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Low-temperature conductivity and diffusivity of the generalized Frenkel-Kontorova model, which
takes into account realistic (anharmonic) interaction of particles subjected to a periodic substrate
potential, are investigated analytically in the framework of a phenomenological approach which
treats a system of strongly interacting atoms as a system of weakly interacting quasiparticles (kinks).
Using phenomenology of the ideal kink gas, where the low-temperature ground state of the chain
is described as that comnsisting of “residual” kinks supplemented by thermally excited kinks, we
describe the ground state of the system as a hierarchy of consequently “melted” kink lattices.
System dynamics is then described in terms of the kink dynamics. The motion equation for a single
kink is reduced to a Langevin-type equation which is investigated with the help of the Kramers
theory. In this way, we qualitatively analyze dependence of the susceptibility, conductivity, and
chemical diffusivity of the chain on the concentration of atoms in the chain. The model leads to a
series of effects which we expect are related to the experimentally observed phenomena in several
quasi-one-dimensional systems, in particular, superionic conductors and anisotropic layers of atoms
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adsorbed on crystal surfaces.

I. INTRODUCTION

The study of mass and charge transport in systems
with strong interatomic interactions is an important but
a very difficult problem. At high temperatures transport
coefficients can be found with the help of a perturba-
tion technique starting from the case of noninteracting
atoms.! Results already obtained may be summarized
with the statement that attraction between the atoms
decreases the chemical diffusivity, while the repulsion in-
creases it compared with the noninteracting case. Be-
sides, it was recently shown that a second-order phase
transition results in a cusp peculiarity of the chemical
diffusion coefficient.? On the other hand, experimental
results show a very rich and complicated behavior of dif-
fusion coefficients, especially as functions of the atomic
concentration. The latter is the most clearly seen for
diffusion in layers adsorbed on crystal surfaces, where
the concentration may be varied in wide limits from zero
(diffusion of isolated adsorbed atoms) to very high values
(for example, in some adsorbed systems the interatomic
distance in a monolayer of adatoms is lower than that in
the corresponding massive crystal).?

Unfortunately, at low temperatures the perturbation
theory breaks down, and transport characteristics may
be found by computer simulations for a given choice of
the system parameters.®®> To understand at least qual-
itatively the system behavior as well as to explain re-
sults of such simulations, it is useful to elaborate a phe-
nomenological approach in which a system of strongly in-
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teracting atoms is approximately treated as a system of
weakly interacting quasiparticles. In fact, in such a phe-
nomenological approach the primary problem splits into
two particular problems. First, one should introduce ap-
propriate quasiparticles corresponding to the system of
strongly interacting atoms and calculate the parameters
of these quasiparticles. Second, one has to connect the
parameters which characterize the system dynamics with
those of the quasiparticles.

In the present paper we use such a phenomenological
approach to investigate the low-temperature conductiv-
ity and diffusivity in a generalized (anharmonic) Frenkel-
Kontorova (FK) model. Introduced to model the dy-
namics of dislocations in crystals,® in a rather general
context a FK-type model describes a one-dimensional
chain of interacting particles subjected to a periodic sub-
strate (on-site) potential. This model may describe, for
example, a closely packed row of atoms in crystals,” a
chain of atoms adsorbed on stepped or furrowed crystal
surfaces,® a chain of ions in a “channel” of quasi-one-
dimensional conductors,® hydrogen atoms in hydrogen-
bonded systems,'® etc. (e.g., see the recent review
paper!! for other applications of the FK model). In all
the cases mentioned above the chain of interacting par-
ticles is a part of the whole physical system under con-
sideration, and the remainder is modeled as an external
substrate potential and also as a thermal bath.

Transport properties of the FK model were a subject
of intensive studies in the last decade. When the par-
ticles in the FK chain have an electric charge e, the dc
conductivity o is given by the Einstein relation
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Here n is the atomic concentration, kg is the Boltz-
mann constant, T is the substrate temperature, and the
collective-diffusion (or “jump”-diffusion) coefficient D,, is
introduced as

D, = lim D,(@), ﬁAQ):ZQ(l;Q), (2)
=1

@—0+10

where Q(l;@) is the Laplace transform of the velocity
correlation function Q(!;t),

Qo) = Am dt exp(iot)Q(l;t), Im@ >0, (3)

QU -5t —t') = (&i(t)aw (), (4)

z(t) being the coordinate of the /th atom.
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The chemical diffusion coefficient D, is determined
through the relation

D, = D[J/X7 (5)

where x is the dimensionless susceptibility of the sys-
tem. The coefficient D, describes the flux J(z,t) =
S &i(t)d(z — x;(t)) in a nonequilibrium state when the
atomic density p(z,t) = Y, 6(z — ;(t)) slightly deviates
from its equilibrium value. Namely, according to the sec-
ond Fick law, we may write

(I(@. ) ~ ~De (ol 1)), ®)

where ((---)) stands for averaging over the macroscopic
distances = >> a,, and ay = 1/n is the average inter-
atomic distance.

To our knowledge, analytical results have been ob-
tained for two extreme cases only. First, at high tem-
peratures the FK chain conductivity is defined by the
collective-diffusion coefficient!? 14

D”%Df{l'l'g

Here Dy = kgT/m,n, m, is the atom’s mass, 7 is
the viscous friction coeflicient which describes the cou-
pling of the chain with the thermostat, ¢, and a, are
the height and period of the external potential, respec-
tively, and the dimensionless elastic constant g4 is de-
fined through the interatomic potential Vin(z) by the ex-
pression g4 = a2V}",(a4)/2n%,. The chemical diffusion
coefficient D, is determined by the analogous expression
with the factor V[, (a4)a% /m,n instead of Dy in front of
the right-hand side of Eq. (7). As seen, the conductiv-
ity and diffusivity are oscillating functions of the atomic
concentration. Further, it is convenient to use the dimen-
sionless atomic concentration (the so called “coverage”
in surface physics) defined as § = na, = a,/as. From
Eq. (7) it follows that D, has a local minimum at § = 1
and a local maximum at 6 = 0.75.

The second extreme case corresponds to the 7' = 0
limit, where the system behavior depends on whether the
dimensionless concentration # is a rational or irrational
number. In the former case the system ground state
(GS) corresponds to a commensurate structure which is
locked by the substrate potential so that the conductiv-
ity is zero. Otherwise, for irrational  the GS structure
is incommensurate, and the GS may be locked (pinned)
or sliding (free moving under the action of an infinites-
imal external force) depending on whether the dimen-
sionless elastic constant g4 is lower or greater than a
critical threshold gaubry [Where gaubry itself depends on
0, and it achieves the lowest value for the golden mean
Ogm = 2/(V/5 + 1)]. Namely, at g4 = JgAubry the Aubry
transition of breaking of analyticity takes place, so that
at ga < gaubry the GS is pinned and the conductivity

1[  (e/ksT)sinh(ksT/coga) 12\
[cosh(kBT/e,gA)——cos(27raA/as)]} . (7

is zero, while for g4 > gaubry the GS is sliding and the
conductivity is infinite.!®

The aim of the present paper is to close the gap be-
tween the T = 0 and the high-T' cases. In the low-T
case, where the perturbation approach breaks down, we
will use the phenomenological approach based on a kink-
gas ideology introduced by Currie et al.'® for the § = 1
case. Recall that at T = 0 the discrete FK chain for
any rational § admits the existence of topologically sta-
ble excitations (kinks) which link different ground states
of the model. Within the ideal kink-gas approach the
low-T' & = 1 GS is considered as that consisting of the
commensurate § = 1 background structure with a small
number of thermally excited kinks. When 8 # 1 but the
concentration is close to # = 1, the thermal kinks are
additionally supplemented by residual kinks. As will be
shown in the present work, for any # # 1 the GS may
be considered as a hierarchy of consequently “melted”
superkink lattices. Thus, the low-T' GS of the system of
strongly interacting atoms can be interpreted as a system
of slowly interacting quasiparticles (kinks). Then, in the
framework of the kink-gas ideology, the transport along
the chain may be considered as that carried out by these
quasiparticles (kinks).

