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The driven underdamped chain of anharmonically interacting atoms in the sinusoidal external potential is
studied. It is shown that due to the interatomic interaction the system exhibits hysteresis for any nonzero rate
of changing of the dc driving force. Before the transition to the running state the system passes through the
traffic-jam inhomogeneous state. The system behavior is explained with the help of two simple models, the
discrete lattice-gas model with two states of atoms, and the continuum mean-field model based on the Fokker-
Planck equation[S1063-651X98)10507-X]

PACS numbes): 05.40:+j, 05.70.Ln, 46.10+2, 82.20.Mj

I. INTRODUCTION where 1<i=<N, and periodic boundary conditions are as-
sumed. The substrate potential hels wells on the chain
Driven diffusive systems belong to the simplest models oflength, so that the dimensionless atomic concentratiof is
nonequilibrium statistical mechanics. These systems areeN/M, and the average distance between the atongs, is
characterized by a locally conserved density, with a uniform=a/ 6. In simulation we used the valug=2/3 everywhere.
external field setting up a steady mass current. The systenihe coefficienty corresponds to the external viscous damp-
of this class have wide application in modeling of charge andng due to energy exchange between the chain and the sub-
mass transport in solids. Recently the driven diffusive mod-strate. For the interaction of nearest-neighboring atoms we
els have been used in tribology, where the driving forcetook the Todaexponential potential
emerges due to motion of one of two substrates, which are
separated by a thin atomic layer. V(x)=Voe 2
In the context of tribology, the generalized Frenkel- - . . L
Kontorova (FK) model has been studiefl—6]. In this SO that Fhe characte_rlstlc radius of mtergctlonqsﬁ . The
model, a one- or two-dimensional atomic system is p|‘,jlce(§i|men3|onless glastlc constant, wh|ch is the main parameter
into the external periodic potential, and the atomic curjent ©f ztr,‘,e claszswal FK model, is defined asy
in response to the dc driving fordeis studied by numerical — & V" (8)/27°Eq (e.9., see Re{7]). For the potentia(2),
solutions of Langevin motion equations. The simulationsd IS equal to
showed that the function(F) exhibits hysteresis: when the _ 2
force increases, the system goes from the low-mobility re- g=VoB" eXp(~ fan). ®

gime to the high-mobility state, where all atoms move withr 4| atoms we applied a dc forde and also the Gaussian
almost maximum velocity. But if the dc force is then de- .onqom force SFi(t), (SFi(t)F(t'))=25T 8 8(t—t"),

creased, the high-mobility state survives to quite small valy, hich models a thermal bath with temperatdFe In the

ues ofF, and then jumps abruptly to the low-mobility state. g jation we calculated the average system velocity and
In addition, during the transition the atoms have a tendency,a, the mobilityB defined as

to be organized in compact groups of two different types,

one consisting only of slowly moving atom@svhich re- B={((v))/F, (4)
semble “traffic jams’), and another of “running” atoms

moving with the maximum velocity. To explain these issueswhere((- - -)) stands for the averaging over the system and
let us first describe the model under consideration in moralso the averaging over time. If the substrate potential is

detail. _ . _ absent, for any >0 after a timet~ 77‘1 the system reaches
~ Model We consider a chain dfl atoms subjected to the a steady state characterized by the maximum mobBity
sinusoidal external potential with the amplituig=2 and =", In addition, we calculated the velocity correlation

the perioda= 2, the atomic mass ism=1 (this defines our function
system of units The equation of motion for the atomic co-
ordinatex; is the following: Ki={(Xi+1— %)), (5)

which will be used to distinguish a homogeneous steady state

; , ) d from inhomogeneous ones.
Xit X+ sinXi+ — - [V(Xi+17X) + V(X =Xi-1)] Hysteresis Typical hysteretic dependencB¢F) are pre-
' sented in Figs. 1 and 2 for the harmonic and exponential
=F+ 6F;(1), 1) interactions, correspondingly. These dependences were cal-
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FIG. 1. Hysteresi8(F)/B; for the standard Frenkel-Kontorova
model. Solid curves correspond to increasing force and dashec
curves to decreasing force processes. The four curves are for fou
rates of force changinB= AF/3igry, whereAF=0.01, 7p=27 is : e i -
the characteristic period of the system, and the valuig @ indi- 0 200 400 600 800 1000 1200
cated by different symbols: diamonds fog=1, triangles forig time
=10, asterisks foig=10?, and crosses forr=10°. The model

FIG. 3. Atomic trajectories for the exponential interaction with
parameters aré€=2/3, N=256,9=0.1, T=0.1, andn=0.1. ) P

B=1/7 at the fixed force==0.33. Other parameters are the same

culated with the algorithm described in detail in Rpf]. @S in Fig. 1. The rectangle is shown enlarged in Fig. 4.

Namely, we slowly changed the force with small steps, the e anharmoni¢exponential interaction, one can see the

force was changed on Fhe valieg-=0.01 during the time following essential differences between them. For the har-
7r, then we waited the timey, to allow the system to equili- 1 onic interaction, the system goes directly from the low-
t_)rate, anq after th_at we measured the velocity and Correl"’}hobility (“locked” ) state to the high-mobility“running”)
tions during the timerg, thus the average rate of force gaie Although the system may be found in steady states
changing isR=AF/37g. Four CUIVES In F_lgs. 1 Or 2 Were \yith intermediate values a8, e.g.,B/B;~0.5, these states,
calculated for four rates d changing, which differ by ten oo \ve checked by analyzing the atomic trajectories, always
times one from the next one. As seen, a width of the hysterz,epond to omogeneoustate on a spacial scale larger
etic Ioop.decrgases_wnh decreasingRofbut a well defined 51 the lattice constard. On the other hand, for anhar-
hysteressq still exists even for the smallest raR onic interaction between the atoms, the system passes
=5.3x10 ‘. Thus, the simulation prompts that the hyster-yn.q,gh intermediate states which apacially inhomoge-
esis could survive for any rate of force changing. As will be heqy5 I this type of steady states, the system splits into two
shown in the present paper, the hysteretic behavior shoulg, gjitatively different regions, which differ by atomic con-
e.x|st fo.r any nonzero rat®. Taking |nt9 account the one _centration and velocities. A typical picture of atomic trajec-
d|men3|9nal|ty qf.the FK model, the existence of hysteresiggies is presented in Fig. 3. One can clearly distinguish
atT>0 is not trivial. , _ _ “running” regions, where atoms move with almost maxi-
Traffic-jam state Comparing the hysteretic curves of Fig. y,ym velocities, and “traffic-jam” regions, where atoms are
1 for the standard FK model with those of Fig. 2 calculatedymost immobile. The regions characterized by a larger
1.0 T , atomic concentration and smallélmost zerp atomic ve-
locities are called “jams” in what follows. In Fig. 4, which
shows a small portion extracted from Fig. 3, one can see the

0.8 dynamics of a single jam. The jam grows from its left-hand
side due to incoming atoms which stop after collisions with

0.6 the jam and then join to the jam. From the right-hand side,
Qé the jam shortens, emitting atoms to the right-hand-side run-

ning region. In addition, in Fig. 4 one can also see a detailed

scenario of the jam’s dynamics: when an incoming atom

collides with the jam, it creates a kirflocal compressionin

the jam. This kink then runs to the right-hand side of the jam

) ! and stimulates there the emission of the atom into the right-

0.0 i ol £ __] hand-side running domain. Thus, simulations show that the
0.10 0.20 0.30 0.40 0.50 0.60 traffic-jam state may correspond to a stegdy statg of the sys-

force tem. In the present work we shc_)yv that this state is the staple

steady state, and find the conditions under which the traffic-
FIG. 2. The same as in Fig. 1 but for exponential interatomicjam state should emerge.

interaction(2) with 8= 1/ Thus, in the present paper we concentrate on the follow-

0.4

0.2
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1800 - - (1) to a single mean-field¢ontinuousFokker-Planck equa-

// tion, which then is used to explain qualitatively the existence

] of hysteretic behavior in the FK model. Finally, Sec. VI con-

1750E cludes the paper with a summary of the results and a discus-
sion of the general aspects of the traffic-jam behavior.

