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We consider a generalized Frenkel-Kontorova (FK) model with a transversal degree of freedom
proposed by Braun and Kivshar [Phys. Rev. B 44, 7694 (1991)]. The model describes an atomic
chain subjected to a two-dimensional (2D) substrate potential that is periodic in one direction and
parabolic in the transversal direction, the interatomic interaction being exponentially repulsive. The
ground state of the system undergoes a phase transition from the trivial one-dimensional (1D) to
a quasi-2D state when the repulsion exceeds a certain critical value. The quasi-2D ground state
admits two different types of kinks, “massive,” kinks which may be considered as a generalization
of the kinks of the standard 1D FK chain, and “nonmassive,” (phase) kinks which appear to be
due to dimerization of the ground state. We investigate the static characteristics of these two
kinds of kinks (the kink effective mass, the kink rest energy, and the height of the Peierls-Nabarro
potential) analytically as well as by means of numerical simulations when the chain with the periodic
boundary conditions contains a single kink. In particular, we show that the “massive” kinks may
be described in the continuum approximation by a perturbed sine-Gordon equation while properties
of the “nonmassive” kinks may be analyzed within the framework of an effective ¢* model derived
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for translational displacements.

The role of the transversal degree of freedom in mass-transport

properties of the generalized FK model applied to describe surface diffusion is also discussed.

I. INTRODUCTION

The well-known Frenkel-Kontorova (FK) model de-
scribes a chain of atoms interacting with harmonic forces
and subject to one-dimensional sinusoidal potential. In-
troduced first as the simplest model for dislocations in
solids,!'? it was then successfully used to describe the
charge-density waves in quasi-one-dimensional conduc-
tors (see, e.g., references in Ref. 3), the commensurate-
incommensurate phase transitions,* the “solitonic” dif-
fusion in two-dimensional (2D) layers of atoms adsorbed
on a crystal surface,® the dynamics of domain walls in
magnetic systems (see, e.g., Ref. 6), etc.

In applications to real physical objects, the FK model
should be generalized. In particular, we would like to
mention investigations of the FK model with a nonsinu-
soidal substrate potential”® and with an anharmonic®?
or nonconvex!? interaction potential. However, one of
the most serious restrictions of the standard FK model
is the assumption of one-dimensional motion of atoms in
the chain. Obviously, in real physical systems atoms can
move in two (or three) directions, and the correspond-
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ing generalization of the model to take into account the
transversal degrees of freedom is of great interest. In par-
ticular, we should mention investigations of the scalar!!
and vector!?'3 variants of the model, both of which de-
scribe an isotropic 2D layer of atoms.

However, since 2D versions of the FK model are too
complicated, it is interesting to investigate a quasi-2D
variant of the model where atoms in the chain are al-
lowed to move in two directions, but the chain itself is
still one dimensional. The corresponding model has been
recently proposed in Ref. 14. It describes a chain of in-
teracting atoms, subjected to the two-dimensional poten-
tial which is periodic in one direction and parabolic in
the transversal direction. It was predicted that the triv-
ial one-dimensional ground state (GS) becomes unstable
and it is transferred into the dimerized GS when the re-
pulsion between the atoms increases. Close to a certain
transition point, as well as above this point, properties of
the FK model are essentially changed; in particular, the
kink-antikink symmetry is violated even for the harmonic
interatomic interactions.'*

The purpose of the present paper is to investigate the
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model proposed in Ref. 14 both analytically and numer-
ically. Here we consider only static properties of the
atomic chain containing a single kink. The paper is or-
ganized as follows. In Sec. II we introduce the FK model
with a transversal degree of freedom and also describe
the ground state of the system and two types of the kinks
(“massive” and “nonmassive”) existing for these ground
states. We also introduce the main quantities (the kink
mass, the kink energy, and the height of the Peierls-
Nabarro potential) which characterize static properties
of kinks. In Sec. III we present analytical estimations
for these quantities based on the continuum approxima-
tion and the perturbation theory approach. In partic-
ular, we show that the massive kink in the continuum
approximation may be described within the framework
of the sine-Gordon equation while the nonmassive kink
is described by a version of the ¢* model. In Sec. IV
we present the numerical method used and the results of
simulations. Finally, Sec. V concludes the paper.