In order to be applied to real physical systems, the
standard FK model, where the interatomic potential
Vint () is assumed to be harmonic, should be generalized
in a way that takes into account realistic (anharmonic)
interactions between atoms in the chain. The reason for
such a generalization is connected with the fact that we
try to describe the typical physically important situa-
tion when the mean distance between the particles in
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the chain varies from a value of order of the period of
the substrate potential to infinity. Clearly, in this case
the harmonic approximation for the interatomic poten-
tial is not realistic, and one should use a more realistic
interaction potential. In the present work for the sake of
concreteness we use the exponential interatomic potential

Vint(z) = Vo exp [——,8 (aﬁ — 1)] , (8)
8
where Vg (Vo > 0) is the interaction energy of two atoms
located at the nearest minima of the substrate potential,
and (3 is the dimensionless anharmonicity parameter of
this potential. As a result, the dimensionless elastic con-
stant g4 is determined by the expression

040 = 55 (&) P em(-p/0). )

22 .

So now g4 depends on 6, monotonically increasing with
0 starting from 0. Consequently, the T = 0 function
D, (0) has a very irregular shape: it is equal to zero for
all rational § as well as for those irrational § whose elas-
tic constant satisfies the inequality ga(0) < gaubry(f),
and D, is infinite for that & where ga(f) > gaubry(9).
As for the function D.(6) at T' = 0, it is zero for any 0,
because for even infinitesimal variation of § there are re-
gions where 6 is rational, and these regions will blockade
the atomic flux. On the other hand, the high-T behav-
ior of the generalized (anharmonic) FK model can still
be approximately described by Eq. (7) if we replace the
constant g4 by the effective elastic constant g4 () given
by Eq. (9).

The main objective of our study is to investigate the
dependence of the diffusion coefficients on concentration
of particles for the anharmonic FK chain in the low-
temperature case. Although the way to final expressions
for diffusion coefficients is rather long, the qualitative re-
sults are sufficiently clear and may be explained in the
following simple way. Let us describe first the behavior of
the function D, (6). Because the mass transport within
the phenomenological approach is caused by kinks, the
system conductivity is to be proportional to the kink
concentration. Consequently, D, () should have a local
minimum at § = 1. Indeed, at § = 1 there exist thermal
kinks only, while with small deviation of 6 from the § = 1
point the thermal kinks are supplemented by residual
kinks or antikinks, so that the total kink concentration
increases. Analogously, D, (6) should have local minima
for any other trivial GS such as 6 = 1/2, § = 1/3, etc.
Obviously, between the local minima D,(8) should ex-
hibit local maxima, for example, a maximum at 6 = 2/3
where the concentration of trivial kinks achieves the max-
imum. Thus such a behavior shows the function D,(6)
at high temperatures as described by Eq. (7). But if we
now decrease the temperature so that the thermal energy
kpT is lower than the energy of interaction of trivial kinks
at the distances corresponding to, e.g., the concentration
6 = 2/3, the trivial kinks will form their own lattice, and
the conductivity will now be carried out by superkinks
(topological excitations of the kink lattice). Thus at this
temperature the function D,(#) would exhibit addition-
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ally a local minimum at § = 2/3. Analogously, with
further decrease of T, new local minima will emerge for
more and more complicated rational § numbers, and fi-
nally, in the limit T — 0, the function D,(6) will have
minima at any rational 6 as was described above.

On the other hand, the behavior of the function D,
is more simple as was predicted in Ref. 17. Accord-
ing to Fick’s law (6), the chemical diffusion coefficient
is the proportionality coefficient between the (infinitesi-
mal) gradient of the atomic concentration and the flux
of atoms caused by this gradient. But the gradient of
atomic concentration will automatically produce a gradi-
ent of kink concentration too. Thus, in the standard FK
model, where g4 is constant and the parameters of kinks
and antikinks are the same, D.(0) will be approximately
constant, and will coincide with the kink (or antikink)
diffusion coefficient. But the anharmonicity of interac-
tion results in destroying the kink-antikink symmetry.'®
That is, effective interaction forces for the kink (in the re-
gion of a local contraction of a chain) exceed those for the
antikink (in the region of a local extension of an atomic
chain). As a result, at the same values of the parame-
ters Vy and B a kink, in comparison with an antikink, is
characterized by a larger value of the rest energy and by
lower values of the effective mass and the Peierls-Nabarro
(PN) potential barrier which coincides with the activa-
tion energy for kink motion. Thus, when the coverage
parameter 6 increases passing through a commensurate
value 6, the activation energy for the chemical diffusion
should decrease in a jumplike way. Therefore, the depen-
dence D.(#) will have jumps similar to the inverse devil’s
staircase: the value of D_ should rise sharply each time
whenever the coverage parameter 6 exceeds the value
0, that characterizes the “well-defined” commensurate
structure at a given temperature 7. Clearly, the abrupt
(jumplike) increase of D () will exist in the ' — 0 limit
only; for any T # 0 these jumps will be smoothed ow-
ing to corrections from thermally excited kink-antikink
pairs.

Below in the present work we put this qualitative pic-
ture on a firmer base.

The paper is organized as follows. In Sec. II we briefly
describe our model and present the procedure which al-
lows us to treat a rather complex structure of atoms at
T = 0 as a more simple system of weakly interacting
kinks. The case of T' # 0 is analyzed in Sec. III using the
kink-gas ideology. In Sec. IV we describe diffusion of a
single kink with the help of an effective Langevin equa-
tion derived for the kink’s coordinate. The main purpose
of this study is to find the kink diffusion coefficient. As we
show in Sec. V, the collective and chemical diffusion co-
efficients may be found as functions of the kink diffusion
coefficient and the susceptibility of the chain. Addition-
ally in Sec. V we discuss temperature and concentration
dependences of the diffusion coefficients. At last, Sec. VI
concludes the paper by discussing possible applications
of the anharmonic FK model to describe recent experi-
mental results on the surface diffusion of atoms adsorbed
on anisotropic crystal surfaces as well as to predict the
dependence () for quasi-one-dimensional conductors at
low temperature.
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II. THE T = 0 GROUND STATE AND KINKS

Let us consider a chain of atoms subjected to a peri-
odic substrate potential which is taken in the simplest
form, Voub(z) = 3¢, [1 — cos (2mz/a,)]. Energy exchange
between the chain and substrate can be approximately
described by introducing a viscous friction force together
with a random force which stands for random fluctua-
tions acting on each atom. We assume that such a fluc-
tuation force §Fy(t) is a local Gaussian random function,

(8Fi(t)) =0,
_ (10)
(6F1(t) 51?11 (t’)) = 217makBT5ul§(t - t’).

The motion equation of the /th atom can be written in
the form

oo
Mo + mands + Vi (1) + Y Vi (@1 — @1-0)
I'=1

—Vie (@4 — )] = SF1(t), (11)

where £ = dz/dt and V'(z) = dV(z)/dz.

In the present paper we consider the “fixed density”
FK chain consisting of N atoms distributed on the length
L = Ma, = Na,, where M is the number of minima
of the substrate potential, so that n = N/L and 6 =
N/M = a,/as. Throughout the paper we assume the
limit when N, M, and L — oo at n (or ) fixed.

