PHYSICAL REVIEW B VOLUME 53, NUMBER 20 15 MAY 1996-II

Structure of kinks for a complex ground state
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We propose an approach which allows us to find the structure of elementary topologically stable excitations
(kinks) for a complex ground stai&$S) of an atomic chain subjected to the two-dimensional external potential
periodic along the chain and bounded in the transverse direction. The approach is based on the consideration
of the complex GS consisting of subchains, each being characterized by the trivial structure, so that the kink of
the whole system may be considered constructed of a set of topological excitatibkeks of the subchains.

A number of physical systems have a degenerated ground 1 N*
state (GS). Such systems admit topological excitations, Ue== 2 [V V(] 2
which “link” different ground states. As examples we may i=1 ’ '

recall dislocations in solids? domain walls in magnetic

materials® vortices in long Josephson junctiohetc. These

solutions(the so-called kinksdescribe transitions between
equivalent vacuum states.

Investigation of properties of these topological excitation
is very important, because they contribute to static propertie%:
of solids(such as the spectrum of elementary excitatipas t
well as to dynamic onege.g., charge, mass, and energy
transport in solids When the degeneration of GS is _ 2 211/2
“simple,” for example, when it is doubly degenerated as in M = LX) "+ (V= yy)7] )
the ¢* model, or when it is generated by the Abelian group
of translations as in the sine-Gord6®G) model, the struc-  determines the distance between the atoms. We consider the
ture of topological excitations is simple too. But when GS«fixed density” FK model, i.e., we place the atomic chain of
has a complex structure, for example, when an elementangngth L consisting ofN particles into a substrate potential,
cell of the crystalline GS is non-Bravaige., consists of \hich hasM minima on the distance and we assume the
more than one atomthe determination of the structure of periodic boundary conditions. Starting with the correspond-
topological excitations is a nontrivial problem. First, therejng injtial configuration, we solve directly the Newton equa-
may exist excitations of different kinds. Second, a questiorions of motion applying a method suggested in Ref. 6.
arises of how to find elementary excitations, which then may The model(1,2) describes, for example, the adsorption of
be used for the construction of any other topological excitaatoms on furrowed or stepped crystal surfa¢sse, e.g.,
tion in the system under investigation. Refs. 7 and 8 An interesting application of the model with

The goal of the present work is to propose a methochonconvex transverse potential is related to the reconstruc-
which allows us to find these elementary excitations. As &jon of surface growth in crystafs.
concrete example, we use the Frenkel-Kontord¥) When the frequency, of transverse vibrations of an iso-
model with a transverse degree of freeddfigzag-FK  |ated atom tends to infinity, the zigzag-FK model reduces to
model”) proposed in Ref. 5. The model describes a chain ofhe standard one-dimensional FK mo&&iwhere all atoms
interacting atoms subjected to a two-dimensional potentiakre aligned to a line. When the repulsion between atoms in
which is periodic along the chain and boundedg., para-  the chain increases, the GS of the zigzag-FK model under-
bolic) in the transverse direction. The Hamiltonian of the goes a sequence of bifurcations, starting with the zigzag
system has the form ground state(ZG9).>*° Further increasing of the repulsion
leads to the bifurcation to the “rhomboidal” GS, then to the
“double zigzag” GS, and so oft?

Topological excitations of the FK-type models are known
as kinks, or topological solitons. A simple situation emerges
where in the standard FK model, where only two types of kinks

describes the potential energy of interaction of lttie atom,
with N* nearest neighboring atom&{>N), V(r) is the
Spotential energy of the pairwise atomic interactjove took
e particular case of Coulomb repulsi®ifr) =V,/r], o is
e frequency of a single atom transverse vibration, and

