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The transient nonlinear dynamics of single sine-Gordon and ¢* kinks in a small constant external
field is investigated analytically. Besides the acceleration of the mass center, the energy supplied
by the field is shown to be accumulated by transient oscillations of the kink width: the frequency
of oscillation of the kink width grows with the field and time while its amplitude decreases. The
dynamics in the asymptotic region illustrates the unstable nature of the kinks. The ¢* kink is shown
to be much more sensitive to the external field than the sine-Gordon one.

PACS number(s): 03.40.Kf

The dynamics of the driven Klein-Gordon solitons in
a constant external field shows a highly transient non-
linear behavior [1,2]. It has been shown that the linear
(WKB) perturbation scheme for the solution of the re-
spective nonlinear equations is insufficient for the driven
solitons [1]: a one-dimensional nucleation process due to
the cooperation of the nonlinearity and of a small con-
stant external driving field generates new nonlinear trav-
eling oscillations with the amplitude proportional to the
external field. The scenario of the nonlinear transient dy-
namics yields the following time development: the non-
linear fluctuations of the (shifted) ground state accumu-
late the energy supplied by the external field until there is
enough energy for the creation of a kink. This process of
the accumulation of energy continues by the acceleration
of the kink up to a critical velocity accompanied by the
decrease of the soliton width and simultaneously by the
generation of the nonlinear oscillations of the kink mov-
ing in the opposite direction until a new kink is created,
etc.

The transient dynamics of a single kink becomes more
transparent when described by the collective coordinates:
the coordinate of the mass center X (t) and the width of
the kink L(t) are coupled yielding a highly nonlinear dif-
ferential equation for L(t). In the paper [1] we solved the
dynamic equation for L(t) by separation of the slowly
and rapidly time dependent terms with the restriction
to the region of small times. However, in contrast to
the case with the damping where the supply of energy
by the external field is compensated by the transfer of
the energy to a reservoir [3] leaving the total energy con-
stant so that the transient regime is determined by the
interplay of the damping and of the external field yield-
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ing nonlinear transient relaxation, in the present case the
transient nature of the dynamics is not limited by time.
That means that the time development of the kink keeps
its transient nature during its whole life.

The aim of this paper is to find characteristics of the
nonlinear dynamics of the collective coordinate of kinks.
We shall solve the dynamic equations exactly and discuss
their physical consequences.

It was shown by Rice [4] that both sine-Gordon and ¢*
models can be described by the same set of equations for
the collective coordinates X (t) and L(t) with different
constant parameters for each of the models. The result-
ing oscillations of the width of the sine-Gordon soliton
exhibit a mode which was not found by the perturba-
tion approach to the sine-Gordon equation. This is a
consequence of the fact that Rice’s equations do not take
into account the phonon excitations in analytical calcula-
tions. An exact collective coordinate formalism including
phonon modes has been elaborated by Boesch and Willis
[5]. They have found the above mentioned mode unstable
as it entered the phonon band.

In what follows we shall confine ourselves to Rice’s
formalism. We shall solve respective dynamic equations
for the collective coordinates exactly and for any time.
They read as follows [1]: '
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FIG. 1. Exact time dependence of L(t) given by (14) for
the sine-Gordon soliton with (a) f = 0.1, (b) f = 0.002, co =
0.1.

and

m, = cg°E,, Lo=L(0),

with ¢, = —arcsin f, E, = 8¢co, Lo = 2(1 — %;;-)1/2, a=
72 /48 for the sine-Gordon case, V(¢) = 1 — cos¢; and
E, = (2)co, Lo =4(1— Z—%)l/z, a = (w? —6)/48 for the

¢* case, V(¢) = 1/8(1 — ¢2)2 [3].
Using Egs. (1) and (2) we get [1]
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2
+282 (t+§%) =0, (3)

where pg = px(0) is an initial momentum and 8 =
wf /o *m,Ly.
Further, using the ansatz L(t) = g?(¢) Eq. (3) becomes

<

g+ {9 + B2[t* + tpo/(n )] }g — =0, (4)

4ag3
where Q2 = ¢} /4(aL3)[cos ¢, +p3/(m2c})]. Equation (4)

can be solved exactly: according to Pinney [6] the solu-
tion to Eq. (4) can be written in the form
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FIG. 2. The same for the ¢* case with (a) f = 0.02, (b)
f = 0.002.

where W is Wronskian W = u'v — uv’, u,v is the funda-
mental set of solutions of the respective linear equation

§(t) +[Q* + By =0, (6)
where we introduced
2, 2
52 _ 02 _ B%pg F_ Po
= 4n2f2’ t t+27rf'

Equation (6) can be rewritten when using an ansatz

z=1p, (7)

y@) =Y (2), ==

where Y (z) obeys the equation
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FIG. 3. Time dependence of the frequency of oscillations
A(£,B)/t, for f =0.02 and f = 0.1. [See Eq. (17).]
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16 z2 =0. (8) A1B3). As My 1., (i0t?) determine linearly independent
solutions of Eq. (8) we choose A; = B; = 0. For L(t) =
Solutions to this equation are Whittaker’s functions [7] g%(t) = V2/EY2(t) we get finally