For the case n = 0, T = 0, and 6 = 1/q, g being inte-
ger, and for the strong-coupling limit when interatomic
forces are much larger than the force Ff*® = —V/ , (z1)
produced by the on-site potential, the motion equation
(11) with the harmonic interatomic interactions reduces
to the well-known sine-Gordon (SG) equation. The SG
equation is exactly integrable and it admits solutions in
the form of topological solitons or kinks. In a general
case, Eq. (11) is not integrable. Nevertheless, at least
at low temperatures we may describe the system dynam-
ics in terms of kinks because the kink excitations are
responsible for the mass transport along the chain and
such solutions do exist as solutions of a generalized FK
model.

As the first step of the phenomenological approach we
have to calculate the kink parameters. For the case of
weakly interacting atoms at an arbitrary value of the
coverage 6, as well as for the case of strongly interacting
atoms but for the trivial ground state with 6 = 1/q, the
kink characteristics can be found analytically. Otherwise,
for a general case of § # 1/q when the GS at T = 0 has
a complex unit cell, the kink parameters may be found
approximately using the renormalization procedure when
the complex atomic structure is treated as a more simple
structure of weakly interacting kinks.

First we describe the ground state of the FK chain at
zero temperature when the atoms form a regular struc-
ture. Let us denote by G[f] the minimum-energy com-
mensurate (C) structure with the coverage parameter
0 = s/q, where s and q are positive relative prime integer
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numbers. The C structure G[f] has a period a = qa,,
and the elementary cell consists of s atoms. For any C
structure we can define a kink k (antikink k) with a topo-
logical charge 0 = +1 (0 = —1) as a minimally possible
contraction (extension) of the structure when at infinity,
i.e., for I = *o00, the arrangement of atoms relative to
the minima of the substrate potential coincides with their
arrangement in the GS. Kinks are elementary excitations
of the G[6] which are spatially localized and topologically
stable. The kink has the simplest structure for the triv-
ial G[1], when one kink (antikink) corresponds to one
additional atom (vacancy) inserted into the chain, and
the neighboring atoms are allowed to relax. In a general
case, the kink structure is more complicated. In particu-
lar, for G[s/q] one additional atom (vacancy) corresponds
to g kinks (antikinks).

The kink is a quasiparticle with the following charac-
teristics. First of all, the kink structure is conventionally
characterized by the displacements u; = z; — :zfo) , where
z; are the atomic coordinates for the chain with a single
kink and m,‘o) are those for the GS. Following Bergman
et al.'® the kink’s coordinate X may be defined as the
coordinate of the center of mass of particles,

X=q) ©+C, (12)
l

where the constant C is chosen in such a way that the
maximum deviation from the C structure occurs at the
atom with the number ! = int(X/a). The kink rest en-
ergy Ej is defined as the difference between the energy of
the chain with the kink and that of the GS with the same
number of atoms. The amplitude of the Peierls-Nabarro
(PN) barrier, epn;, is defined as the lowest energy barrier
which must be overcome for a translation {z;} — {z},
where the configuration {z;} = {z;—, + ga,} describes
the kink translated by a distance a = gqa,, i.e., by a
unit cell of the C structure. It is necessary also to in-
troduce the adiabatic trajectory (AT) as the curve in the
N-dimensional configuration space of the system, which
links two minimum-energy configurations {z;} and {z; },
passing through the nearest saddle configuration with the
lowest potential energy. Such a trajectory satisfies the set
of differential equations

dzi(1)/dT = -0V /9, (13)

where V is the total potential energy of the system and
T is a parameter varying along the trajectory. Thus the
AT is the curve of the steepest descent. Physically, the
AT describes the kink motion in the limit 7 — oo, when
it moves adiabatically.

During the kink motion along the AT, the potential
energy of the system oscillates with the period a and
the amplitude epn. These oscillations can be described
by the function Vpn(X) = 2epn [1 — cos (2 X/a)] which
can be interpreted as the kink’s potential energy. At
the same time, the kinetic energy of the system moving
along the AT can be presented as K = %ka 2. where
the effective mass of the kink is introduced as
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me=ma Y (24 (19

1 z EAT

In a general case, the kink mass m; depends on the kink'’s
coordinate X, but such an effect will be neglected below
because oscillations of the kink’s mass are usually small
(e.g., see Ref. 20).

Finally, when the chain contains two kinks separated
by the distance R = |X; — X3|, the kinks interact with
the energy vini(R). Usually, a kink and antikink attract
each other while two kinks as well as two antikinks repel
each other. Note that there are two mechanisms of the
kink interaction. First, interaction between kinks arises
due to the interaction of excess atoms which effectively
correspond to the kinks.!” Besides, there always exists
an interaction between kinks due to overlapping of the
kinks’ tails because the presence of another kink nearby
perturbs the kink’s shape leading to a change of the kink’s
energy.?! In the chain with a small density of kinks the
total interaction energy may be assumed to be pairwise.?!

Below we restrict ourselves to the case § < 1 because
this situation corresponds to the physical objects men-
tioned in the Introduction. The kink’s characteristics
can be simply found in the case of a weak interatomic
interaction, Vipt(aa) < €5, when in the GS all atoms are
situated at the corresponding minima of the substrate
potential. Namely, for G[6] when the reference structure
is characterized by the coverage 8 = s/q lying within the
interval (1 + p)~! < 6 < p~!, where p is integer, in the
lowest approximation using a simple geometrical consid-
eration we can find for the kinks and antikinks [including
the case of a kink on the background with the coverage
6 = (1+p)~! and that of an antikink on the background
structure with 6 = p~!] the following results:22:17

my ~ma/q?, (15)

€pair = Ei + El_z ~ 27r2689a(1 - 290.)7 (16)
~ 1 2

€PN R 5€6(2 — 77gp), (7)

where €,,i; is the creation energy of the kk pair, g, =
(a2/2n%€,) Vi, (a), and g, = (a2/2n%c,)Vi (pas + Sau).
Besides, the difference in the values of the PN barrier for
the kink and antikink is equal to

=—1 =+1 2
depN = €pn - — e;N+ =~ %wze,ﬁga, (18)

where 8 = —a,V;"/(a)/V{",(a). Note that for the expo-
nential interatomic potential (8) the dimensionless elastic

constant g, and the anharmonicity parameter 3 are equal
to

1

ga=§F

Vo ~
(2)# exi-pla-1). 5=5. (9
The opposite case of a strong interaction between
atoms, i.e., when Vi, (as) > €, is more complicated.
This case can be described analytically only for the triv-
ial G[A] with § = 1/q. Namely, in the strong-coupling
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case we can use the continuum limit approximation,
I » z = la, w(t) » u(z,t), 3, = [(dz/a), which
for the exponential law (8) leads to the local SG-type
equation'”

Uy +sind — (1 — adlz)dgy = 0, (20)

where the indices stand for the corresponding partial
derivatives. In Eq. (20) we have introduced the di-
mensionless variables @(%,t) = (2m/a,)u(z,t), t = wot,
& = z/d, where w} = 2n%¢,/maa?, d = a./Geq, get =
(a2/2m%€,) 3072, PVine(la) = ga(1 +8)/(1 = 5)%, s =
exp(—fq), and a = (8/27\/Fa) (9a/ger)*’*. Note that
the continuum approximation is valid only if the effective
elastic constant is large, geg > 1, and the anharmonicity
parameter is small, a < 1.

