state of the system
a,u is a metastable state characterized by a finite lifeti
t r .
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The distribution of lifetimest r of the running state is
shown in Fig. 17. To estimate the mean value oft r analyti-
cally, let us consider a state with a single jam of sizes at
time t. This jam will be killed in the next Monte Carlo~MC!

FIG. 15. Mobility B(a) for the generalized LG model for dif
ferent values ofu: u50.65 ~diamonds!, u50.80 ~triangles!, andu
50.95 ~squares!. For eachu the simulation was started from th
random configuration of immobile atoms ata50.5, then the final
configuration of the previous step was used as the initial config
tion for the next value ofa. Solid curves correspond to the increa
ing of a, and the dotted curves, to its decreasing. Each data poi
an average over 1.53103 attempted jumps per site. The averagi
was started after 1.53103 MC steps. The data were averaged ad
tionally over 30 independent runs. The system size isM5103 and
g050.1. The dashed curves correspond to Eq.~16! of the simple
LG model.

FIG. 16. Hysteresis in the generalized LG model for differe
simulation times. Squares and solid curve for an averaging o
0.53103 MC steps per site; the averaging started after 0.53103

steps. Triangles and dotted curve for an averaging o
1.53103 steps; the averaging started after 1.53103 steps. Dia-
monds and dashed curve for an averaging over 53103 MC steps;
the averaging started after 53103 steps. The chain’s length isM
5103, u50.8,g050.1, the data were averaged additionally over
independent runs.
stept11, if just behind it there is a compact block of run
ning atoms of a sizer>s. In the RS the probability to have
such a block of running atoms isus. Thus, at the timet11
the s-atomic jam will disappear with the probabilityus, and
it will survive till the next time step with the probability 1
2us. Therefore, in average thes-atomic jam will survive if
12us>us, or s>s0, where the critical sizes0 is equal to
s052 ln 2/ln u.

Now let us suppose that at the timet21 the chain was in
the running state, and calculate the probability that at
time t the chain has a jam of the sizes0. For one MC step,
the number of newly created immobile atoms isgN ~recall
Nr5N in the RS!, so that the probability for a given site t
be occupied by one immobile atom isgN/M5gu. There-
fore, the probability that at a given place thes0-atomic jam
will appear is (gu)s0. Taking into account now that for the
transition to the JS the chain may have only one jam,
obtain that in a chain of lengthM the probability of the RS
→JS transition per one MC step isM (gu)s0. Therefore, we
come to the expression

^t r&51/M ~gu!s0. ~26!

Although the estimation~26! is crude, it predicts the correc
value of ^t r& for the model parameters used in Fig. 17 a
demonstrates the right tendency for variation of the hys
etic loop withu.

Equation~26! shows that the infinite system should ha
no hysteresis at all. This is simply the result of the on
dimensionality of the model. Indeed, ata,u for any small
but finite probability of creation of thes0-atomic jam, at least
one jam will certainly be created per each time step, and
jam will cause the RS→JS transition.

a-
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r

FIG. 17. Distribution of timest r of transition from the running
state to the state with jams. The system size isM5103, u50.8,
a50.7, andg050.1. The hystogram was calculated with 83103

points. Each simulation was started from the initial configuration
running atoms, then it was ‘‘equilibrated’’ ata51 during the time
103 MC steps, after thata was abruptly decreased to the valuea
50.7, and the simulation was stopped whenB reached the value
B50.9 for the first time. The broken line shows the prediction
Eq. ~26!.
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V. FOKKER-PLANCK APPROACH
AND MEAN-FIELD THEORY

The numerical simulations of Sec. II have shown that
transitions between different steady states~the locked and
running ones! take place at some critical value of the para
eters of the system. From a qualitative point of view the
transitions can be treated as some kind of specific phase
sition between different dynamic states. Sharp transitions
found to survive at nonzero temperatures, at least within
accuracy of the numerical simulation. This essential feat
of the system contrasts with the disappearance of bistab
in the system of noninteracting particles at anyT.0. To
study this problem, it could be useful to find a continuo
field description based on an effective energy functiona
order to then use a standard approach of the theory of p
transitions~e.g., see Ref.@14#!. The continuous many-bod
probability distributionW calculated above in Sec. II alread
provided us with a feeling of how to construct a reduc
mean-field model. Namely, the idea is to find an effect
Fokker-Planck or Langevin equation for some one- or tw
particle functionW, which will reproduce, at least qualita
tively, the same behavior as the exact many-body mode

Keeping this in mind, let us complete the one-partic
Langevin equation~6! by an ‘‘integral’’ ~collective! interac-
tion with all other particles, adding a new stochastic equat
in the following way:

ẋ5v, v̇52hv2sin x1F1z1dF~ t !, ~27!