1700¢ y Il. ATTRACTOR

The first question we are interested in is the following. Is

= 16501, | the inhomogeneous state with traffic_ jams really a stable
steady state of the system? This question can be reformulated
as the following two questionsgl) Is the corresponding con-
] figuration in the phase space an attracting of®f it is
1600 1 attracting, what is an attractive domain for the state with
traffic jams? In turn, this question is coupled directly with

one of a possible choice of initial conditions leading to the
1550¢ z inhomogeneous state. Also, the same question can be refor-
mulated as one about the stability of the traffic-jam state at
nonzero temperatures.
1 1 1 1 1 . .
50880 200 220 440 260 250 500 Flrst_, let us recall some fac_ts known from st_udles of a
. more simple problem of Brownian motion of a single atom
time . . . - .

(or a system of noninteracting atojris a periodic potential,
FIG. 4. A single jam of Fig. 3. which has been studied widelg.g., see Ref[8]). In this
case Eqgs(1) reduce to the set of equations fdrindepen-

ing two questions. Does the hysteresis really exist in a onedent atoms
dimensional system? Does the state with jams correspond to . .
a stable steady state? Xi+ mX;+sin x; = F+ 6F;(t). (6)
The paper is organized as follows. First, in Sec. Il we ) ) )
show that a system state with jams corresponds to a stran%g'thoUt the noise termsF;(t) every equation from this set
attractor and, therefore, it should be dynamically stablePecomes a deterministic one which reads simply
Then, in Sec. Il we investigate conditions under which the . .
system state with jams should emerge, and show that an X+ gx+sinx=F. (7)
anharmonicity of the interatomic interaction is the necessar _ ) o -
condition for the transition to the traffic-jam state. Both thesiquaﬂon(?) can easily be solved for any initial conditions.
sections are based on computer simulation. In the next twdhe corresponding phase pattern on th@] plane is shown
sections we introduce two simple models which allow an!n F|g._5(a). o )
analytical description of the phenomena under investigation. As is well known, for a Hamiltonian system different
Namely, in Sec. IV we develop and study a simglscrete phgse trajectories cannot intersect each olther except th.e ones
lattice-gas model. This model is characterized by two state§0ing through singulatfixed) points (the singular point is
of atoms, the “immobile” state which is the same as in thedefined as a point where bats=v andx=dv/dt vanish. At
standard lattice-gas model, and the “running” state wherdarge forcesF>F;=mEy/a, Eq. (7) has no singular points
the atoms jump in one direction only. The model exhibits theat all. The total potentialU4(x)=1—cosx—xF has no
existence of traffic jams, a nonlinear dependence of mobilityminima atF>F;, and Eq.7) has “running” solutions only.
on the jump probability, and, moreover, it already shows theOn the other hand, at smaller forc&s< F;, Eq.(7) has two
hysteresis. In Sec. V we reduce the set of Langevin equatioriinds of singular points. The first one corresponds to the

1nate

coord

1.0+ 1.0+
(a) (b) FIG. 5. Phase pattern for a
0.3+ g 0.8+ single atom in periodic potential.
064 g 061 SApEat (@) Flow lines for the determinis-
yiasd tic equation (7) at =0.5, F
0.4 04 =0.3. Only the trajectories within
2 Yy one period of the substrate poten-
'g 02 02 tial (normalized to 1 started from
E 0.0 ¢ 0.0 the linex=0 are shown(b) Phase
) pattern for Eq.(6) with random
0.21 021 noise corresponding to nonzero
0.4 0.4 temperature T=0.1. The grey
scale map presents the distribution
0G0 o2 04 o5 0s 10 0G0 o2 04 05 08 10 function W(x,x;t) for the steady
state at—oo.
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trivial static solution which describes the atom locked at a 1.0
minimum of U¢(x), e.g., at the position=sin ! F, x=0. 0.8-
This fixed point is the stabléfocal) one, and the trajectories
approaching it are spiral in the underdamped case. The sec-
ond singular point is the unstablsaddl¢ one. It corre-
sponds to the atom at a maximum of the total potential
Ue(X). At small dc forces, F<min(F,,F), where Fy,

= (4/7) npymE,, almost every solution of Ed7) is finished

in the focal point whert—«. In the overdamped case;, -0.24
> 5., wheren.=m?\Eo/4a\Jm~0.56, Eq.(7) att—= has 0.4
either the locked solutioif F<F;) or the running ondif
F>F;). But in theunderdampedase,»< 7., there is the 00 02 04 06 08 10

interval of forcesF,<F<F;, where Eq.(7) admits both coordinate

types of solutions, the locked solution and the running one,

simultaneously. In this case there is a special trajectory FIG. 6. Typical flow lines of theT=0 strange attractor for the
called the separatrix, which passes through the saddle poin?gStem of interacting atoms calculated for the following system
and separates the spiral trajectories attracting to the focUR@rameters#=2/3,9g=0.1, f=1/m, n=0.5, andF=0.3.

from the trajectories which go to the running solution. De-
pending on the initial state, the evolution of the system end§ra
up in one of two attracting configurations: the trajectories
below the separatrix are attracted to the trivial fixed point

and finish in the locked state, while the other ones go to a bove for Eq.(7)] in the vicinity of th ddl ints even
attracting curve which corresponds to the running state. above for £g. € vicinity ot the saddle points eve
without the temperature driven jumps.