The kink solution of Eq. (20) is wug(z,t) =
ufC(z,t) + Oux(z,t), where ui® stands for the
well-known shape of the SG kink, u(®(z,t) =

(2a,/m)tan"  exp {—o[z — X (t)]/d}, and X (t) describes
the motion of the kink’s center in the case when the “rel-
ativistic” narrowing of the kink’s width is neglected. The
anharmonicity-induced correction du; to the SG kink
shape was found in Ref. 17. This effect leads to a change
of the effective kink width, d = d%; = d + 0 Ad, of the
value Ad defined as Ad = (w/3)ad. Knowing the per-
turbed kink shape ug(z,t), we can find other character-
istics of the kink, for example, the effective kink mass,

Mre <~ MSG (1 - %aa) y (21)

where msg = 2m,/m2q%,/gerr is the SG kink mass, the
energy of creation of the kink-antikink pair,

€pair ~ 8e, V Geffs (22)

and the amplitude of the PN relief which can be esti-
mated as

o . .SG afls:%
€PN ~ €pn(9gesr) + TAg 3 ) (23)
g 9=geff

where Ag = (2n/3)ages, and ey is the barrier of
the PN relief for the standard FK model, e§%(9) ~
(8/3)w*e,g exp(—n?,/g). Finally, the interaction energy
of two kinks is equal to?!

Vint (R) = 160102€,1/gesr exp(—R/d). (24)

Unfortunately, the general case of G[s/q] with s # 1
in the strong-coupling limit cannot be treated analyti-
cally because the continuum approximation leads to a
system of s coupled differential equations. However, this
case may be investigated with the help of a renormaliza-
tion procedure.?® For example, let us consider the refer-
ence G [9;—1 with ¢ > 1. For definiteness, we call kinks
for the trivial G[1] trivial kinks (¢ kinks) while kinks for
G [1%1] are called superkinks (s kinks). According to

Egs. (21) - (24), the t antikinks are characterized by
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the parameters m,, €%; , and ek which are determined

by the same expressions (21) — (24), where, however, we
have to use the elastic constant

_ ﬁz Vo (1 + e_'B)
9t = on2 € ) (1—eR)3 (25)
and the anharmonicity parameter
. 1— —B\9 1/2
o = | = (A—e™P)” (26)
2V0 (1 + 3—3)3

instead of geg and o, respectively. The t antikinks may
be considered as quasiparticles interacting via the expo-
nential law v{¥ (AX) ~ 16¢,./g; exp(—AX/a,,/g:), and
subjected to the external periodic potential vg’N(X ) =~
%eg‘N [1—cos(2nX/a,)].

Then, let us treat G 9%1 as a regular lattice of the

t antikinks with the period R = ga,. This lattice can
be interpreted as a new (“secondary”) FK model with ¢
antikinks instead of atoms and the effective coverage 6, =
1/q. The dimensionless coupling constant g, and the
anharmonicity parameter 3, of the secondary FK models
are equal to g, ~ 3#‘69;3/2 exp[(m2g:—q)/+/9¢] and Bs ~
' 1/ 2 respectively. However, it is easy to see that a
kink excitation of the secondary FK model consisting of ¢
antikinks ezactly coincides with a kink (s kink) excitation
of the primary FK chain with § = (¢g—1)/q. Thus in this
way we can approximately calculate parameters of the s
kinks and s antikinks. In particular, for ¢ > 7%g, the
secondary FK chain is characterized by a weak coupling,
ie., gs < 1, and Egs. (15) - (18) give

Mgk = mt‘k/qz» (27)

comir 21 epgs (1 — 29,), (28)
b~ Sepn(2 — 7g,) — Jo dephy,

Seghe = 1n2elBog,. (29)

Otherwise, for ¢ < n%g, when g, > 1, from Egs. (21)
and (22) we obtain

Mer = 2m/72q% /G, (30)
e;’;i, ~ SGg‘N,/gs. (31)

Analogously, we can consider kinks for a more general
case of G[f)], if a more simple structure with 6, may be
found provided 6 is close to 6 and the kink’s parame-
ters for the reference G[fy] are known (the corresponding
technique was recently developed by Schilling?* for a sim-
plified version of the FK model).

Now we may describe the dependence of the kink pa-
rameters on the coverage parameter § when the parame-
ters Vo and (3 of the interatomic interaction potential (8)
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are fixed. Clearly, the functions m (), dmi(8), €pair(6),
epn(0), and depn(0) are defined only on a countable set
of rational numbers 6. Besides, the functions my(#) and
epn(0) take two values at each rational 6, the left-side
value, epn(8 — 0) = epy~'(6), and the right-side value,
epn(0 + 0) = €3y "'(0). The functions g?my(f) and
epn(0) monotonically decrease from m,(0) = m, and
epn(0) = €, to zero as 6 varies from 6 = 0 to § = oo,
undergoing a series of jumps down at each rational value
of 0, so that the corresponding dependence looks like an
inverse devil’s staircase.

The important point is that for a given G[6] the en-
ergies €p,i; and depn depend not on the interaction of
neighboring atoms situated at the distance z ~ a4, but
on interaction between elementary unit cells of the ref-
erence C structure, i.e., they are determined by inter-
atomic interactions at the distances = ~ a = qa,. There-
fore, the more complicated is the reference C-structure,
the lower are the corresponding values of €pa; and depy.
For example, if we consider two commensurate structures
with the nearest values of the coverage parameter 6, e.g.,
6, = % and 60, = éTO;)’ from Eq. (19) we obtain the ra-
tio ga(62)/9ga(61) = exp(—19903) and, according to Egs.
(16) and (18), the values €pai; and depn for G[6,] will
be lower than those for G[6;] by exp(1993) times. Be-
sides, the largest jumps are expected to occur near that
coverage 0, where the dimensionless parameter g4 given
by Eq. (9) is close to 1. Thus, “on average” the func-
tion depn(f) has a maximum at 6 ~ 6,. The function
€pair (0) increases “on average” exhibiting also an irregu-
lar structure, because for two closely taken values §; and
02 the value €p,; is lower for a higher-order structure,
e.g., €pair(f2) K Epair(al)'

III. THE T # 0 GROUND STATE AND
SUSCEPTIBILITY

As is well known, for the one-dimensional FK model
the T' = 0 “crystalline” structure of the GS is disordered
and the long-range order is destroyed at any temperature
T # 0.25 However, at low temperatures this disorder is
“small,” so that the short-range order still exists, allow-
ing the existence of kinks. This is the basis for the ideal
kink-gas phenomenology'®2® when the low-temperature
ground state of the system is considered as a regular lat-
tice with a small number of thermally excited phonons
and kinks. Note that thermally excited kink-antikink
pairs destroy the long-range order of the “crystalline”
structure.

Let us suppose that at low temperatures the equilib-
rium state of the chain contains N, kinks and Nj an-
tikinks. Because kinks and antikinks can be created
only as kk pairs, this process may be considered as a
“chemical reaction:” phonons < k& + k.27 Therefore
average numbers of kinks and antikinks are equal to
(Nk) = (Ng) = (Npair), where

(Npair) = CLexp(—ex/kpT), € = 2 €pair- (32)

To calculate the preexponential factor C for Eq. (32) in
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a rigorous way, we should take into account kink-phonon
interactions. Assuming that one kink takes away from
the phonon spectrum a single degree of freedom (trans-
forming it into the PN mode which is an analog of the
Goldstone mode of a SG kink in the continuum approxi-
mation) and repeating the calculations which were done
by Currie et al.'® for the SG model, we obtain

C ~ (2mpw?/nkpT)/?, (33)

where my = /mpmg.