ż5m, ṁ52hm1~^v&2v !. ~28!

With the help of Eq.~28! we introduce an additional degre
of freedom ~an ‘‘artificial atom’’ with the same mass an
damping constant as the real atoms of the FK chain! which
has to describe qualitatively the motion of the center of m
of the system. In Eq.~27! we suppose that the motion of
given referenceatom is perturbed by a forcez due to some
averaged interaction with this ‘‘artificial atom,’’ i.e., with a
other atoms of the chain. In turn, the value ofz is assumed to
be proportional to the deviation of velocity of the referen
atom from the mean chain’s velocitŷv&. Indeed, in a uni-
form state, when all atoms move with the same velocity a
the atoms are arranged equidistantly, the interactions of
given atom with its neighbors,2]/]xi@V(xi 112xi)1V(xi
2xi 21)#, cancel each other. Therefore, the interparticle
teraction will perturb the motion of the reference atom on
when its velocityv deviates from the mean value^v& and
thus destroys the system uniformity. In a rigorous approa
the averaging here should be performed over neighbo
particles inside a correlation distancer;b21. In a mean-
field approximation, however, the value of^v& is calculated
over the whole phase volumeV,

^v&5

E
V

dx dv dz dm@vW~x,v,z,m;t !#

E
V

dx dv dz dm W~x,v,z,m;t !

, ~29!

so it depends on timet only. Numerical solution of Eqs
~27!–~29! shows that such a simple interaction (^v&2v) is
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already sufficient to restore the channels connecting the
ning and locked states in the system. Indeed, the projec
of density W onto the subspace (x,v), calculated for the
system~27!–~29! at T50 and shown in Fig. 18, looks simi
lar to the distribution of Fig. 8~a! obtained within the exac
approach. Note, however, that the system~27!–~29! was not
deduced from the complete set of Langevin equations~1! but
rather was guessed, and the only justification of its introd
tion is the similarity of Figs. 8~a! and 18.

However, even the system of two coupled Langevin eq
tions ~27!, ~28! is too complicated for an analytical descrip
tion. To reduce the number of equations, recall that in
mean-field approach we can usually only restrict ourselve
a vicinity of steady states. As we tested numerically, sm
perturbations of the velocityv of the running or locked state
result in a linear variation of the valuez,

z.a r ,l~^v&2v !, ~30!

where the coefficientsa r ,l were found to bea r'3.3 and
a l'0.7 for the running and locked states, respectively. Th
we may omit Eq.~28! and substitute Eq.~30! into Eq. ~27!.
In the result we obtain the equations

ẋ5v, v̇52heffv2sin x1Feff~^v&!1dF~ t !, ~31!

where in the vicinity of the locked state we have to ta
Feff(^v&)5F1a l^v& andheff5h1a l , while in the vicinity
of the running state we should putFeff(^v&)5F1a r^v& and
heff5h1a r . Note that the linearized Eq.~31! is valid only
in the vicinity of steady states and was derived for the inv
tigation of stability of these states. Equation~31! corresponds
to the following Fokker-Planck equation:

]W~x,v;t !

]t
5F2

]

]x
v1

]

]vS heffv1sin x2Feff~^v&!

1heffTeff

]

]v D GW~x,v;t !, ~32!

FIG. 18. The result of numerical solution of two coupled equ
tions~27! and~28! atT50 for the same model parameters as in F
6. The projection of densityW(x,v;t) onto subspace (x,v) is
shown by a gray-scale map.
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where Teff5Th/heff . The mean-field equation~32! takes
into account the interaction between particles in a s
consistent way via the nonlinear term2]Feff(^v&)/]v.

Recall that in this section we are looking for an appro
mate description of stationary states and transitions betw
them. For this purpose we have to find some effective ene
functional. However, as is known from the general theory
FPE@8#, such an effective potential can be defined at leas
the low-friction limit, i.e., for the most interesting case of th
problem under investigation. This limit corresponds to t
case when bothh andF are going to zero while their ratio
F̃eff(^v&)5Feff(^v&)/heff remains finite. In theh→0 limit
the atomic trajectories are close to those of constant en
e5 1

2 v2112cosx2xFeff and the energy becomes the on
relevant variable of the problem. A steady-state solution
Eq. ~32! can now be written as an effective Boltzmann d
tribution

W~x,v;t !}exp@2V6~E!/Teff#, ~33!

whereE5e sgn(v), and the effective potentialV6(E) is

V6~E!5uEu ~34!

for uEu<E0, while for uEu.E0 it has different definitions for
positive and negative velocities:

V6~E!5uEu2sgn~v !F̃eff~^v&!

3E
E0

uEu dE8

E
0

2p

dxA2@E82~12cosx!#

. ~35!

The family of effective potentialsV6(E) for different values
of the effective external forceFeff is shown in Fig. 19.