Th i f i ins | i il- oo - i
€ existence of two attracting domains leads to bistabi (3) When one starts with different random initial configu-

ity of motion of the Brownian particle in the periodic poten- . . . S
tial without noise. However, the situation is changed drasti atons, the system reaches the typ!cal trajectories m_phase
' pace “stably.” Therefore, the configuration of flow lines

cally when one turns on a noise: any small but nonzerosr nted in Fid. 6 i ttractor of th tem under con
temperature makes it possible for the trajectory to jump fro resente 9. 5 1S aallractor ot the system under con-

one side of the separatrix to the other. Figufie) hows the sideration, at least within the accuracy of the simulation.

transformation of the phase pattern of Figa)5n the pres- flft: E:/er; aiTt=O th'ts attrgctor |sc23(.)t.t|c | CF
ence of a small noise. Instead of trajectories, we plot in Fig € last stalement needs an additional comment. From

5(b) the gray-scale map for the distribution function Fig. 6 one can see_that, in contrast Wlth th_e noninteracting
3 h thod of its calculation is described problem, the flow lines on thex(v) projection can now
\éV(Ix,x,F) a;,t_’oo (the metho ‘ , | ( cross each other. Therefore, the focal fixed point of (Zyjis
elow in this section As seen from Fig. @), the regions  yansformed now to the so-called “focal-saddle” singular
near the T=0 attracting trajectories are covered Quite n,int (recall that the phase space of the many-body system is
densely by randomly perturbed trajectories. However, on

; X N dimensiongl. Such a singular point is a typical configu-
qould see(and also it can .be d'.reCﬂy teﬁFed fc,)’r every flow ration which produces dynamic chaos in systems with more
line separatelythat the trajectories can “jump” across the

o L ; g than two degrees of freedom. The chaotic nature of the at-
separatrix in the vicinity of the saddle points. These jumps

. actor of Fig. 6 was checked numerically by calculating the
show that fluctuations can push the atoms out of the Iockefgrgest Lyapunov exponent which has been found to be posi-
state as well as fix them back from the running statey

. . ; ve. Additionally, in Fig. 7 we plot the discrete mapping of
Namely, these jumps cqmpletely destroy the b|§tab(Myq, velocities for the attractor of Fig. 6;[k]—uv;[k+1] with
therefore, the hysteregigor the system of noninteracting
atoms at nonzero temperatulfé. 12+

Let us return now to the system ofteractingatoms. In

the state with traffic jams every atom can be found in both
the running state and the locked state at different time mo- 0.8
ments. This means that the projection of the atomic trajec-
tory onto the planex,v) should exhibit transitions from a
vicinity of the locked state to the running one and vice versa.
Indeed, the respectiveN2dimensional phase pattern shows
some regular channels which connect the running and locked
states of the same atom. To depict these channels explicitly
and to compare the results with those for the case of nonin- 041
teracting atoms, we plot together in one Fig. 6 thxev]
projections of the trajectories of all atoms®t0. A direct 04 00 04 08 12
comparison of this figure with the analogous pattern of Fig. vIK]
5(a) for the case of noninteracting atorfisoth patterns are !
for T=0) shows that the interatomic interaction leads to the FIG. 7. Stroboscopic map of velocities k]—v;[k+ 1] for the
following new effects. attractor of Fig. 6.

velocity

(1) The atoms can visit both the locked and running at-
cting regions.

(2) These regions are connected by two specific channels.
long these channels the atoms cross the sepafaiefined

041

v[k+1]
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the discrete time stey, 1=ty + 79 (79=2 is the period of The only method for a numerical solution of a many-body

oscillations at the minimum of the substrate potentiaFat FPE is to employ the Monte Carlo technique. For Eif),
=0). Figure 7 clearly demonstrates a chaotic nature of théhis technique reduces to the solution of the set of Langevin
attractor. Recalling now that the system under consideratiorquations(10). We used the following technique. Starting
is dissipative and, therefore, a phase voluihef the system with an appropriate initial configuration, first we waited a
must decrease with timdQ{x; ,x;}/dte< — 52|x;|, we come transient tirnettr uqtil the system reaches a steady state.
to the conclusion thahe T=0 state with traffic jams corre- Then, for discrete time momentg=t,+kAt we calculated
sponds to the strange attractaf the system(Notice that ~the numbers of atoms within different small phase volumes
every strange attractor contains a countable set of reguld€i &+ A&} and accumulated the counts during an averag-
trajectories, so one can always find an initial configurationind timet,,. The stationary distribution functiow/({y}) is
leading to the regular behavior. However, the set of initiallust proportional to these counts, so we are left to normalize
configurations leading to the stochastic behavior is uncountl according to the equatiofidy;- - - dyyW({y}) =1.
able) The parameters of the described procedure have to be
To study the stability of this strange attractor with respectchosen numerically in order to result in negligibly small fur-
to temperature fluctuations, let us rewrite Ef). as a set of ther corrections to the densi/({y}). In the simulation we

two stochastic equations used the parametetg= 307, t,,= 5007, At=0.02r,, and
the phase space was discretized wikk=0.005 andAv
)'(i:vi , (8) =0.01. As the initial configuration we used a random distri-

bution of atomic coordinates and velocities, although we

. ) d checked that the final distribution does not depend on the
0= = i~ SIMX+F == [V(Xi 1= %) + V(X = Xi-1)] initial one. To test this technique, first we calculated the
! distribution function for the system of noninteracting atoms

+ 6F;(1) (9) and compared the result with the one obtained by a numeri-

_ _ _ cal solution of the one-particle Fokker-Planck equation on a
or, in a compact form for the variable§g, j=1,..., N,  256x 256 grid. The distribution functions calculated by both

where&y—1=X; and&;=v;, as methods were found to coincide; the corresponding function
is shown in Fig. B).
&=—h({&DH+> g F;1). (10) The projection of the probability density({y};t) onto
i

the plane x,v) for the chain of interacting atoms with the

same model parameters as those of Fig. 6 is presented in
The systen{10) can alternatively be rewritten in terms of the Figs. §a) and 8b) for T=0 andT+0, correspondingly. One
Fokker-Planck equatio=PB for continual (macroscopit  can see that, first, the many-body attractor exhibits a chaotic
variablesy; behavior aff =0 already, and second, both the channels con-
oN oN ) necting the running and locked states persist under applying
ﬂv: -3 iD-‘“({ v+ S D@y} |w a thermal noise. Thus, we conclude tha traffic-jam state
at = y ij=1 dyidy; " y ’ remains stable at nonzero temperatyres least for small

(11 enoughT (this statement is also confirmed by the simulation

. o _ ) presented in the next sectjon
whereW({y};t) is the distribution function. The drift vector

DY and the diffusion tensob{” in Eq. (11) are coupled

with the coefficients of Eq(10) by the following relation- Ill. PHASE DIAGRAM
ships[8,9]: As was mentioned in the Introduction, for a slow chang-
2N ing of the external force the transition to the state with jams

DD —h . D?@ _ e (12 is not observed for the standard FK model, but does exist for
(b =hityh) i (b k§=:1 Oy - (12 the exponential interatomic interaction. Thus, the second im-
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portant question emerges: for what system parameters might
one expect the transition from the homogeneous state to the
inhomogeneous traffic-jam regime? To find an answer, we
made a series of simulations for different model parameters.
First, the existence of jams could be expected only for an
underdamped system, because the system must have two dif-
ferent states for atoms, the running state and the locked state,
and this is possible only when< .. Thus, the external
damping coefficienty is an important parameter of the
model. Having this in mind, we modified the simulation al-
gorithm used in the Introduction, in the following way: for
given values ofg, B, and T, first we prepared the initial
configuration by relaxing the equidistant configuratiorFat
=0 andT=0, then we applied the dc for¢eand the Gauss-
ian random force corresponding to the temperaflireand
allowed for the system to reach a steady state, waiting a time
t,=100r,. At the beginning, the external damping was taken
to be large,p=1 (recall that the characteristic frequency of
atomic vibrations iswy=1). Next, we decreased the damp-

ing coefficient with small stepgeach new value ofy was  them by a standard technique before plotting them in the
obtained from the previous one by dividing over 1.0183, i.e.figures. Finally, in Fig. 11 we plot the phase diagram on the
we made 128 steps for the variation pffrom =1 to 7 (7,B) plane by extracting the positions of maximakof( 7)
=0.1), and at each step we first waited the time 40®  for every value ofg.