Now let us consider the dimensionless susceptibility x
of the FK chain. This value is determined by the expres-
sion

AN)?
x =& (34)
(N)

where N is the number of atoms on a fixed length L
(L > a4 but L < L) and AN stands for fluctuations
around N. The susceptibility x can be easily found with
the help of the ideal kink-gas approach.?® Namely, let
us assume that on the length L there are N atoms, Nj
kinks, and Nj antikinks with N ,Ni, Np > 1. At low
temperatures, when the concentration of kinks is small
and they may be considered as noninteracting quasipar-
ticles, the corresponding probability distributions should
be P01sson1an giving the relations (N2) - (Nk)2 (Ng),
(Nz} — (Ng)? = (Ng), and (NeNg) = (Ni)(Ng). Recall-
ing that each kink corresponds to 1/q excess atoms, and
each antikink to the same quantity of vacancies, we can
write the number of atoms on the length L as

1 - -
-q‘(Nk - Ng),

N =N, + (35)

where Ny = nL is the number of atoms at T = 0. Sub-

stituting Eq. (35) into Eq. (34), we obtain the result

— (Ntot)
g*(N)’

(36)

where (Niot) = (Ng) + (Ng), and all the tildes are finally
omitted. Thus, at low temperatures the susceptibility
behaves as

2‘4-’0 2my, 1/2 €pair

X~ n (wk3T> xp ( 2kBT) '

The results (36) and (37) are valid provided kpT < €.
For kgT > €, the concentration of thermally excited
kk pairs becomes so large that they “melt” the reference
C structure and the approach based on the ideal kink gas
breaks down. However, if  # 1/q, i.e., the T = 0 G|[f]
is nontrivial, the kink-gas ideology remains useful up to
temperatures kgT < €;x. For example, let us consider
again the case § = (¢ — 1)/q with ¢ > 1 when the T =0
G|[0] may be treated as a regular structure of ¢ antikinks
with the number N,, (these t antikinks are known as
the “residual” t antikinks). Analogously to Eq. (32) we

can introduce the energies €, = %egair and €;, = set*

2 “pair*
From Eq. (28) or (31) we see that €, < €, provided ¢ >

(37)
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/:- Thus there may exist a wide temperature interval,

€k < kT < €4, (38)
where the trivial § = 1 structure of atoms still exists
while the original § = (¢ — 1)/q atomic superstructure
is disordered. Thus in the temperature interval (38) the
lattice of t antikinks is “melted” and, therefore, the t
antikinks can be considered as a gas of weakly interacting
quasiparticles. Now, repeating the calculations similar
to those we have done above, we obtain for the interval
(38) the expression x = (Niot)/(NN), where now Niot is
the total number of trivial kinks and antikinks. As was
shown by Currie et al.,2” the average number N, is given
by the formula
2 211/2
(Neot) = [(Nu)? + (2Npair)?] 2, (39)
where (N,,) = N,, is the number of residual ¢ antikinks
and (Npair) is the average number of thermally created
trivial kk pairs determined by Egs. (32) and (33) with
€:x instead of €x and My = /My, instead of 7.
From Egs. (39), (32), and (33) it follows that on the
left-hand side of the interval (38) the function x(T') has
a plateau x ~ w = N, /N, and on the right-hand side
x(T') increases exponentially due to thermal excitation of
the kk pairs, which join those already present from the
“melted” t antikink lattice.

With the help of the renormalization arguments pre-
sented in the previous section, we may describe in a sim-
ilar way the temperature dependence of x(T') for more
complicated structures with § = s/q where s # 1 and
s # (¢ — 1). Considering the system as a hierarchy of
the consequently melted superkink lattices, we can di-
vide the whole temperature interval 0 < kT < € into
subintervals; in each of them a more complex superkink
structure is already melted, but more simple structure
still exists and it allows strong definition of the cor-
responding s kinks and s antikinks which are approx-
imately noninteracting in this temperature subinterval.
Within each subinterval the susceptibility is defined by
Egs. (36), (39), (32), and (33), where the parameters g
and N,, characterize the more simple structure, and €pa;:
and my, mg correspond to kinks defined on the basis of
this reference structure. Thus the function x(T') has to
display a series of plateaus at the low-temperature sides
of these subintervals, and it changes exponentially be-
tween the plateaus. Note that computer simulations of
Gillan and Halloway* for the standard FK model as well
as the analytical results of Schilling?* obtained for a sim-
plified FK model, are in good agreement with the results
of our phenomenological approach.

At last, here we will estimate also the “melting” tem-
peratures of the hierarchy of superkink lattices. Let
us consider a regular lattice of interacting quasiparti-
cles (atoms, trivial kinks, superkinks, etc; below we will
call them “atoms”) interpreted as the reference struc-
ture which is characterized by an effective value of the
coverage § = §/G and by an effective external poten-
tial with the period @,. We assume that the system
has a small quantity of approximately noninteracting
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topological excitations (trivial kinks, superkinks, super-
superkinks, etc.; below we will call them “kinks”) which
are characterized by the width d and the mean rest en-
ergy €. Note that the “kinks” may be residual as well as
thermally excited. According to the definition of the sus-
ceptibility x, this value describes the mean square fluctu-
ations of the relative atomic displacements x; 4; — z/,2®

1= 5 Z( (@41 = zv) — {er — zv)]?) = xafl].

(40)

Thus, the mutual positions of two “atoms” separated by
the distance z (z = laa) fluctuate with the amplitude
d(z) = vVA; = /xaaz. In order to construct “kinks” for

the reference structure with § = 5/§, the mutual fluctua-
tions must be small, §(z) < a,/3, at least on distances of
order of the “kink” width, Z > d. In this way we obtain
the upper limit when a given reference structure may be
considered as a regular one; the corresponding equation

is 8(d) = a,/3, or
x(T)aa5%d = a2. (41)

A solution of Eq. (41) defines the temperature Tenelts
above which the short-range order in the given refer-
ence structure is completely destroyed by thermal fluc-
tuations. Using the expression (36) for x(T'), we can see
thatat T = Tmeu the average distance R between “kinks”
is equal to d so that at T > Tieis the total concentra-
tion of such “kinks” becomes so large that they begin to
overlap.

When the reference structure has no residual “kinks”
(i.e., for the lowest temperature interval in the kink-
lattice hierarchy), Eq. (41) leads to the result kgTmen =~
€. However, when the quantity of residual “kinks” is
nonzero, it follows that kpTie1t < €x because the residual
“kinks” supplement thermally excited “kink-antikink”
pairs and, therefore, the criterion R = d will be achieved
at lower temperatures.

Thus the more complex (higher-order) is the reference
structure, the lower is the energy é of its topological ex-
citations and, therefore, the lower is its “melting” tem-
perature Ty,ep-

IV. KINK DIFFUSION

In this section we study the system dynamics when
the FK chain contains a single kink only. Using a phe-
nomenological approach we may consider a kink as a
quasiparticle of the mass mj which is characterized by
the coordinate X (t) and has the kinetic energy 2ka i
moving in the potential relief Vpn(X}). Thus it is reason-
able to suppose that the kink’s coordinate X (t) satisfies
the Langevin-type equation

miXe + mame X + Van(Xx) = 6Fi(t). (42)

It is clear that Eq. (42) is an approximate one and, there-
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fore, it cannot be rigorously derived from the primary
motion equation (11). However, in order to find the kink
friction coefficient 7, and the fluctuation force §Fy(t),
below we briefly outline a way to reduce Eq. (11) to the
form given by Eq. (42).