In the approximate approach of Eqs.~32!–~35! the depen-
dence of the effective forceFeff on the averaged velocitŷv&
is the only ‘‘memory’’ about interparticle interaction of th
primary system. The value of^v& is in turn determined by
the total momentum of the system and depends s

FIG. 19. The family of effective potentialsV6(E) for different
values of the effective forceFeff . The dotted curve is for smal
force Feff corresponded to the spinodal, when nontrivial minimu
of the potentialV1(E) disappears. The dashed curve correspond
the binodal, when energies of locked and running states are e
one another (Feff5Fcrit).
f-

-
en
y
f
in

e

gy

f
-

lf-

consistently on its initial state. This allows us to give a qua
tative explanation of why the bistability of running an
locked states is much more strong for the system of inter
ing particles compared to the noninteracting ones.

As seen from Fig. 19, there is some critical forceF
5Fcrit at which the two minima of the potentialV6(E), one
at E50 and the other atEÞ0, are equal to one another~in
Fig. 19 this binodal state is shown by a dashed curve!. If we
start from the locked statêv&u t5050 and apply a forceF
lower than the critical oneF,Fcrit ~in the locked stateFeff
5F), so that the two minima coexist, but the trivial min
mum is lower than the nontrivial one, the locked state sho
be more stable under temperature fluctuations~compared to
the noninteracting system! due to the inequalityTeff
[Th/(h1a l),T. On the other hand, if the system is a
ready in the running state, thenFeff5F1a r^v&.F, and one
may haveFeff.Fcrit even forF,Fcrit . Moreover, if^v&u t50
is large, the nontrivial minimum of the potentialV6(E) may
be deep enough to prevent any thermally activated escap
atoms from the running state during exponentially lo
times, and for any small~but finite! rate of variation of the dc
force F the system should exhibit hysteresis.

Finally, let us discuss a close analogy of the se
stabilization of running and locked states which was o
served in simulation and described above in the mean-fi
model with the stabilization of ordered states in thermod
namics. When a system is in the thermodynamic equilibri
state and the size of the system tends to infinity~and also if
the interaction is long ranged enough!, a phase transition
between different ordered states is only possible due to
nucleation process@14#. Mesoscopic fluctuations~domains of
a new state emerging near the transition point! collapse be-
fore they overcome some critical size, and only when one
the system parameters~e.g., temperature, magnitude, or co
relation length of the interaction! reaches its critical value
does the critical nucleus of the new phase start to app
Then, the overcritical nucleus expands and initiates the tr
sition of the whole system to the new state. A very simi
nucleationlike scenario is observed in thenonequilibrium
system studied in the present work. For example, in Fig.
we plot the phase pattern for the state close to the trans
to the jam state (g→gc , g,gc). Figure 20 was calculated
for a slightly modified model: instead of Eq.~2!, we used the
interaction potentialV(x)5V0e2buxu, thus allowing the run-
ning atoms to pass over the locked ones. In this case one
have both running and locked states simultaneously. Be
the transition point these states are separated from one
other, but there are mesoscopic undercritical fluctuati
which play the role of ‘‘precursors’’ for generation of ‘‘traf
fic jams’’ when the parameters of the interaction go to t
critical values.

VI. CONCLUSION

We have shown with the help of a numerical simulati
that the driven one-dimensional FK model exhibits hystere
and the existence of traffic-jam states. Basing on the sim
tion we proposed two simple models which allow us to d
scribe both these phenomena analytically. The first mode
a generalization of the lattice-gas model with two states
atoms. This traffic-jam LG model is characterized by a no
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linear dependence of the mobility on the jump probabili
exhibits hysteresis, and describes the organization of im
bile atoms into compact domains~jams!. At the same time,
as it is much simpler that the FK model, the LG model
lows us to simulate much larger systems on a much lon
time scale. In addition, we developed the MF theory for t
LG model, which describes the kinetics of traffic jams a
explains the simulation results with reasonable accura
Moreover, the generalized version of this model even exh
its hysteresis and allows us to estimate the probability of
transition from the running state to the jam state. The sec
model is based on the Fokker-Planck approach to the
model and also uses the MF approximation. With its help
explained the stability of the steady states of the FK mod
Finally, we can formulate, at least qualitatively, the answ
to the questions that were asked in the Introduction.