II. THE MODEL

Let us consider an atomic chain subjected to a
two-dimensional potential periodic in one direction and
parabolic in the transversal direction. The substrate po-
tential energy is

1 27y 2,2
Vsub_EZ{ss[l—cos(a ):|+mawyl}7 (1)

1 8

where the index | numerates atoms, r; = (z;,y;) is the
atomic coordinate, €, is the amplitude and a, is the pe-
riod of the substrate potential, m, is the atomic mass,
and w is the frequency of a single atom vibration in the
transversal direction. The model (1) describes, for ex-
ample, the potential energy of the atoms adsorbed on
furrowed or stepped crystal surfaces (see, e.g., examples
and references in Refs. 5, 8, and 15).

The limit w — oo corresponds to the standard one-
dimensional (1D) case. In order to have the model (1)
well defined we have to assume that the frequency of the
transversal vibrations, w, exceeds the frequency of longi-
tudinal vibrations, wo = (€,/2m)*/?(2n/a,). Further it
will be convenient to use the units m, = 1,a, = 27, and
€, = 2 so that wg = 1.

We consider the “fixed-density” FK model; i.e., we
place the atomic chain of the length L consisting of N
atoms into the potential (1), which has M minima on
the distance L, and we assume the periodic boundary
conditions

Ti+N = o1 + Ma,,

()

Yi+N = Yi-

In this paper we consentrate on the commensurate situa-
tion when M = N or M = N £ 1, and N is large enough
(N >1).

Let us assume that the atoms in the chain repell each
other according to an exponential (Toda-like) law (the
attraction branch of the interaction potential does not
lead to new phenomena for static properties)
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V(r) = Vo exp(—p0r), (3)

where Vj is the amplitude of the potential and the pa-
rameter 1/3 characterizes the length of interaction, =
being the interatomic distance. The potential (3) de-
scribes, for example, the “direct” mechanism of inter-
atomic interactions'® which is similar to the usual chem-
ical bonding.

Recall that the main advantage of the one-dimensional
model is that atoms in it are always ordered; i.e., the
atom with the number [ has always two nearest neigh-
bors with the numbers [ = 1 only. However, this is not
the case for two-dimensional models because in that sit-
uation any two atoms may be replaced by going through
the second direction. Additionally, for a model such as
that given by Egs. (1) and (3), in general, we have to
take into account the interaction between all the atoms
in the chain. However, if the potential (3) decays quickly
enough, i.e., Bas > 1, where ag = L/N is the mean
interatomic distance, we may restrict ourselves by the
interaction of a finite number of neighboring atoms. It is
clear that if N = M and the ratio Vp/w is low enough,
the GS of the system is trivial: Each potential well is
occupied by a single atom. When the value Vj increases
(or w decreases) and exceeds the threshold value Vg (or
w*), the trivial GS becomes unstable and it will form a
dimerized GS (DGS). With a further increase of V; the
consequences of transitions to higher-order GS structures
are expected to take place. However, in this paper we re-
strict ourselves to the case where only trivial and dimer-
ized GS’s exist. As has been shown in Ref. 14, in this
case it is enough to take into account only interactions
between nearest and next-nearest neighbors.

Thus, in dimensionless units the model Hamiltonian
has the form

H:Xl:{

(:cl2 + ylz) + (1 —cosxy)

N =

1
3+ Vi) + Vinea) b (@)

where 7., = [(z1 — Tm)? + (y1 — ym)z]l/z.