In Sec. I we introduced the adiabatic trajectory z;(7)
as a solution of the system of equations (13). When the
FK chain contains a single kink only, we can set each
value X(7) from Eq. (12) to correspond uniquely to
each point of the AT. Thus, we can introduce the func-
tions w; kink( X ) according to the equation uli®¥(X) =

‘T’(T)|X(r)=x,, a:fo). The functions ufi®*(X}) describe

atomic displacements in the FK chain with a single (adi-
abatically slowly moving) kink. Then, let us suppose
that the system moves strictly along the AT only, look-
ing for a solution of the motion equation (11) in the form
w(t) = uki"k[X;(t)]. Suppose now that, during a short
time interval At, the fluctuation forces §Fi(t) and § Fi(t)
are constant, while the atoms and the kink are shifted
by small distances Az; and A X}, respectively. The dis-
placements Az; and A X}, are coupled by the relation

kink
du (Xk) AX

Az = ——5

(43)
The work done by the fluctuation forces can be written
as

(SFkAXk = Z&F‘[A(l)l (44)
l

Substituting Eq. (43) into Eq. (44), we obtain

SFe(t) = @‘—:%f—(’ﬁm(t). (45)
l

Now, using Eq. (10) for §F;(t) and taking into account
the definition (14) for the kink’s mass, we find correlation
functions for the kink fluctuation force,

(0F%(t)) =

(5F(t)8F,(t')) = 2memiksTS(t — t'), (46)

where 7, = 7.

To find the friction force acting on the kink, let us
take the sum over [ for the first two terms in the motion
equation (11),

(gms/ma) Z(mai‘z + mang1) = me Xy + minXe, (47)
1

where we have used Eq. (12) to introduce X = Xj. Com-
paring Egs. (42) and (47), we see that the friction coef-
ficient 7, in Eq. (42) exactly coincides with the atomic
friction coefficient 7.

It should be emphasized that the parameters mg, 9,
and the function Vpn(X) in Egs. (42) and (46) coincide
with those calculated for the kink only if the atoms move
strictly along the AT. As a matter of fact, a real trajec-
tory deviates from the AT. For example, even at T =0 a
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moving kink radiates phonons, and this leads to an addi-
tional damping of the kink’s velocity. Besides, at T # 0
the system contains a certain number of thermally ex-
cited phonons. Collisions of a kink with the phonons as
well as with other kinks lead to energy and momentum
exchange between them; the rate of this exchange may
be approximately described by introducing an additional
“intrinsic” viscous friction 7;,;. Besides, kink-phonon in-
teractions may increase the effective kink mass (due to a
phonon “dressing”) and decrease the height of the effec-
tive PN barrier (analogously to the Debye-Waller effect).
Thus the parameters my, Jx = 17 + Nint, and epn used in
Eqgs. (42) and (46) are effective parameters which in the
general case depend on 7. However, these effects can be
neglected when the kink-phonon interaction is small in
comparison with interaction with the substrate, i.e., if
Mint < 7. In real physical objects, when the FK chain is
only a part of the whole three-dimensional system, the
latter inequality is usually fulfilled.

When the parameters of Eq. (42) are known, the kink
diffusion coefficient can be found as

Dy = Aoo dt eia’t(Xk(t)Xk(O)). (48)

According to the Kramers theory,?® at low temperatures,
i.e., when kgT < epn, the kink diffusion coefficient
should have the Arrhenius form,

D), = Do exp(—epn/kBT), (49)
where
awpn/2m if ik <n<wp
Do =~ . . . PN> 50
k0 { a’wpnwhn /2T if n>wpn- (50)

Here wpn = /Vgn(0)/me, wpn = +/—Ven(a/2)/mu,
and mx = wpnkpT/2mepn. For the trivial GS the ac-
tivated kink diffusion was predicted by Pietronero and
Strassler3® (see also Refs. 31 and 32) and observed in
molecular-dynamics simulation by Combs and Yip.33

In the FK chain with strong coupling, for a G[6] with
a simple elementary cell the inequality epn < €, may be
easily fulfilled. In the temperature interval epy < kT <
€ the kink diffusion coefficient may be found in the form
(see, e.g., Refs. 34, 19, and 35)

1 1 €PN 2

s (i)
When the G[6] of the system is nontrivial, i.e., 8 # 1/q,
the phenomenological approach is useful not only to be
applied for the lowest temperature subinterval in the hier-
archy of the kink lattices, but also at the left-hand side of
any of these subintervals. For example, for § = (¢ —1)/q
with ¢ > 1 for temperature €, < kT < € the GS may
be considered as a system consisting of N,, weakly inter-
acting residual ¢ antikinks. If collisions of these kinks are
approximately elastic (as they are in the SG model), the
kink collective-diffusion coefficient

kT
MMk

Dk ~ . (51)

oo Ny,
D‘,k = /(; dt N;l Z(Xk(t)Xk’(()»

kk'
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coincides with the diffusion coefficient of a single kink for
the same reference structure (namely, with the diffusion
coefficient of a single ¢ antikink). On the other hand,
the chemical diffusion coefficient of the kink is equal to
D, = Duk/Xk, where xi is the dimensionless suscep-
tibility of the ¢t antikink system. When the PN barrier
for the t antikinks may be neglected, which is valid for
etk < kpT, the susceptibility x is calculated with the
help of perturbation theory! and the result is given by the

integral xx = [1 + (nw/ksT) [7_dX v;nt(X)]
Ny = Ny/L is the concentration of the residual ¢ an-

tikinks. Otherwise, for kpT < eg‘N the system Hamil-
tonian reduces to that for an effective lattice-gas model,
and X is equal to xx ~ 1 — 0,,, where 6,, = N,,/M.

, where

V. CONDUCTIVITY AND DIFFUSIVITY OF
THE MODEL

In order to find the system diffusion coefficients in the
framework of the phenomenological approach, let us sup-
pose that at low temperatures the GS of the FK chain
contains a certain number of phonon modes, kinks, and
antikinks, neglecting the mutual influence of one excita-
tion on others. In this case the atomic displacements can
be represented as the sum

Ntot
w(t) =ub(t) + D w oy, X;(1)], (52)

=1

where u}i"¥ (g, X) stands for the shape of a slowly moving
kink with the coordinate X and the topological charge o,
and uP? describes phonons adjusted to the kinks. From
Eq. (52) we obtain for the atomic velocities the expres-
sion

Niot

w(t) = af(t) + > Xj(t)wifog, X;(8)], (53)

j=1

where w(o, X) = nguki“k(a, X).

Substituting Eq. (53) into Egs. (2) — (4) for D,(t), we
obtain three types of terms. The contribution from the
phonon correlation function (aPP(¢)uP?(0)) is ADRM (@) =
Dy ¥, iwn/[ion + @* — wl, ()], where « stands for the
phonon modes with the frequencies wph(x). Because
the phonon spectrum of the FK chain is optical, i.e.,
wph(K) > wo, this contribution tends to zero in the limit
@ — 0. The mixed correlation functions (@P"(t)X;(0))
describe kink-phonon interactions. Although a rigorous
calculation of these functions is too complicated, in the
phenomenological approach we may assume that these
interactions are already taken into account if the kink
concentration and the kink friction coefficient 7 are cal-
culated in a way which includes the kink-phonon interac-
tions. Finally, in order to find the last contribution, let
us assume that the kink concentration is small, n¢ot < n,
so that kinks can be considered as independent quasipar-
ticles. This assumption yields
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/:o dt(X;(t)X;(0)) = 6, Dr(y, (54)

where D,z is the diffusion coefficient for a single kink
(antikink). Then, using Eq. (54) and the equality

d Kin _ d X _l
ST ulX) = g Su00 = 7 (5)=3

which follows from Eq. (12), we obtain the approximate
expression for the collective diffusion coefficient D,,,

D, % i (N Di+ (Ne)D). (56)

Thus, the conductivity of the FK chain is directly pro-
portional to the total kink concentration (see also Refs.
30, 34, and 36).