allow the system to reach a new steady state, and then during The simulation results provide the answer we were look-
the next time period df,,= 1007, we measured system char- ing for: the transition to the steady state with jams emerges
acteristics such as the average system velocity and the velofor the exponential interactiof2) for 3>a ! only. Because

ity correlation function. In the simulation we used the param+ = 3~ corresponds to an effective radius of the interatomic
etersF=0.5,N=256,T=0.1, andg=0.1. The dependence interaction, this result means that for a slow variation of the
B(#) is similar to that ofB(F) described above: whep  system parameters the jam states appear only if the atoms
decreases, the system passes from the low-mobility lockedccupying the next-nearest-neighboring wells of the sub-
state(LS) to the high-mobility running statéRS). For the  strate potential are almost not interacting.

harmonic interaction, this transition occurs in one step, and Thus, we come to the conclusion that the transition to the
the correlation functions exhibit a peak just at the transitiortraffic-jam state emerges only for short-range interatomic in-
point. For the exponential interaction, the transition pro-teractions when the radius of the interaction is smaller than
ceeds, on the contrary, in two steps. First the system passé®e period of the external periodic potential, and only for
to an intermediate state characterized by a shell wittB0O  small damping coefficients in an interval just preceding the
<Bjs, and only then with a further decrease gfis the transition to the running state. Other parameters of the model
running state witlB~ B; finally reached. As we checked by such as the temperature or the elastic constant, are not essen-
analyzing the atomic trajectories, this intermediate state aftial for the problem under study. In particular, recall that in
ways corresponds to the steady state with jams. At the sanfgec. || we observed the traffic-jam state for even zero tem-
time the correlation functio# () exhibits two peaks, one

at the transition to the inhomogeneous traffic-jam stage,

and the second at the transition to the running state. From the
definition (5) one can see that the value Kf should be
proportional to the number of jams in the system because the
velocities of nearest-neighboring atoms may differ essen-
tially only at the boundaries separating the running and jam
domains. Therefore, we can use the fact that two peaks on
the dependendé () exist as an indication of the jam state,
while the positions of these peaks show the parameter range
for JS existence.

To study the role of the anharmonicity of the interaction,
we made a series of runs for different values of the parameter
B, keeping at the same time the value of the elastic constant
g fixed, so that the limi{8B— 0 corresponds to the harmonic
interaction(the standard FK modglwhile the limit 83—«
describes a hard-core gas. The simulation results are shown
in Fig. 9 for the B(#7)/B:(7) dependencegrecall B(7) FIG. 10. The same as in Fig. 9 for the velocity correlation func-
=% 1] and in Fig. 10 forK,(#). Notice that the primary tion K,. For a better view, every dependerig(#) is normalized
dependences occur to be too noisy, so we had to smoot its own maximum.

FIG. 9. The dimensionless mobili®/B; as a function ofy for
different values of the exponert at a fixed value of the elastic
constanty. N=256,9=0.1,F=0.5, andT=0.1.
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FIG. 11. Phase diagram on the,(3) plane. LS is the locked

state, JS is the steady state with jams, and RS is the running state. FIG. 12. Evolution of the lattice-gas model. Inmobile atoms are
Diamonds correspond to maxima Kf(#) and the dashed curve shown as black circles and running atoms as gray circles. Time is
corresponds to thB(#)=0.9B; threshold. The parameters are the measured in Monte Carlo attempts per site. The system sikk is
same as in Fig. 9. =10% 6=0.8, anda=0.7.

perature, although in this case we had to start with a randor@onsider a one-dimensional lattice of lengythwith periodic
distribution of atoms as the initial configuration.

boundary conditions. Each site is either occupied by one
atom or is empty. LeN be the total number of atoms and let
V. GENERALIZED LATTICE-GAS MODEL the dimensionless concentration be defined 6asN/M.

Each atom may be in one of two states, the immobile state or
As was shown in Sec. lll, the transition to the traffic-jam the running state. The system evolves in time according to

regime emerges only in the case of short-range interatomithe sequential dynamics, i.e., atoms jump independently and
interactions. Therefore, let us try to model the traffic-jamrandomly according to the following rules.
behavior with the help of a lattice gd&G), where atoms (1) At each time steg—t+1, one chooses a siteat
occupy the sites with at most one atom per site and jumpandom.
stochastically to vacant nearest-neighboring sites. Let us as- (2) If this site is occupied by an immobile atom, it jumps
sume that an atom may jump to the right with the probabilityto the sitei + 1 (if this site is empty with probability « or it
a and to the left with the probability 4 «, where3<a  jumps to the sité —1 (if the left-hand site is empjywith
<1. Recalling the FK model, the probability of a jump to the probability 1—a as in the partially asymmetric exclusion
right at small external forces ia~(1+e 27T)"1 so the model. After a jump to the left the atom remains in the im-
parametera in the lattice-gas model plays the role of the mobile state, whilafter a jump to the right the atom is in the
driving force in the FK model. Such a variant of the LG running state.
model is known as the partially asymmetric exclusion model (3) If the atom in the chosen siteis in the running state,
[10,11. The a=1 variant of this model, called the totally it jumps to the right provided the right-hand site is empty,
asymmetric exclusion model, has recently been solved exand remains in the running state. Otherwise, if the isté
actly [12]. is not empty, the atom in the siferemains in the running
The underdamped FK model has, however, one more imstate if the right-hand site is occupied by the running atom or
portant aspect: an atom after the jump does not stop in theecomes immobile if the site-il is occupied by the immo-
next potential well but continues to move until it meets abile atom
stopper, e.g., an immobile atom in front of itself. To incor- A typical picture of system evolution started from a ran-
porate this feature into the lattice gas model, we assume thaom distribution of immobile atoms is shown in Fig. 12. As
an atom may be in two different states: the “immobile” seen, from the very beginning the system splits into compact
state, in which it jumps as usual in the LG model, and thedomains of immobile and running atoms. The immobile do-
“running” state, in which the atom always jumps to the right mains(jams are characterized by the local atomic concen-
provided the right-hand site is empty. The important aspectration #;=1. The jams are separated by running domains
of the model is that an atom can change its state from theharacterized by a local concentratiép<<#. One can see
immobile state to the running state and vice versa: the imthat Fig. 12 looks similar to the trajectories in Fig. 3 of the
mobile atom is in the running state after a jump to the right,FK model.
and the running atom becomes immobile after a collision To characterize the system state, let us introduce the di-
with an immobile atom. Such a model may be called themensionless “mobility” B as the ratio of the number of
trafficcjam LG model, because the atoms behave similar taunning atoms\, to the total number of atom¥,B=N, /N.