N
1. 1. 1
H=k21 §x§+ §y§+(1—cos<k)+§w2y§+uk, (1)
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exist, namely, the kink, which describes the minimally pos-line in the transverse direction, the action bfon the GS
sible topologically stable compression of the chain, and theproduces the “mirror image” of the state, with respect to the
antikink, which describes the analogous expansion of thehain’s line. Thus, for the case wherandp are not relative
atomic chain. The simplegand most widely studiedcase prime andr is even, the GS is additionally doubly degener-
corresponds to the trivial ground state of the standard Fkated.
model, when the dimensionless atomic concentratidde- In general, in order to create a topological excitation in
fined as the ratio of the number of atofigo the number of the chain, we have to choose an element of the whole sym-
minima of the external potentidl in the limit when both  metry group and to act by this operator on the GS obtaining
N andM tend to infinity is equal to one, so that the lattice is a new GS configuration, and then to look for the kink con-
Bravais and each minimum of the external potential is occufiguration, which links the old and new GS’s, i.e., to find the
pied by one atom in the GS. In this case, the kiaktikink) minimum-energy configuration with the boundary conditions
configuration describes an extra atéwacancy inserted into  at infinities when the left-hand side of the chain is kept in the
the chain, when all other atoms are relaxed in order to adjustld GS, while the right-hand side is in the new &8r the
to the created local perturbation. However, wheésr/p  sake of concreteness, we assume that the atoms repel each
(r and p being integerswith r #p, the situation becomes othep.
nontrivial even for the standard FK model. In particular, now Although the total number of topological excitations is
the kink is characterized by the fractional atomic numberinfinite (but countablg all of them can be constructed from
p~1, so that one additional atom inserted into the chain profew kinds of “elementary kinks.” To find the structure of
ducesp kinks. elementary kinks, let us consider the whole system as that
Let us consider a complex GS of the FK model with constructed of subchains. Each subchain, being considered
6=r:p, so that the period of the GS structurepigwe take independently from other subchains, has the trivial GS con-
the period of the external potential as the unit of lepngeimd  figuration, i.e., an elementary cell of a subchain always con-
each elementary cell of the GS consistsr aitoms(we use  tains one atom only. Analogously as it was done above, we
here the designatioA=r:p instead ofd=r/p, in order to  can define translation operato®& and T;, i=1,2,...r,
emphasize that and p for nontrivial GS may have a com- acting on theéth subchain only. It is evident that any element
mon divisor as, for example, in the ZGS of the FK modelS*) of the whole symmetry grougs® e.”, may be pre-
with the transverse degree of freedom, whergp=2). The  sented as a product of elements of the subchain’s subgroups
idea of the approach developed below is to treat a complext; and.7;,
0=r:p GS of the chain as consisting ofsubsystemsgsub-
chaing, each being characterized by the trivial stucture. In a (a) i g@ @
single subchain, we may create kinfsaibkinks if we sim- S :iﬂl G' T , (4)
ply shift the right-hand side of the subchain for an integer
number of periods of the substrate potential. In this way, weyhereg(® andt(*) are integers. But the opposite statement
may consider any topological excitation of the whole systemg not true, the set of all products G2 T exceeds the set
as constructed of subkinks. However, subchains strongly in-- |ndeed, because the subchains are strongly interacting, a
teract with each other. Consequently, many combinations gfg|ative arrangement of the subchains in the GS must not be
subkinks are forbidden, because the right-hand side of thgjo|ated, and this leads to a constraint on the admitted values

chain must correspond to a true GS configuration. Thus, thgf the integersgi(") in Eq. (4). Namely, the following condi-

problem under investigation reduces us to looking for al—tion must be fulfilled:
lowed combinations of subkinks, and then to distinguishing ’
those combinations that may be considered as elementary

ones, so that any other combination can be constructed from

the elementary ones. 3 _ for all subchains simultaneously. If we nammg’mod p as
The whole symmetry group” of the FK rlOd?L With  the “color” of the ith subchain, the conditiofs) means that,

§=r:p GS, may be split to two subgrouesf/,:y/n@ 2. The in the GS, all subchains must have the same cgi6¥.

first subgroup.” is an Abelian group,”={T"}, where In the way described above, we may constuct any topo-

n=0x1,....1is generated _by the operatdt which d_e- logical excitation of the system. Recalling that the operator

scr'lbes translatlon. of the chain as a whole for the dlstanc%i applied to the right-hand side of thigh subchain creates

p (i-e., for one period of the GS structur@he second sub- 5 g pkink in this subchaittand, analogously, the inverse

group . is a finite (“point” ) group, which describes the neratorG1 creates a subantikinkwe see that any topo-

local symmetry of the complex elementary cell. For thelogical excitation may be treated as consisting of a corre-

trivial GS, where a!l/gtoms are aligned to _a_Ime as In thesponding set of subchain’s subkinks. Because the GS of an
standard FK model¢ is a cyclic group consisting gf ele-

ments. & is generated by the operatdd, ©={G' isolated subchain is trivial and is characterized by the dimen-
i rT= ' sionless concentratio®;=1/p, a single subkink(suban-
1=0,1,...,p—1, andGP=G°=1, whereG corresponds to ' P g (

. . eSPDT tikink) has a topological charge * (or —p~1). Therefore, a
translation .Of the chain as a whole fOF the unit distatice, topological excitation of the whole system can be character-
for one period of the substrate potentiadn the other hand, ized by a topogical charg®®@=q@/p, where
when GS is nontrivial, the point groug” includes addition- y Pog Grot /P
ally element] (J?=1), which describes the “inversion” of r
the GS._ For e_xample, in the m_gzag-FK model a}bove the first q%é?=2 (gia)+ pti(”‘))- (6)
bifurcation point, when atoms in the GS are shifted from the i=1

g “modp=g®, i=1,...r &)
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3 If s,=0, thena;=0 (recall that the points with numbes
and 0 coincidg and Eq.(9) has a solution witth=1, while
2 the colorg is determined by the number of “large” steps
during the first turn.
l=a, Otherwise,a;=p—s;, and the next point in the anti-
clockwise direction isa;=r—s;#a,. To prove that
O=p =2p =... a,#ag, let us suppose that,=a,. Then we ger —s;=1,
(p—1)mod=r—1,p—1=jr+r—1 (j is an integer, and
finally p=(j+21)r, which contradicts the assumption that
p-1 Eq. (10) has no solutions.
Then, starting from the poirat; , after the second rotation,
we come to a poinad;. We calculate