Hysteresis does exist in the underdamped one-
dimensional FK for anyfinite rate of force changing~and,
strictly speaking, for any large butfinite system!. This state-
ment is quite trivial because the same is true for a sin
driven Brownian particle in the periodic potential. Howeve
in the system of interacting atoms the hysteretic loop is m
larger and should survive at much higher temperatures.
deed, due to concerned motion of atoms in the FK mode
single atom cannot exhibit bistability; the system must
transformed from one steady state to another as a wh
When the chain is in the low-mobility state, this state is mo
stable ~compared to the noninteracting system! because of
the effective decrease of temperatureTeff,T; local fluctua-
tions with high-velocity atoms are suppressed due to the
teratomic interaction. The transition to the running state
gins only when the forceF reaches the critical thresholdF f
and the motion of topological excitations~kinks! becomes
unstable~see details in Ref.@6#!. On the other hand, if the
system is in the running state and the force is then decrea
the RS remains stable because local fluctuations with l
velocity atoms~jams! are suppressed again due to the int
action. The effective driving forceFeff in the RS is larger
thanF, and the transition to the LS may only begin when
jam of the critical size~which may be mesoscopically larg

FIG. 20. Phase pattern for the state close to the transitiong
.gc , g,gc) for the following system parameters:T50, h50.5,
b51/p, F50.3, g50.066, andu52/3. Both running and locked
states are splitt and contain mesoscopic fluctuations~‘‘critical nu-
clea’’! of the phase with traffic jams.
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for a strong interatomic interaction! appears for the first time
Traffic jams do appear in theunderdampedFK model

with anharmonicinteraction just before the transition to th
running state. We can formulate the following conditio
which have to result in the traffic-jam behavior in the driv
one-dimensional system.

~i! It must be an external~substrate! potential. In the
present work we studied the case of a periodic potential,
a random external potential should lead to the traffic-j
scenario as well.

~ii ! The motion must be underdamped; the partic
should have two different states, the locked state and
running state~for the FK model this corresponds to friction
0<h,0.56, in the case ofh50 the ‘‘intrinsic’’ friction
plays the role of damping!. In the FK model the bistability
exists due to the inertia of atoms. In the FP approach
same is due to memory effects; in the LG-type model o
has to introduce such a bistability artificially. In a gene
case, the mean free path of the particle after overcoming
barrier of the external potential, must be larger than the
riod of the substrate potential or the average interpart
distance, whichever is larger. Notice that at a givenF, the
total ~external plus intrinsic! friction must be larger than
some threshold value, because otherwise an avalanche
ing to the transition to the RS begins before the jam state
emerge@5,6#.

These two conditions are already sufficient for the ex
tence of the traffic-jam state. Indeed, if one prepares by h
the initial configuration with a jam and then abruptly appli
the driving force, this state may survive in the classical F
model even at nonzero temperatures. However, the sim
tion of the present work showed that thetransition from the
homogeneous state to the traffic-jam state at slow varia
of model parameters takes place only if two more conditio
are satisfied.

~i! It must be some randomness in the system. As we h
shown, already the intrinsic chaos, which always exists
to the nonintegrability of the discrete FK model, is sufficie
for the existence of the traffic-jam behavior~although in the
T50 case we had to start from a random initial configu
tion!. The simplest way to introduce chaos into the system
to use Langevin motion equations withT.0; in this case the
traffic-jam state emerges for any initial state. Of course,
temperature should not be too large. The thermal ene
must be lower than the energy of interatomic interact
~otherwise the behavior will be the same as for the system
noninteracting atoms! and lower thanE0 ~otherwise the be-
havior will be the same as for the system without exter
potential!.

~ii ! The interparticle interaction has to be anharmonic.
has been shown, already the hard-core potential, when
atoms do not interact at all except that they cannot occ
the same well of the substrate potential, is sufficient to p
duce the traffic-jam behavior. Thus, one might expect
transition to the traffic-jam state for the harmonic interatom
interaction. However, the situation is more subtle: there is
transition to the traffic-jam state foratomsin the standard FK
model, but thekinksmay still be organized in jams becaus
for any short-ranged interatomic interaction the interact
between the kinks is always exponential.
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Other parameters of the system are not crucial and wo
only change the parameter range of existence of the tra
jam behavior. In the simulation we observed the traffic-ja
states for different values of the elastic constantg as well as
for different concentrationsu. Moreover, traffic jams exis
even for theu;1 case, although in this case not atoms b
kinks are organized into jams.

Using the results of the present work, one can give
simple solution to how to avoid traffic jams: the particl
~atoms in the FK model or cars in the one-lane road! should
interact harmonically, i.e., they should try to keep an eq
distant interval between themselves. Although this solut
is quite trivial and has been well known empirically for
long time, the simple models considered in the present pa
allow us to study this questionanalytically and quantita-
tively.
s.
ld
c-

t

a

i-
n

er

Finally, note that the model studied in the present work
the one-dimensional model. The percolation threshold
one-dimensional models is zero, i.e., even a single de
~jam in the present model! totally kills the conductivity~the
running state!. Which of the features of the model behavi
will persist in a two-dimensional model is the subject f
further investigations; some preliminary results are presen
in Refs.@4,5#.
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