The GS configuration corresponds to an absolute mini-
mum of the potential energy of the system. When w > w*
(or Vo < Vy), where the value w* is determined by the
expression

2 2
*2 ! _ —2n3
- _—V 8 = _V 9 5
w - (as) - oBe (5)
the ground-state configuration is trivial (TGS):

yi = 0. (6)

For the case of the TGS, a kink (an antikink) excitation is
defined as a minimally possible topologically stable com-
pression (expansion) of the chain when the atomic posi-
tions at the infinities are the same as in the GS. In other
words, a kink (an antikink) connects two GS’s: One GS,
for the left part of the chain, is described by Egs. (6), and
the other GS, for the right part of the chain, is obtained
by the shift z; = z;—a, (or z; = z;+a, for an antikink).
For w > w* the antikink structure is the same as in the

Ty = lasa
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standard (one-dimensional) FK model. The same is true
for a kink if w > wj, where w} (wj > w*) is a certain
critical value (see below). As has been predicted in Ref.
14, at w* < w < wy the kink structure becomes more
complicated: In the region of the kink, where the chain
is more compressed, the nearest-neighboring atoms be-
gin to escape from the potential minima in the opposite
transversal directions in order to increase the interatomic
distances and, thus, to decrease the repulsion energy.
This effect will lead to dramatic changes in properties
kink and antikink.

When w < w* (or Vg > V) the TGS becomes unstable,
and it is transformed into a dimerized GS (DGS)

Y= (—l)lb’ (7)

z; = lag,
where the parameter b is determined by the equation®

w?rg +4V'(r9) =0, 7o = (a2 + 4b%)¥/2 . (8)

Note that the further decrease of w or increase of V,
leads to an instability of the DGS, and if we take into
account the interaction of more neighbors, it is trans-
formed into more complicated GS’s such as subdimer-
ized, sub-subdimerized, etc. However, we will not dis-
cuss here transitions from the DGS to these more com-
plicated GS’s, because their correct description requires
the account of interaction of all the atoms in the chain.
The DGS is additionally doubly degenerated: If we des-
ignate the GS (7) as GS;, we can also introduce GS; by
z; = x; — a5, GS3 by z; = z; + a,, GS4 by y1 = —ui,
etc.

The standard FK kink connects GS; and GSy (see
Fig. 1), and the antikink connects GS; and GS;3 (see
Figs. 2 and 3). We will call these types of excitations
as “massive” kink (MK) and antikink (MAK), because
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FIG. 1. Shape of the “massive” kink for (a) w > wg, (b)
w < w'(w = 2.3), the ground-state configuration, and (c)
w < w*(w = 2.3), the saddle configuration. The dashed lines
show the positions of substrate maxima.
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FIG. 2. Shape of the “massive” dimerized kink on the

background of trivial ground state for w* < w < wj, (w = 2.6).

they are responsible for mass transport along the chain.
Besides, the DGS admits the existence of a new type
of kinks, which connect GS; and GS4 (see Fig. 4). We
will call these kinks as “nonmassive” kink and antikink
(NMK and NMAK). Note that the parameters of NMK
and NMAK are identical even for the anharmonic inter-
action potential. In some sense, in terms of the two-
dimensional defects discussed in Refs. 12 and 13 the MK
can be called edge and NMK screw. Unlike the case of the
1D FK model with the double substrate potential, where
we also have two different types of kinks, we now have no
topological constraints on the consequence of kinks; for
example, two massive kinks may follow one another. If,
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FIG. 3. Shape of “massive” antikink for (a) w > w*, (b)
w < w"(w = 2.0), the ground-state configuration, and (c) the
saddle configuration. The dashed lines show the positions of
substrate maxima.
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FIG. 4. Shape of “nonmassive” kinks for w = 2.3

(a) ground-state configuration, (b) saddle configuration.

however, we insert one additional atom into the DGS of
the infinite chain and then allow the chain to relax, two
kinks, namely, a MK and NMK, will be created simulta-
neously.