cars in a one-lane road. The dependences @& on « for different values off are
Thus, the simplest model may be introduced as followsshown in Fig. 13. To calculatB analytically, let us suppose
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FIG. 13. Mobility B as function of the jump probability for
different values off: 6=0.65 (diamonds, 6=0.80 (triangles, and FIG. 14. Distribution of jam’s sizes at different times= 10
6=0.95 (squares Each data point is an average ovex 50° at- (dotted curvg, t=10? (dashed curve t=10° (dot-dashed curye
tempted jumps per site. The averaging was started aftet( MC andt=10* (solid curve. The chain’s length i# = 1¢?, 9=0.8, and
steps. The data were averaged additionally over 28 independenf—0.7, The histograms were averaged over 100 independent runs.
runs. The system size M = 10°. Solid curves are the predictions of
Eq. (16). For a> 6 the jams all disappear, a8=1 in the steady

) ] ) ) o state. The dependencéks) shown by solid curves in Fig.
that there is only one jam in the chain. Let this jam have;3 gescribe the simulation results with good accuracy.

length s. Because the local concentration in the jamdis Now let us dwell on the steady state in more detail. A jam
=1, we can apply the following simple arithmefid]: of lengths loses atoms from its right-hand side at the rate
and it receives new atoms to the left-hand side at thepate
s+N,=N, s+M,=M, (13)  These two rates are equal to one another in the steady state,

S0 in average{é(t))=0. However, because of the random-

whereM, is the length of the running domaifkD). Taking  ness of joining and losing events, the vak(é) will exhibit
into account thatN,=M,6, and N=M¢, we obtains  random walks, i.e., at long timess>1, t'>1, and|t—t’|

=M(6—6,)/(1-6,), so that the mobility is equal to >1, s(t) should behave according to the equation
0,(1— 6 s(t)—s(t')]?)~2alt—t'|. 1
_6d-6 14 ([s(h)=s(t")]?)~2alt-1| (17
(1-06,)0

Thus, ata< @ the infinite system has no steady state at
all. Indeed, when a jam reaches the s$ze0, it disappears
forever, while the motion ofs(t) to higher values is not
restricted in the infinite system. The distribution of jam sizes
(P(s) continuously changes with time shifting to larger and
larger values as shown in Fig. 14, so that instead of the name
“steady state” it is more reasonable to use the name “qua-
sisteady state” or “coarsening state.” However, the mobility

Evidently, Eqg.(14) should be valid as well for the steady
state with any number of jams providey] corresponds to
the mean atomic concentration in the RD’s.

According to the rules accepted above for the LG mode
the most left site of any RD is always emgthis is clearly
seen in Fig. 12 Therefore, the running domain grows from

its left-hand side at the rate due to the injection of new tth , p h ith
atoms from the left-hand-side neighboring jam. At the right-Of té coarsening state does not change with fitr8. Ac-
gording to Eq.(16), B is determined by the system param-

hand side of the RD, the atom which occupies the most righ A

site of the RD leaves the RD and joins itself to the neighborEt€rs only and does not depend on the distribukgs).

ing right-hand-side jam. Thus, the RD shortens from the The transition to the running state in this simple LG

right-hand side at the rag , wherep, is the probability that model is of second order in the sense that the current changes
) r . . _ .

the farthest right site of the RD is occupied. Clearly, in thecontinuously at the poink = §. However, the simplest model

steady stat@, = a. Neglecting by a possible deviation of the exhibits a trivial hysteresis: wheall atoms come into the

RD concentration at its right-hand side from the mean valudUMning state, this state then remains unchanged forever,
6, , we may take approximately even if ¢ is changed back to lower values. In this sense the
rs

transition may be considered as first order.

Keeping in mind that we want to describe qualitatively
the behavior of the FK model, let us now improve the LG
model to make it more realistic, allowing the running atoms
to spontaneously change their state back to the immobile
state with some probabilityy<<1. Namely, let us slightly
B~ a(1-6) w< O (16) modify the third rule of the system evolution in the following

(1-w)6’ ' way: (3') If the atom in the chosen siteis in the running

Py~ 6, (15

and finally we come to the expression
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state, it comes to the immobile state with the probabiity which may be easily solved numerically. As we checked, the
or evolves according to the rul@) with the probability 1 ~ MF dependenceB(a) describe simulation results with high
-7. accuracy.

To describe this variant of the LG model analytically, we  In the FK model, the rate of spontaneous transition to the
will use the mean-fieldMF) approach and suppose that all inmobile state depends on the external foFge.e., on the
running domains are characterized by the same concentratigiclination of the periodic substrate potential: it is zero for
6r . In addition, we also assume that the probability of occu+~F, and increases wittF decreasing in the regiof
pation of the most right site of the running domain is equal to< . |, the lattice-gas model this means thanust be zero
6, as above in Eq(15). With these assumptions, a jam of 5; ,—1 pyt it has to increase whem decreases. For con-
lengths increasesg— s+ 1) with the rated, , and decreases creteness, one may take the simple expressienyy(l

.(S_’S_ 1) with the.ratea. Denotmg.byns(t) the f?“mb.ef O.f —a)?, wherey, is a model parameter and the square depen-
jams (.)f lengtre aF timet, we can write the following kinetic dence is chosen in order to avoid an unphysical peculiarity in
equation forng(t): .

the a—1 limit.

The model (3) has a true steady state and does not ex-
hibit irreversibility anymore; they+ 0 condition totally kills
Equation (18) has a simple steady-state solutiom,  the hysteresis. This is because in the LG model the probabil-
=n,(6, /@) L. The distribution of jam sizes is described by ity of the spontaneous transition of an atom from the running
the expression state to the immobile state does not depend on the state of

the surrounding atoms. This is true for the transition of an
_Ns a—0,[6 s-1 isolated atom, but is too crude an approximation for the FK
P(s)= T ' system which we are trying to model. Indeed, when an atom
inside a RD becomes immobile, it will be immediately
whereJ=2ngs=n;a/(a— 6,) is the total number of jams. pulled back to the running state by the running atoms behind
The total number of immobile atoms is equal s it. This “inertia” effect cannot be described rigorously in the
=3sP(s)=n,a® (a— 6;)>. Applying now the same arith- framework of a lattice-gas model. But let us try to simulate
metic as above in Eq13), we can find the mobility this effect qualitatively, modifying the third evolution rule in
-1 the following way.
B=(1+p) (20 (3") In the case where a randomly chosen site occu-
pied by a running atom and the site 1 is occupied by an
immobile atom, we will count the total numberof immo-

hs:_ans_ Oinst+6ns_1+ang,;, sS=2. (18

a

(19

and the average concentration in the running domains

N, 0 bile atoms in the compact jam to the right of the bond
0= M_r: m (21) i——(i+1), and the number of running atoms behind this
bond in the compact running block, i.es,is the distance
which depend on the parameferdefined as from the bond —(i +1) to the first empty site in the positive
x direction andr is the same distance in the negatixe
_(E ( a )2 22) direction. Then the system is updated according to the fol-
P= N,/ \a—6,) ° lowing rule: if r<s, all r +s atoms become immobile, oth-

erwise (if r=s) all r+s atoms “belonging” to thei —(i
To complete the set of equations, we must have a kinetic- 1) pond become running. In all other cases the system
equation forn,(t) which plays the role of boundary condi- eyolves similarly to the model (3, i.e., if the sitei—1 is
tion for Eqgs.(18). It may be written as empty, the atom either comes to the immobile state with the
probability y, or remains in the running state with the prob-
ability 1— v, jumping to the right provided the siiet+ 1 is
not occupied.