For the standard FK model with the trivial GS at § =
1, in the strong-coupling limit when the SG equation is
valid, we can take Dy, = Dy, = kT /mgn, (Ni) = (Ng) =
Na,wo+/2my /mkpT exp(—ex/kpT), mi = 2mq/7%,/ga,
and € = 4€,,/gq, thus obtaining from Eq. (56) the ex-
pression

DE® ~ Dy(mmawia?/e,)* (ex/kpT)"/?
x exp(—ex/kBT). (57)

This result was obtained by Landauer and Biittiker3”
with the help of the generalized rate theory (see also Ref.
38).

While the collective-diffusion coefficient is known, the
chemical diffusion coefficient can be obtained as D, =
D, /x. Using Eq. (36) for x, we can find from Eq. (56)
that

D ~ (Vk)Di + (Ng) Dy
¢ (Nk) + (Ng)

We should note that by kinks (antikinks) in Egs. (56) and
(58) we must understand those “kinks” (trivial kinks, su-
perkinks, super-superkinks, etc.) which are well defined
as quasiparticles at a given temperature interval for a
given coverage 6.

For the lowest temperature interval of the kink-lattice
hierarchy, Eq. (58) leads to

(58)

D, ~ %(Dk + D,;) (59)

When the G[6] is nontrivial, i.e., § # 1/q, Eq. (58)
allows us to find the chemical diffusion coefficient at the
left-hand side of each temperature subinterval of the hi-
erarchy. Indeed, in this case the number of residual kinks
(or antikinks) exceeds the number of thermally excited
kink-antikink pairs, (N,,) > (Npair), and, therefore, us-
ing the condition (Ni) > (Ng) (or (Ni) < (Ng)) in
Eq. (58), we obtain

D. =~ Dy, (or Dy). (60)

For example, let us consider the coverages 6. defined by
0+ = (¢ +1)/q with ¢ > 1, which are close to the trivial
coverage 6p = 1. According to Eq. (60), we would have
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D.(64) = Dy and D.(6_) =~ Dg, at the temperature
interval €, < kT < €.

The result (60) has a simple physical interpretation.
Indeed, for kpT < ¢ the mass transport along the chain
is carried out by kinks. Because the concentration of
kinks is proportional to the concentration of atoms, the
ratio of the flux of kinks to the gradient of the kink
concentration (which determines the coefficient D) is
exactly equal to the ratio of the atomic flux to the
atomic gradient [which defines the coefficient D, accord-
ing to Fick’s law (6)]. Moreover, this explanation shows
that, in order to take into account kink-kink interac-
tions, we should use, instead of Eq. (60), the equation
D, = D (or D), where D,y is the chemical diffusion
coefficient for kinks determined in the previous section.

Now we can qualitatively describe dependences of the
diffusion coefficients D. and D, on temperature T and
the atomic concentration n. Let us begin from the tem-
perature dependence. For definiteness, we consider a
physically important case when 6 < 1, namely, 6 = (¢ —
1)/q with ¢ > 1. Recall that the T = 0 GS of the chain is
the commensurate structure with the period a = qa,, and
topologically stable excitations are s kinks (s antikinks)
which are characterized by the effective mass m,; and
the half-pair creation energy €,;. The adiabatically slow
motion of the s kinks is carried out in the PN periodic
relief described by V& (X) ~ Leghi[1 — cos(2mX/a)] with
the height ef%;, and small vibrations of the kink at the
bottom of the PN potential are characterized by the PN

frequency wgf; ~ \/65’&/2q2m,k. The effective friction
for a moving s kink we denote by 7,%. According to Sec.
II, the described T' = 0 GS can be treated as a regular
lattice of trivial (§ = 1) antikinks.

At the lowest temperature interval, 0 < kT < e,
mass transport along the chain is carried out by s kinks,
and the chemical diffusion coefficient is equal to

D, = ’Csk(qae)z exP(_fsP’;\I/kBT)’ (61)
where
wek /2m
Ker ~ PN/ %
* { (wlg‘lle\l) /27N

while the collective-diffusion coefficient is determined by
the expression

((Nak) + {Ng))
q*(N)

: k
if 7 < wpkp

. 62
if Nsk > ‘-’-)1,31;\17 ( )

D, =~ D, o exp[—(egy + €sk)/kBT).

(63)

Notice that both D. and D, have the Arrhenius form
but they are determined by different activation energies.
When temperature increases, kgT — €,i, the number
of thermally excited sk-sk pairs also increases, and their
mutual attraction should decrease the values of D. and
D, in comparison with those given by Egs. (61) — (63).

When the temperature increases to be above the “melt-
ing” temperature Tyt = €,1/kB, the lattice of t antikinks
becomes disordered due to thermal creation of a large
quantity of sk-sk pairs. According to the kink-lattice-
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hierarchy ideology of Sec. III, within the temperature
interval €, < kT < € the equilibrium state of the
FK chain can be considered as a commensurate structure
with the period a, where, however, there exist N, = N/q
residual t antikinks and Vg, thermally created th-tk
pairs. Let €, denote the half-pair creation energy of
the @ = 1 kinks, my; denote their effective mass, and
VER(X) = Zetki[1 — cos(2mX/a,)] denote the shape of

the PN relief, so that wify =~ /et /2my, is the PN

frequency, and 7 stands for the corresponding friction
coefficient. Notice that the parameters of s kinks and
t kinks satisfy two inequalities, eff, < ety < €, and
€ske < €tk

At low temperatures, €, < kT < min(ei,kN,etk), the
superkinks are likely destroyed by thermal fluctuations,
but the trivial kinks still exist, and this time they are re-
sponsible for the mass transport. Neglecting interactions

of t kinks, we obtain

D, =~ Kua? exp(—ely /kpT), (64)
Ko ~ wf,kN/2;r if mex < wiky, (65)
‘ (i)™ /27 if me > wiky,
D 4q2m,kw§a2 _
D ~ e 1 s e/ kBT . 66
G (66)

The mutual repulsion of the residual ¢ antikinks increases
the values of D and D,, in comparison with those defined
by Eqs. (64) — (66).

Analogously, we may describe the case of the G[s/q]
with 2 < s < ¢ — 2, when the kink-lattice hierarchy con-
sists of more than two temperature intervals.

The limits of the intermediate temperature interval de-
pend on the model parameter g,; namely, when g, > 1,
there exists the temperature interval ef;.kN < kT < €,
within which ¢ kinks still exist, but their motion is not
thermally activated. In this case we have

tk \ 2
D, ~ 2T 1—1(6”‘) (67)
MikNtk 8 \ kT
and
D, ~ D, (Mot) o exp(—eon/knT). (68)

(n)

The described analytical predictions are in good agree-
ment with molecular-dynamics simulations of Holloway
and Gillan* carried out for the standard undamped FK
chain, if we put in Eq. (67) 7tk = 7int = 0.028wy.

If g < 1, the intermediate temperature interval is
determined as €, < kpT < €i,. Within this interval
the diffusion coefficient can be found only numerically.
It may be expected, however, that D. and D, will have
the Arrhenius behavior with the activation energy e<f
where effy < e < ¢,.12

Finally, at high temperatures, kgT > max(e,, €1x), a
perturbation theory approach may be used which leads
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to the expression (7).