We will characterize the GS by the potential energy
per one atom, Ey. For the TGS we have

Eo(TGS) = V(as) + V(2a,), (9)
and for the DGS,
Eo(ZGS) = V(ro) + V(2a,) + 2w?b?. (10)

As usual, a kink can be characterized by its energy E},
by the effective mass meg, and by the amplitude of the
Peierls-Nabarro (PN) potential, epn. The rest energy of
a kink can be defined as

Ek = Emin(N) —_ NEO, N — o0, (11)

where Eppin(NV) is the minimum value of the potential
energy of the N atomic chain with a single kink.

Analogously to the standard FK model, a kink can be
transferred along the chain. The minimum energy which
is necessary to overcome in order to shift the kink on
the distance a, is known as the PN energy. It may be
calculated as

epN = Egaddie(IV) — Emin(N),

where Fg,qa1e(/V) corresponds to the potential energy of
the saddle configuration of the chain with the kink. The
saddle and minimum kink configurations can be con-
nected by various trajectories; the most interesting tra-
jectory is the adiabatic one which is defined by a set of

N — oo, (12)

differential equations,'?
O B Ou_ e |y
or oz or oyy

3737

where 7 is a parameter along the trajectory and Vi is
the total potential energy of the system. As the system
moves along the adiabatic trajectory, the kinetic energy
of the chain takes the form

N
K = EmaZ(l'lz +97)

N 2 2
d
lma Z a.’L'l dX + ay[ X
2 0X dt 0X dt

1 dx\?
= §meﬂ' (E) B (14)

where we have introduced the coordinate of the kink
center®

X = Z x; + const, (15)
1

Il

and the effective mass!”

N oz, \ 2 e 2
= = == . 1
Me(X) = mq l§:1 [(ax) + (BX) ] (16)
Thus, the aim of the next sections of the paper is to

calculate parameters of MK, MAK, and NMK analyti-
cally and by means of numerical simulations.

III. ANALYTICAL APPROACH

A. One-dimensional “massive” kinks

As is well known, in the case of a strong interatomic
interaction, i.e., when g = /V"(a;) > 1, the contin-
uum limit may be used to reduce the motion equations
describing the 1D FK model to the sine-Gordon (SG)
equation with a correction term due to anharmonicity of

the interparticle interaction,®°
Ut — DEge (1 — aoug) + sinu = 0, (17)
where
Do = 27[V"(a,) + 4V"(2a,)]'/?, (18)
2m\ ® " "
ap = — (5;) [V"(as) + 8V""(2a,)] (19)

(for 1D kinks we use the subindex “zero”). For the po-
tential (3) these formulas are reduced to the following
expressions:

Do = \/2nVoBe™™P (1 + 4e=27F)1/2 (20)
and
3
2
ag = (DLf) Voe 2™P[1 4 8e~2"A]. (21)

As has been shown in Ref. 8, anharmonicity of the in-
teratomic potential breaks the symmetry between a kink
and antikink. Namely, we have (see Ref. 8)
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Meff — (22)

4 1-— 10'71'01
’N'Do 6 o)

where 0 = +1 for the MK or 0 = —1 for the MAK, and
Ej, ~ 51~{8D0 — 2072V’ (as) + V'(2a,)] — 2agomDo}.
T

(23)
It is clear that the results (18)—(23) remain valid for the

model (1) as long as it is one dimensional, namely, for
the MK, if w > wy, and for the MAK, if w > w*.

B. Dimerized “massive” kinks

When w < w* the calculation of the kink parameters
for the DGS is more complicated than for the 1D FK
J

BRAUN, CHUBYKALO, KIVSHAR, AND VA;ZQUEZ 48

chain, because now we have two strongly coupled sub-
chains. But in the case b ~ a, the interatomic interac-
tions are strong, and we can again try to use an approx-
imation of slowly varying envelopes.

To calculate the kink parameters in the case of the
DGS we will use the approach proposed in Refs. 14 and 18
introducing two new variables u; and v; as

(=)' (b + ).