ny=yN,+an,—a(1—6,)n;— 6,n;. (23

The first term on the right-hand side of E&3) describes the . : . .

creation of immobile atoms from the running atoms, and the The S|m_ulat|.on results for t.hls generalized LG model are

other terms have the same meaning as in(Eg). except that presented in Fig. 15. Th‘? main new fgatgrg of the model is

now ny=0 and the rate of the disappearance of one-atomi hat now we have a nontrivial hysteresis similar to that of the
0~ - .

jams is nota but a(1— 6,), because these jams are emerging K model. Whena decreases starting from tlhe=1 value,

mostly inside the running domains and the condition that th hef statt(; W|It?h§u_t Jamsbsur\kll\t/estk?t v?lltjesa')tfr?v_ver th"’}ga
next-neighboring site to the right of the one-atomic jam is etore the Jumps back 1o the stale with jams. AS seen

empty is not valid anymore. The steady-state solution of qurom Fig. 1.5’ the Wid.th of the hysteretic loop d_e Peﬂds on the
23) is concentratiord, for higher values ob the loop is wider. In

addition, the width of hysteresis depends on the ratex of
n=yN, /a(1-6,). (24)  Vvariation as seen in Fig. 16. The sloweris changed, the
more narrow the hysteretic loop, so that for the adiabatically
Substituting Eq(24) into Egs.(21),(22), we obtain an equa- Slow variation of « the hysteresis should disappear alto-
tion on 6, gether. This means that the running state of the system at
a< @ is a metastable state characterized by a finite lifetime
(60— Hr)(a—ﬂr)z(l—0,)—'ya0r(1—0)=0, (29 Tr-
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FIG. 15. Mobility B(«) for the generalized LG model for dif-
ferent values of9: 6=0.65 (diamond$, 6=0.80 (triangles, and 6
=0.95 (squares For eachd the simulation was started from the
random configuration of immobile atoms at=0.5, then the final
configuration of the previous step was used as the initial configur.
tion for the next value ofr. Solid curves correspond to the increas-

ing of «, and the dotted curves, to its decreasing. Each data point is

an average over 1:510° attempted jumps per site. The averaging
was started after 15610° MC steps. The data were averaged addi-
tionally over 30 independent runs. The system sizilis 10° and
v0=0.1. The dashed curves correspond to Bd) of the simple
LG model.

The distribution of lifetimesr, of the running state is
shown in Fig. 17. To estimate the mean valuerpfinalyti-
cally, let us consider a state with a single jam of sizat
timet. This jam will be killed in the next Monte CarlgVIC)

6=0.80 7,=0.10
1OF T T T T T

e
®

mobility

0.6

o t=3x10°
S =10
0‘4.”. L
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(64

FIG. 16. Hysteresis in the generalized LG model for different
simulation times. Squares and solid curve for an averaging ove

0.5xX 10° MC steps per site; the averaging started afterxl8®
steps. Triangles and dotted curve for
1.5x10° steps; the averaging started after 4B° steps. Dia-
monds and dashed curve for an averaging over8® MC steps;
the averaging started afterL0® steps. The chain’s length i
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FIG. 17. Distribution of timesr, of transition from the running
state to the state with jams. The system sizéis 103, 6=0.8,
a=0.7, andy,=0.1. The hystogram was calculated wittx 80°
points. Each simulation was started from the initial configuration of

aFunning atoms, then it was “equilibrated” at=1 during the time

0° MC steps, after thakr was abruptly decreased to the value
=0.7, and the simulation was stopped wHgmreached the value
B=0.9 for the first time. The broken line shows the prediction of
Eq. (26).

stept+1, if just behind it there is a compact block of run-
ning atoms of a size=s. In the RS the probability to have
such a block of running atoms . Thus, at the time+ 1
the s-atomic jam will disappear with the probabilig?, and

it will survive till the next time step with the probability 1
— 6°. Therefore, in average tteatomic jam will survive if
1—-6°=6°, or s=s;, where the critical sizes, is equal to
So=—1n2/In 6.

Now let us suppose that at the tire 1 the chain was in
the running state, and calculate the probability that at the
timet the chain has a jam of the sizg. For one MC step,
the number of newly created immobile atomsyN (recall
N,=N in the RS, so that the probability for a given site to
be occupied by one immobile atom N/M = y6. There-
fore, the probability that at a given place thgatomic jam
will appear is (y#)%. Taking into account now that for the
transition to the JS the chain may have only one jam, we
obtain that in a chain of lengtM the probability of the RS
—JS transition per one MC step M(y#)%. Therefore, we
come to the expression

(1,)=1IM(y8)%. (26)

Although the estimatioli26) is crude, it predicts the correct
value of(r,) for the model parameters used in Fig. 17 and
emonstrates the right tendency for variation of the hyster-
etic loop with 6.

Equation(26) shows that the infinite system should have
no hysteresis at all. This is simply the result of the one-
dimensionality of the model. Indeed, ak 6 for any small

but finite probability of creation of they-atomic jam, at least

=10°, 9=0.8,y,=0.1, the data were averaged additionally over 300ne jam will certainly be created per each time step, and this

independent runs.

jam will cause the RS- JS transition.
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V. FOKKER-PLANCK APPROACH 1.0
AND MEAN-FIELD THEORY

The numerical simulations of Sec. Il have shown that the
transitions between different steady statds locked and
running onestake place at some critical value of the param-
eters of the system. From a qualitative point of view these
transitions can be treated as some kind of specific phase tran-
sition between different dynamic states. Sharp transitions are
found to survive at nonzero temperatures, at least within the
accuracy of the numerical simulation. This essential feature
of the system contrasts with the disappearance of bistability
in the system of noninteracting particles at ahy 0. To

study this problem, it could be useful to find a continuous -0.600 = 51 e = T
field description based on an effective energy functional in ) ) ) ’ : '
order to then use a standard approach of the theory of phase coordinate

transitions(e.g., see Refl14]). The continuous many-body
probability distributionW calculated above in Sec. Il already ..

rovided us with a feeling of how to construct a reducedtIO o . )
P . : . . . 6. The projection of densityV(x,v;t) onto subspacex(v) is
mean-field model. Namely, the idea is to find an effective

: . shown by a gray-scale map.
Fokker-Planck or Langevin equation for some one- or two-
particle functionW, which will reproduce, at least qualita-
tively, the same behavior as the exact many-body model.
Keeping this in mind, let us complete the one-particle

Langevin equatior6) by an “integral” (collective interac-
tion with all other particles, adding a new stochastic equatio
in the following way:

FIG. 18. The result of numerical solution of two coupled equa-
ns(27) and(28) at T=0 for the same model parameters as in Fig.

already sufficient to restore the channels connecting the run-
ning and locked states in the system. Indeed, the projection
of density W onto the subspacex(v), calculated for the
system(27)—(29) at T=0 and shown in Fig. 18, looks simi-
"ar to the distribution of Fig. & obtained within the exact
approach. Note, however, that the syst@#—(29) was not
deduced from the complete set of Langevin equati@hdut
rather was guessed, and the only justification of its introduc-
. : tion is the similarity of Figs. &) and 18.