" 31 Q 1 2 The respective Wronskian W is constant, W = %(AzBl -
Y' + 7 ~+0

—i22 1
Y(.’l:) =Y ( ,px) = Mk im(lﬂ?) (9) \/E c2 1
43’ ) i 3) = Y2(A2M2, (iR c 1
L) = 7~ (AIMZ , (67 + 2 M- 97 ))-
Here, k = _;g ,m = },p =28, and My +m(iBt?) are
defined as (12)
Mk,% (2) = z3/4exp(—%z)¢(% —k, %; Z) ’ A; can be determined from the initial condition L(t =
0) = Lo for = to = po/2 0,
M, - (2) = 2 %exp(~32)9(4 — k, 3:2) | (10p O =Loferi=to=po/2mf#0,as

where ¢(a, b; 2) is a degenerated hypergeometric function 5 Lo 1 8c232t2
and z = i8#2. Ailt) = GigprE gy \ L TP L2

Then, the general solution to the linear equation (6) 0Tt 0
is given as a linear combination of two independent solu-
tions given by (7), (9), and (10),

1/2
13 ><exp(——2i,6't§)<1>f(to)¢§(to)] ) (13)
2 . .
i = (T\/‘_) [AiMy, 3 (iB8%) + B:M, - (iBF%)],
With the use of (13) we get finally an exact solution for
i=1,2. (11)  L@EB),

= 25 1/2
L(E ) = Zexpl-i0(@ —t%)]( jég(ﬁ?)+j—g;‘§((t?)+{1+z[ Ze0Bto cp(- zﬂto>¢1<to)¢2(to)} }

X [—¢§(f)/¢§(to) + %ﬁ(f)/ﬁ(to)] ) (14)

Here, we use notations

¢1(t) = ¢(% — Ry 277'ﬁt2)

$2(t) = ¢(3 — k, 1;i6t%). (15)

In Figs. 1 and 2 there are plotted the functions L(%, 3) given by (14) for both the sine-Gordon and ¢* case for different
values of f. (The numerical results were obtained using the program MATHEMATICA [8].) From comparison of the
dynamics of both cases it results that the ¢* kink is much more sensitive to the external field than the sine-Gordon
one. The amplitudes of oscillations and their frequencies are both field and time dependent.

Further, we shall find analytical expressions for asymptotic behavior of the kinks. As our considerations of the
soliton dynamics are restricted for small f, f < 1, (i.e. for small 3), we shall use the asymptotic expansion of the

. N2
Whittaker’s functions for large | k |= ?—ﬂ > 1, and B2 > 1 while | k | /382 = (Q/Z,Bt) is finite [7]. This yields
M_ (iBt%) — ex 'm Bt 2 B zsin[)\(t_ Al|1+0 —2—\/5 (16a)
02 1 P 8 Q Qz + (,Bt_)z ’ Q )

N\ 2
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_ 913 BE\? g 2p% BE\ 2 12
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Finally, the asymptotic behavior of Whittaker’s functions (16a) and (16b) yields for the asymptotics of the hyperge-

}_1/4 sin[AE, B)] [1 +0 (% \/E)] : (16b)

where
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ometric functions ¢, (f) and ¢2(f) the following:

(18a)

and

¢2(E) - ¢2aa(t_) = t_Q¢1a.a (ﬂa

where ¢145(%) is given by (18a).

(18b)

Finally, with the use of expressions (14) and (18) we get for the asymptotic behavior of the width of the soliton

L,s(%,3) the result

Las({a /B) = C(tO, ﬂ)

Here, C is a constant, given by the initial condition

(5]

—-1/2
[1 - cos2A(Z, B)].- (19)

Clto,8) = 2 eXP(iﬂtﬁ){¢{2(to) + (o) 2472 (to)

2Coﬂ

241/2
+[(Q20) 727 % (t0) — ¢3 %(to)] [1 +2 (_To_tg exp(—ift3)é: (t0)¢2(t0)> ] }

Lo = L(0) was defined below Eq. (2). The asymptotic
dependence L,,(%,8) (19) was derived for | k |= ?—; large
[f is small, B ~ f, see Eq. (3)] and for 3% finite, i.e., for
times £ ~ f~!. Then, the dominating term in A(Z,8),
(17), is the first one, A({,8) ~ %5_[1 + (%)2] /2 The
frequency of oscillations of L, (%, 3) (19) is then

waslB,0) = 2EH)/E= [02+ (807] . (20)

According to Eq. (5) the effect of nonlinearity for the
kink width is manifested by a shift of the width (nonoscil-
lating) and by a doubling of the frequency of linear os-
cillators (6). The asymptotic frequency (20) is identical
with the frequency of the linear oscillations in Eq. (6).
Hence, the effects of nonlinearity on the frequency of os-

cillations decrease with increasing time. However, the
range of stability of these oscillations is limited in time
as at certain times the respective bound energy level (¢*
case) enters the phonon band.

The frequency A(Z, )/t given by Eq. (17) is plotted
in Fig. 3. The effect of nonlinearity is evident for small
times again; the slope of the linear behavior in the asymp-
totic region is strongly influenced by the external field f
as expected.

In the future we intend to compare our results with the
numerical simulations of the solution of the sine-Gordon
equation with a constant external field.
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