When the displacements u; and v; vary slowly, i.e., when
Iul - ul—ll < ag, I'Ul - vl-ll < as, and lvl| < ag, we
may expand the potential V(r) in a Taylor series up to
terms of third order in the differences to obtain a system
Hamiltonian in the form'*

Ty =las +u, y = (24)

2 bw2

1 W
H= —u, + —vl + (1 = coswy) + sw?vf + w?byy — —(w — w—1) — — (v + vi—1) — TWE(w; — w;_3)
7 2 2 2

1
—+——A1(ul — u1_1)2 + =Az (v + vl_l)z
2 2 2

2

b w
+ r_z(“’z + 4g)(ur — w—1)(v +vi—1) — *81(1)1 — 'Ul_z)2

1
+§g1(uz —wi—2)? + As(u — wi—1)® + Ag(w — wi—2)® + As (v + vi—1)® + As(w — 1) (vi + vi_1)

+A7(u — wi—1) (v + vi—1)? Iom

where
1= V”(za's)7 g = V"("'O)a
2
w?= _a_3VI(2as)’
A = i(47r2 — w?b?)
1= 7"3 g )

Ay = —15(4b2g — w?n?),
"o
b2, 1/2n\%_,,
A3 = —4—((1) + 4_(]) =+ - — V (7‘0), (26)
T4 6 \ 7o
_ 1
A4 = EV (20,5),

b, , 1/2b\°
- 7 - == VI/I
A5 7‘3 (UJ + 4g) + 6 (7‘0) (7‘0),

b 2\ 2 4m2b
A = — |1 — il 2 "
: 4r3[ (%) ](“’ Fao) gV o)
T 26\ 2 4b%m
A, = 1— b 2 "
. 4,%[ 3(2) | @ +49) + LT,

In the continuum limit, the Hamiltonian (25) gives two
coupled equations of motion,

1
+ —— (w1 +4g1) (W — w—2) (v — vi—2)%|,

(25)
[
Ut — (27(')2(141 + 4gl)uzm + sinu
4m2b
-3 (wz +49)v, — 6(27r)3(A3 + 8A4)UpUsy
0
—16m A7vv, — 1672 Ag(Ugav + Upv,) = 0, (27)
4b? 472b
Vit + —z(wz + 4g)v + 244507 + —2(1412 + 49)u,
To To
+8m2 AguZ + 16w Azvu, = 0. (28)

Since we study the stationary characteristics of kinks,
we omit the term vy. Then, from Eq. (28) the following
approximate expression follows:

w2 2n2r2 3w 2w
N Uy — As + Ag — —— Aq| u?
vET bz(w2+4g)[b2 stde— g 7]“
(29)
Note that the ansatz (29) differs from that used in Ref. 14
by the presence of the second term which makes the ap-
proximation better. The relation (29) remains valid until
b ~ 1. Substituting the expression (29) into Eq. (27) we
obtain the perturbed SG equation (17) but now with the
parameters

D = 2m(4g; — w?)'/? (30)
and
6473
a= _D_Zv'"(zas) (31)
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instead of Dy and g, respectively. The parameters of
the expansions in Eqs. (27) and (28) is now of the order
of D7! :u, ~u/D < u (for D > 1). When « is small,
the perturbation theory for the kink of the SG equation
can be applied (see, e.g., Ref. 19 for a review). This way
the approximate kink solution of Eq. (17) can be written
as

4 tan~![sinh(z/D)]

u(z) = 4tan”! exp(~0z/D) + ja cosh(z/D)

(32)

Using the definition of the kink mass, given by Eq. (16),
we obtain the effective mass with the same accuracy as
has been mentioned above,

4 wt 1

Meft = (1 +3pes EO’CWT) . (33)
It is important to note that this expression differs from
Eq. (22) by a second term which appears due to the
transversal degree of freedom and it gives the main con-
tribution to the kink mass after the leading term, and
increases the effective masses of both the kink and an-
tikink.