{=p, p=—mutv)-v). (28) However, even the system of two coupled Langevin equa-
tions (27), (28) is too complicated for an analytical descrip-
tion. To reduce the number of equations, recall that in the

of freedom (an “artificial atom” with the same mass and . -
) - mean-field approach we can usually only restrict ourselves to
damping constant as the real atoms of the FK chainich L .
a vicinity of steady states. As we tested numerically, small

has to describe qualitatively the motion of the center of mass : ; ;
of the system. In Eq(27) we suppose that the motion of a perturpaﬂons of the \_/el_ocmy of the running or locked states

. : result in a linear variation of the valug
givenreferenceatom is perturbed by a forcgé due to some
averaged interaction with this “artificial atom,” i.e., with all
other atoms of the chain. In turn, the valueZdf assumed to {=ar,((v)~v), (30
be proportional to the deviation of velocity of the reference o
atom from the mean chain’s velocity ). Indeed, in a uni- Where the coefficientsy, | were found to bea,~3.3 and
form state, when all atoms move with the same velocity and~0.7 for the running and locked states, respectively. Thus,
the atoms are arranged equidistantly, the interactions of th&e may omit Eq(28) and substitute Eq30) into Eq. (27).

X=v, i)=—7]v—sinx+F+§+5F(t), (27)

With the help of Eq(28) we introduce an additional degree

given atom with its neighbors; a/ax;[V(x;+1—X;)+V(x;  In the result we obtain the equations
—X;_1)], cancel each other. Therefore, the interparticle in-
teraction will perturb the motion of the reference atom only X=0, U=— 70— SiNX+ Fer((v))+ 6F (1), (31)

when its velocityv deviates from the mean valye) and
thus destroys the system uniformity. In a rigorous approachyhere in the vicinity of the locked state we have to take
the averaging here should be performed over nelghbormgeﬁ((v»:F+a|<v> and .= 7+ @, while in the vicinity

particles inside a correlation distance»ﬁfl._ Ina mean-  fihe running state we should petg((v))=F + ,(v) and
field approximation, however, the value @f) is calculated 7= 1+ a, . Note that the linearized Eq31) is valid only

over the whole phase volunie, in the vicinity of steady states and was derived for the inves-
tigation of stability of these states. Equati@1) corresponds
f dx dv dZ du[vW(X,v,¢,uit)] to the following Fokker-Planck equation:
Q
(v)= , (29
IW(X,v;t) d d .
J’de dv d& du W(X,v,8,u;t) — = [ = 2V oo et +sinx— Fer((v))

so it depends on timé only. Numerical solution of Egs.

(27)—(29) shows that such a simple interactiofvf—v) is Wix,v31), (32)

0
+ Teir T et 5)
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Vi(E) consistently on its initial state. This allows us to give a quali-

4 tative explanation of why the bistability of running and

) locked states is much more strong for the system of interact-

ing particles compared to the noninteracting ones.
As seen from Fig. 19, there is some critical forEe
=F; at which the two minima of the potenti®™(E), one
at E=0 and the other dE+# 0, are equal to one anothén
Fig. 19 this binodal state is shown by a dashed cuifave

F, start from the locked stat@w)|,—o=0 and apply a forcé
lower than the critical on€& <F;; (in the locked staté o
Lt ot =F), so that the two minima coexist, but the trivial mini-
° E, E mum is lower than the nontrivial one, the locked state should

be more stable under temperature fluctuati@wmmpared to
the noninteracting systemdue to the inequality T
FIG. 19. The family of effective potential® (E) for different ~ =T7/(7+a)<T. On the other hand, if the system is al-
values of the effective forc€.. The dotted curve is for small ready in the running state, théhs=F + a(v)>F, and one
force Fo corresponded to the spinodal, when nontrivial minimum may haveF o> F . even forF <F ;. Moreover, if(v )|
of the potentiaV* (E) disappears. The dashed curve corresponds tds large, the nontrivial minimum of the potentMdF (E) may
the binodal, when energies of locked and running states are eqube deep enough to prevent any thermally activated escape of
one another Fq4=F ). atoms from the running state during exponentially long
times, and for any smalfbut finite) rate of variation of the dc
where Tes=Tn/ 7¢. The mean-field equatio32) takes force F the system should exhibit hysteresis.
into account the interaction between particles in a self- Finally, let us discuss a close analogy of the self-
consistent way via the nonlinear termdF ¢((v))/dv. stabilization of running and locked states which was ob-
Recall that in this section we are looking for an approxi-served in simulation and described above in the mean-field
mate description of stationary states and transitions betweafnodel with the stabilization of ordered states in thermody-
them. For this purpose we have to find some effective energiiamics. When a system is in the thermodynamic equilibrium
functional. However, as is known from the general theory ofstate and the size of the system tends to infifétyd also if
FPE[8], such an effective potential can be defined at least inhe interaction is long ranged enoygta phase transition
the low-friction limit, i.e., for the most interesting case of the between different ordered states is only possible due to the
problem under investigation. This limit corresponds to thenucleation procegd4]. Mesoscopic fluctuationglomains of
case when botlp andF are going to zero while their ratio a new state emerging near the transition poauilapse be-
ﬁeﬁ(<v))=Feﬁ((v))/neﬁ remains finite. In thep—0 limit fore they overcome some critical size, and only when one of
the atomic trajectories are close to those of constant energjne system paramete(s.g., temperature, magnitude, or cor-
e=2v2+1—cosx—xF. and the energy becomes the only relation length of the interactiorreaches its critical value
relevant variable of the problem. A steady-state solution ofloes the critical nucleus of the new phase start to appear.
Eq. (32) can now be written as an effective Boltzmann dis- Then, the overcritical nucleus expands and initiates the tran-
tribution sition of the whole system to the new state. A very similar
nucleationlike scenario is observed in thenequilibrium
W(x,v;t)cexd — V= (E)/Teg], (33)  system studied in the present work. For example, in Fig. 20
we plot the phase pattern for the state close to the transition
to the jam stated—g., 9<g.). Figure 20 was calculated
for a slightly modified model: instead of E(R), we used the

whereE= e sgn(), and the effective potentidd=(E) is

VZ(E)=|E| 34 interaction potentiaV/(x) = Voe A, thus allowing the run-
for |E|<E,, while for |E|>E, it has different definitions for hing atoms to pass over the locked ones. In this case one can
i ; RS have both running and locked states simultaneously. Below
positive and negative velocities: . .
the transition point these states are separated from one an-
+ = other, but there are mesoscopic undercritical fluctuations
V=(E)=E| - sgr(v)Fen((v)) P

which play the role of “precursors” for generation of “traf-
fic jams” when the parameters of the interaction go to the

|E| dE’ (35) critical values.