Let us describe now the behavior of the diffusion coef-
ficients as functions of the coverage 8 = a,/a4. As can
be seen from Eq. (7), at high temperature within the in-
terval kgT > max (€, €1 ), the collective diffusion coeffi-
cient D, (6) shows oscillations as a function of 8, achiev-
ing minima for the trivial ground states when 8 = 1/gq,
where the atoms in the GS are situated at the bottoms
of the substrate potential wells. On the other hand, local
maxima of D,(#) occur at § = 2/(2¢ — 1). Maxima and
minima of D, (@) become more pronounced with increase
of the interatomic interaction and decrease of temper-
ature. Because for the exponential interaction (8) the
parameter g4 defined by Eq. (9) increases with 6, the
amplitude of the oscillations of the diffusion coefficient
D,,(0) will also increase with 6. Thus, the dc conductivity
of the FK chain as a function of 8, o(8) x 6D, (8), would
have an absolute maximum within the interval 0 < 6 <1
at the concentration value # between 0.75 and 0.80 (cf.
Ref. 13).

At low temperatures, the phenomenological approach
developed above leads to similar behavior of the function
D, (6). Indeed, let us consider the FK chain within the
temperature interval €, < kgT < min (etpkN,etk) for cov-
erage 6 which is close to the value 6y = 1, i.e. |6 —6o| < 1,
when interaction between the residual ¢ kinks is small
enough so that they do not form a kink lattice. In this
case the chemical diffusion coefficient D, is equal to Dy
for 8 > 6y and Dy, for 6 < 6, and it is approximately
independent of 6. Because the quantity of thermally
excited kinks (Npair) is approximately independent of 0
while the quantity of the residual kinks |N,,| linearly in-
creases with |0 — 6], the susceptibility x ~ (NViot)/N as
a function of # should have a local minimum at 6 = 6,.
Therefore the function D, (0) will have a local minimum
at @ = g too. Analogously, the function D, (0) will have
local minima at each of those commensurate coverages
0o whose “melting” temperature Tret(6o) is larger than
T. It is clear that between the neighboring local minima
the function D,(6) has local maxima. At high temper-
atures this criterion is fulfilled only for the trivial cover-
ages 0y = 1/q. But with decrease of T', new local minima
of the function D, (6) will arise and they correspond to
higher-order commensurate structures, and in the limit
T — 0 the function D, (#) should have minima at each
rational value of the coverage parameter §. It is clear
that the values of D,(f) at those minima will tend to
zero according to the Arrhenius law, provided T — 0.
Otherwise, local maxima of D, (f) at irrational 6 will
tend to infinity when 77 — 0 provided the dimension-
less elastic constant g4(6) of the model is larger than the
Aubry threshold gaubry(0) where the T = 0 GS exhibits
the existence of the “sliding mode.” In the opposite case,
i.e., when ga(0) < gaubry(), the value of D, (6) at lo-
cal minima will tend to zero for T — 0 according to the
Arrhenius law, too.

The behavior of the function D.(#) becomes clear if
we recall that the mass transport along the chain is car-
ried out by kinks at § = 6y + § and by antikinks at
# = 0y — § (where § — 0), provided the temperature T'
of the system is lower than the “melting” temperature
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Tmeit(0o) for the structure with a given value of § = 6.
For anharmonic interatomic interactions such as the ex-
ponential law (8), the PN barriers for the kinks are lower
than those for antikinks. Therefore, when the coverage
parameter 0 increases passing through the value 6, the
activation energy for the chemical diffusion decreases in
a jumplike way. Consequently, the dependence given by
D.(8) should behave similarly to the inverse devil’s stair-
case: the value of D will rise sharply each time whenever
the coverage parameter 6 exceeds the value 6y that char-
acterizes the structure which is commensurate with the
substrate and has a “melting” temperature larger than
T. It may be predicted also that both the diffusion ac-
tivation energy and (owing to decrease of the free path
length of kinks) the preexponential factor in the formula
for D.(0) decrease simultaneously with increasing 6 (the
so called compensation effect). It is clear that the jump
in D.(0) at a given § = 6y, as well as a local minimum
for D, (0), exists only if T < Tieit(fo); when the tem-
perature increases to be above Teit(6o), the singulari-
ties disappear. Thus the structure of the inverse devil’s
staircase for D.(0) [and an irregular structure for D, (6)]
will be smoothed with increasing temperature, since only
those singularities which correspond to the simple com-

mensurate structures (o = 1, 3, etc.) will “survive.”

VI. CONCLUSIONS

In conclusion, using a phenomenological approach
based on the ideal kink-gas ideology and the hierarchy of
“melted” kink lattices, we have analyzed the diffusion co-
efficients of the anharmonic FK chain as functions of the
dimensionless concentration § and temperature T. We
have shown that the chemical diffusion coefficient D.(6)
as a function of @ has a form similar to the inverse devil’s
staircase, i.e., the function D.(6) should exhibit jumps at
those rational values of @ where, at a given value of T', the
corresponding commensurate structure has a short-range
order that allows one to describe the system dynamics in
terms of the well-defined kink excitations. At the same
time, the chain conductivity o(6) < 6D, (8) will display
local minima at the same rational values of the coverage
0. The quantity of such singularities, i.e., the quantity of
the jumps for D.(6) and the minima for D,(6), should
increase with decreasing T'.

The predicted behavior of the diffusion coefficients D,
and D, is expected to be observed in those physical ob-
jects which may be described with the help of the an-
harmonic FK model, such as one-dimensional conduc-
tors and adsorbed layers. For example, the experimen-
tally measured dc conductivity of one-dimensional con-
ductors exhibits a local maximum between 6 = 0.75 and
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9 = 0.80,'° i.e., D,(6) has local minima at §; = } and
02 = 1, and a local maximum between those values. Ac-
cording to our predictions, at lower temperatures the
function D, () would have, additionally to the minima
at 6, and 6, a local minimum at 65 = % Then, with
further decrease of temperature, an additional minimum
would appear at 04 = %, and so on.

Referring to adsorbed layers, we should mention the
sharp increase of the chemical diffusion coefficient for
Ag atoms adsorbed on a stepped (vicinal) Ge surface
when the concentration of atoms increases to be above
the value corresponding to the commensurate (4 x 2)
structure of adsorbed atoms.3® Unfortunately, we do not
know at the moment the detailed results of investiga-
tions for surface diffusion on furrowed surfaces, although
preliminary results of Vedula and Paliy?® are in good
qualitative agreement with the predictions of the present
analysis.

Finally, we would like to mention briefly possible gen-
eralizations of the model. First, in more realistic physical
models the periodic substrate potential may have a more
complicated than sinusoidal shape. If the shape of the
potential V() allows the existence of different types
of kinks, the low-temperature activation energy which
determines the diffusion coefficients will be given by the
contribution of the kinks corresponding to the largest
value of the PN barrier. Second, in real physical objects
we have not a single isolated chain but, instead, a system
of weakly coupled parallel FK chains. The interaction be-
tween the chains leads to interaction between kinks in the
chains and, therefore, to a modification of the diffusion
coefficients. Third, in the model we have investigated
in the present work, atoms were allowed to move along
one-dimensional “channels” only. But with increasing of
interatomic repulsion, for example, by means of increas-
ing 6, compression forces in the atomic chain may become
so strong that the atoms may escape from the channel,
and the atoms will also move in the transversal direc-
tion. In such a case, we should use the FK model with a
transversal degree of freedom.*! Finally, it would also be
important to investigate two- (and three-) dimensional
FK models as well as to take into account a possible role
of impurities in the effects described above.
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