FIG. 1. Construction of elementary topological excitations.
y fopoled s,=(p—aj)mod. (12

Thus, the only question which remains still open is how tolf s,=0, we havea,;=0, so thath=2 in Eq.(9). Otherwise,
classify topological excitations, i.e., to select those excitathe next point is,,=r —s,. Again, in the same way, we can
tions that may be considered as the simplest, or elementagyrove thata,+ a, and alsca,#a,. Thus, after each turn, we
ones. Taking into account that topological charg@sare come to a new point in the circumference. But because the
additive, so that the topological charge of a complex excitanumber of these points is finite(p), after a finite number
tion always is a sum of topological charges of elementaryof steps, we finally come to the point with the number 0, and
excitations, it is not difficult to guess that elementary excita-the number of turns just gives the valuelofn Eq. (9). So,
tions should correspond to those with minimum topologicalwe have proved that Eq9) always has a solution provided

charges, such agy,=0 and 1 or 2. Eq. (10) has no solutions, and have shown how to find it.
From Eqgs.(5) and (6), it follows that q,,; may be pre- Step 2 Now let us suppose that E(L0) has a solution. It
sented as is easy to see that it is true, if and onlypfandr have a
common divisorjo>1, i.e., if
Qor=rg +ph, ()
P=Pojo andr=rojo. (13
wherer andp are given integers determined by the concen-
tration 6, the colorg must be within the interval Indeed, represent the prodddt=ph=rg as
I4
1<g<p, (8) e
N=i,...i,, Rijt1.--i,» (14)
andh is an integer. So, the problem reduces to looking for v &
such integergy [from interval (8)] and h, which minimize
thf absolute value Ogt;gt dth'n,Ed by Eq.(6) for given \\nerei ... i are simple integers. Frold), we see that
g=r:p. Let us proceed further in two steps. if r and p have no common divisors, it should lge=Rp

Step 1 Suppose that the minimufg,y is equal to one. In o <1 put this is forbidden b P
. , y the restrictidB).
this case, Eq(7) takes the forniwe change here— —h an Let j, correspond to the greatest common divisor. If we

put q,,= — 1 for the sake of convenience now putg=p, andh=—r, in Eq. (7), we obtaing=0,
i.e., we have found one kind of kink with zero total topologi-
ph=1+rg. (9 cal charge. Putting,,= 0 in Eq.(6) and taking into account

Eqg. (5), one can see that the elementary excitations should
correspond to the integegs=p/2 andh=r/2.

Besides, in the present case there exist also solutions with
ph=rg (10 4 nonzero topological charge equal@e=j,/p. Their struc-
ture can be found from the solution of the equation

Suppose also thatandp are such that the integer equation

has no solutions, so thatandp are relatively simple.
Let us putp points on a circumference and numerate them

from 0 top—1, as shown in Fig. 1. Then, let us begin from Poh=1+r,g, (15

the point number 1a,=1, and make an anticlockwise rota-

tion moving by “large” steps, each af unit steps. After the  similarly as it was done above in step 1, because now the

first turn by several “large” steps, we come to a poait,  integer equatiopy,h=r,g has no solutions.
which is the closest to the initial poirdy. Calculate the To summarize, when the point groug does not include
integer the inversion operatod, so thatr and p are relatively

simple, #=r:p GS admits the existence of a single kind of
s;=(p—ag)mod. (11 elementary topological excitation, the SG-type kink with to-
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pological chargeQ=1/p. The kink structure, in this case, two kinds of kinks were named in Ref. 10 as “massive”
may be found from the solution of the integer equatién kink and “nonmassive” kink, respectively, because mass
Otherwise, whem andp are not relative prime and have (charge transport along the chain may be carried out only by
the greatest common divisqg, 6=r:p, GS supports the kinks with nonzero topological charge, i.e., by “massive”
existence of two kinds of kinks. The first kind is the kinks. It is important to note that, in the model under inves-
¢*-type kink, it has the topological charg@=0, and its tigation, there is no constraint on a sequence of kinks of
structure is characterized by the colpep/2. The second (ifferent kinds.
kind_ of kink IS the SG-type kink W.ith topological charge If we denote byk (k_) the subkink(subantikink in a sub-
Q=jo/p, and its structure is determined by E45). These  paiy then an elementary topological excitatiinof the