X
2w
Fo f dx\2[E' — (1—cosx)]
0 VI. CONCLUSION

The family of effective potentials' = (E) for different values We have shown with the help of a numerical simulation
of the effective external forcE . is shown in Fig. 19. that the driven one-dimensional FK model exhibits hysteresis
In the approximate approach of Eq382)—(35) the depen- and the existence of traffic-jam states. Basing on the simula-
dence of the effective fordee; on the averaged velocity ) tion we proposed two simple models which allow us to de-
is the only “memory” about interparticle interaction of the scribe both these phenomena analytically. The first model is
primary system. The value @b) is in turn determined by a generalization of the lattice-gas model with two states of
the total momentum of the system and depends selfatoms. This traffic-jam LG model is characterized by a non-
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1.0 for a strong interatomic interactipappears for the first time.
031 Traffic jamsdo appear in thaunderdamped~K model
with anharmonicinteraction just before the transition to the
0.6 running state. We can formulate the following conditions
041 which have to result in the traffic-jam behavior in the driven
= one-dimensional system.
'g 02 (i) It must be an externalsubstratg potential. In the
§ 0.0- e present work we studied the case of a periodic potential, but
a random external potential should lead to the traffic-jam
021 \ scenario as well.
041 “critical nuclea” (i) The motion must be underdamped; the particles
06 should have two different states, the locked state and the
00 02 04 06 08 10 running statefor the FK model this corresponds to frictions

0=<%<0.56, in the case ofy=0 the “intrinsic” friction
plays the role of dampingIn the FK model the bistability
FIG. 20. Phase pattern for the state close to the transipon ( exists due to the inertia of atoms. In the FP approach the
=0c, 9<9,) for the following system parameter$=0, =0.5,  same is due to memory effects; in the LG-type model one
B=1/m, F=0.3,9g=0.066, andf=2/3. Both running and locked Kas to introduce such a bistability artificially. In a general
states are splitt and qontaln_m_esoscoplc fluctuatitostical nu- case, the mean free path of the particle after overcoming the
clea”) of the phase with traffic jams. barrier of the external potential, must be larger than the pe-

. . . ... riod of the substrate potential or the average interparticle
linear dependence of the mobility on the jump probab|I|ty,distance whichever isplarger Notice that at% gi\Fent%e

exhibits hysteresis, and describes the organization of immao= o .
bile atoms into compact domairfams. At the same time, total (external plus intrinsic friction mu_st be larger than
as it is much simpler that the FK model, the LG model al-S0Me thresholq_value, because o_thermse an ayalanche Igad—
lows us to simulate much larger systems on a much longdfd to the transition to the RS begins before the jam state will
time scale. In addition, we developed the MF theory for thiseMmerge(5,6].
LG model, which describes the kinetics of traffic jams and These two conditions are already sufficient for the exis-
explains the simulation results with reasonable accuracytence of the traffic-jam state. Indeed, if one prepares by hand
Moreover, the generalized version of this model even exhibthe initial configuration with a jam and then abruptly applies
its hysteresis and allows us to estimate the probability of théhe driving force, this state may survive in the classical FK
transition from the running state to the jam state. The seconthodel even at nonzero temperatures. However, the simula-
model is based on the Fokker-Planck approach to the FKion of the present work showed that tlransition from the
model and also uses the MF approximation. With its help wehomogeneous state to the traffic-jam state at slow variation
explained the stability of the steady states of the FK modelof model parameters takes place only if two more conditions
Finally, we can formulate, at least qualitatively, the answersare satisfied.
to the questions that were asked in the Introduction. (i) It must be some randomness in the system. As we have
Hysteresis does exist in the underdamped one- shown, already the intrinsic chaos, which always exists due
dimensional FK for anyfinite rate of force changingand, to the nonintegrability of the discrete FK model, is sufficient
strictly speaking, for any large bfinite systen). This state- for the existence of the traffic-jam behavi@lthough in the
ment is quite trivial because the same is true for a singl@=0 case we had to start from a random initial configura-
driven Brownian particle in the periodic potential. However, tion). The simplest way to introduce chaos into the system is
in the system of interacting atoms the hysteretic loop is muclio use Langevin motion equations with>0; in this case the
larger and should survive at much higher temperatures. Intraffic-jam state emerges for any initial state. Of course, the
deed, due to concerned motion of atoms in the FK model, &emperature should not be too large. The thermal energy
single atom cannot exhibit bistability; the system must bemust be lower than the energy of interatomic interaction
transformed from one steady state to another as a wholéotherwise the behavior will be the same as for the system of
When the chain is in the low-mobility state, this state is morenoninteracting atomsand lower tharE, (otherwise the be-
stable (compared to the noninteracting sysiebecause of havior will be the same as for the system without external
the effective decrease of temperatdig<T; local fluctua- potentia).
tions with high-velocity atoms are suppressed due to the in- (ii) The interparticle interaction has to be anharmonic. As
teratomic interaction. The transition to the running state behas been shown, already the hard-core potential, when the
gins only when the forc& reaches the critical threshokek atoms do not interact at all except that they cannot occupy
and the motion of topological excitatiorginks) becomes the same well of the substrate potential, is sufficient to pro-
unstable(see details in Refl6]). On the other hand, if the duce the traffic-jam behavior. Thus, one might expect no
system is in the running state and the force is then decreasetansition to the traffic-jam state for the harmonic interatomic
the RS remains stable because local fluctuations with lowinteraction. However, the situation is more subtle: there is no
velocity atoms(jamg are suppressed again due to the inter-transition to the traffic-jam state fatomsin the standard FK
action. The effective driving forc& ¢ in the RS is larger model, but thekinksmay still be organized in jams because
thanF, and the transition to the LS may only begin when afor any short-ranged interatomic interaction the interaction
jam of the critical sizgwhich may be mesoscopically large between the kinks is always exponential.

coordinate
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Other parameters of the system are not crucial and would Finally, note that the model studied in the present work is
only change the parameter range of existence of the traffiche one-dimensional model. The percolation threshold in
jam behavior. In the simulation we observed the traffic-jamone-dimensional models is zero, i.e., even a single defect
states for different values of the elastic consiquais well as  (jam in the present modetotally kills the conductivity(the
for different concentration®. Moreover, traffic jams exist running statg Which of the features of the model behavior
even for thed~1 case, although in this case not atoms butwill persist in a two-dimensional model is the subject for
kinks are organized into jams. further investigations; some preliminary results are presented

Using the results of the present work, one can give dn Refs.[4,5].
simple solution to how to avoid traffic jams: the particles
(atoms in the FK model or cars in the one-lane josttbuld
interact harmonically, i.e., they should try to keep an equi-
distant interval between themselves. Although this solution O.M.B. wishes to express his gratitude to Thierry Daux-
is quite trivial and has been well known empirically for a ois, Maxim Paliy, and Michel Peyrard for illuminating dis-
long time, the simple models considered in the present papa&ussions. This work was supported in part by grants from the
allow us to study this questiomnalytically and quantita- Hong Kong Research Grants Coun@GC) and Hong Kong
tively. Baptist University(FGR).
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