whole system may be represented as a setabéments, such

as K={g:k,g,k, ... ,g,k}. For example, Fig. 2 shows the

structure of elementary kinks for the trivia=3:5 GS. Be-

c ] cause 3 and 5 are relatively simple, in this case, we have only

one kind of kink, the SG-type kink with the topological

- chargeQ=1/5. Indeed, Eq(9) has the solution fog=2 and

8 ' ] h=1, so that the kink structure is characterized dyy=2,

y g,=2, andgs= — 3, orK={2k, 2k, 3k}. It is interesting that

this structure essentially differs from what might be expected

. from a naive approach. Indeed, if we, following the kink

definition as the minimally possible compression of the

] chain, simply compress the chain by shifting its right-hand

: side for one period of the substrate potential to the left, we
, 1 create a topological excitation with topological charge

X Q=3/5 and structurék,k,k}, which then has to be split into

three elementary  excitations, {k,k,k}—{2k,2k, 3k}

T
I

- ! 1 +{2k, 3k, 2k} +{3k, 2k, 2k} = 3K.
' . To illustrate the conclusions made above, we have per-
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FIG. 2. Structure of trivial#=3:5 configurations ¢=2.0, FIG. 3. “Rhomboidal” 6=3:4 configurations &=2.0,

V,=40). (a) Ground state(b) kink, and(c) antikink structures. The V;=4000). (a) Ground state(b) kink configuration (=3, p=4,
vertical dashed lines show the positions of the minima of the subg=1, h=1, Q=1/4). The vertical dashed lines show the positions

strate potentiak;=2mi, i=1, ... M. of the minima of the substrate potenti§l=2i, i=1
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TTT TTT | GS state is additionally doubly degeneratggk2, and we

40 - - have two kinds of kinks, the “massive” kink={k,k} with
Q=2/p and the “nonmassive” kink={k,k} with Q=0.

20 - 1 A more complicated case of “rhomboidalp=3:4 GS,

o o which arises after the second bifurcation in the zigzag-FK
o o o o » model!? is shown in Fig. 3. The solution of Eq9) is

e o o o o o o o o o | h=g=1 in this case, so that the kink structure may be rep-
e o o 0 0 o o o o o resented a& ={k, 3k,k}.

-20 - y Finally, Fig. 4 demonstrates configurations for the “mas-
sive” and “nonmassive” kinks for the ‘“double-zigzag”
-40 | 0=4:4 GS, where the point groug includes the inversion
Ll operatord. In this case, we havg,=4 andg=2, so that

(a) X the “massive” kink has topological charg®=1 and is

5 T r characterized by the structure{k,k,k,k}, while the “non-

40 ! massive” kink has the configuratios {2k, 2k, 2k, 2k}.

In the model under investigation, the atoms may be
shifted not only along a given subchain, but also they may be
® o o © g 0o ® e o @ transferred from one subchain to another one. However, the

e o ©® o o o o o subkinks which form the kink are to be spatially bounded in
p | a localized region, because a displacement of a single sub-
¢ o © o ¢ 060 o o '@ kink from the region of the kink localization leads to an
20 - increase of the system energy linearly with this displace-
ment. Thus, in this sense the subkinks are like quarks of the
40 L . field theory, while the kink, an elementary particle con-
1 ‘ Ll L structed from the quarks.

(b) X Note that all topological excitations with the same total
topological charge are identical from the topological point of
view. For example, the “massive” kink shown in Fig(}

has the structureK={k,k,k,k}. But the configurations
K={k,5k,3k,k} and K={3k,5k,3k,5k} describe the same

20 - topological excitation as well. Besides, any subchain may
contain additionally any number &k pairs. All these con-

) 0 - - figurations are different from the physical viewpoint, in par-
ticular, they may be characterized by different potential en-
20 L g ergies. One of them corresponds to a minimum of the system
potential energy, others may correspond to local minima or
saddle configurations. Because the configurations with the
same topological charge may be transformed to each other in
a continuous way, the strategy developed in the present work
helps to look for possible trajectories of motion of a kink

FIG. 4. Structure of “double zigzag’¥=4:4 configurations along the chain. Besides, owing to the intrinsic structure of
(w=2.0, V,=6660). (a) Ground state,(b) “massive” kink kinks for a complex GS, the kinks have to have intrinsic
{k,k,k,k} (r=p=4, Q=1, g=2), and (c) “nonmassive” kink  (“shape”) modes, which describe oscillations of the sub-
{2k, 2k, 2k, 2k} (r=p=4, Q=0, g=2). The vertical dashed lines kinks with respect to each other.
show the positions of the minima of the substrate potential
Xi=2mi, i=1,... M.

20
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