In order to calculate the rest energy of MK according
to Eq. (11), we use the continuum version of the dis-
crete Hamiltonian (25) which, using the results given by
Egs. (29)-(32), can be rewritten in the following form:

1 oo
Ey, = ‘2“/ de [ (1 —cosu) — % (w? + 4w})ue
T J—co
2

1

Equation (34) includes a term linear in u,. Although this
term does not produce any change in the motion equa-

]
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tion, it is important for the energy of kinks defined by
Eq. (11). Unlike the case of the standard Hamiltonian of
the SG model where the energies of the kink and antikink
are equal, this new term leads to their crucial difference.
It is not difficult to obtain the following expansion:

1

T o

E}, [SD + 2073 (w? + 4w?) — %amrD] . (35)
Although the most crucial difference in the energies of the
kink and antikink is produced by the second term in the
expansion (35), the effective anharmonicity parameter o
also lowers the kink energy. The latter is in agreement
with the conclusions of Ref. 9.

C. “Nonmassive” kinks

The expansions presented above cannot be used to esti-
mate the parameters of nonmassive kinks which connect
GS; and GS4. To do this in a proper way, in this sub-
section we use the ansatz

z; = lag + uy,

36
= (—l)l’lU[, ( )
to derive equations for the functions u; and w;. We will

assume that the values of the functions wj; slightly differ
from b so that the parameter

z = (w + w;_1)? — 4b? (37)

may be considered as a small one. The expansions we
are going to do now are more general in comparison with
those in the case considered above. Additionally, we as-
sume |u; — u;—1| ~ 2 < a5 and lead our expansions up
to second order in the small parameter z. The reduced
Hamiltonian (4) may be written now in the following
form:

@  yp 1o, Tw? 2 w? 2 2
H = Z 5 + 5 + 5w wj + (1 — cosyy) — T(ul —up—1) — wi(ug — uj—2) — F(wl +wi—1)® + By(u — uwi—1)
]
2 2 B, 2 22 Wi 2, 1 2
+Ba[(wy + wi—1)* — 4b%](wg — up—1) + 8_7r[(wl +wy_1)® — 4b°]° — ?(wl —wi—2)” + 591(“1 —w—2)° 9,
(38)
[
where the values w; and g; are given in Eq. (25) and where
1 2 _ Q-2
By = —(4n%g — w?b?), By = — (w®+4g). (39) 01 = 8n%(B1 + 291), (42)
TS 4rg
In the continuous limit equations of motion correspond- 2 =x%|1+ : (wz — 4wf)] . (43)
ing to the Hamiltonian (38) may be written in the fol- 8b?Bs

lowing form (w = w/b):

— 0244y + sinu = 167 Byb% w1, (40)

N L 272 g - .
— gy — W+ W3 = —b—zwuz — 37T2(w2w;nm + wwi)
(41)
(we dropped here the corresponding time derivatives
since we again are interested in static properties only),

The latter gives us the condition for the NMK'’s stability:
6% > 0.

Therefore, for the longitudinal displacements the kink
shape is described again by a perturbed version of the
SG equation while the transversal displacements are de-
scribed by the perturbed ¢* model. The more general
case is realized when there are two (“massive” and “non-
massive”) kinks in the system (e.g., in the situation when
M = N +1 and N is odd). A detailed analysis of this



3740

case will be presented elsewhere. Since here we are in-
terested in the case of a single kink in the chain, let us
suppose that in one direction the kink is absent. This
may be reached if we demand a corresponding bound-
ary condition in this direction and assume that one of
the parameters §; or 0 is small (while the other one is
large, which is necessary for the continuum approxima-
tion). For example, for a “massive” kink we should take
01 < 6 and lim,_, 1o v = 0; then from Eq. (41) we have
the expansion

2

w=b-— 7T—um, (44)
b
which exactly corresponds to the previous case [see

Eq. (29)].
In the opposite case, when only a “nonmassive” kink
is present in the chain, we have the result

u =~ 167 B2b* w1, (45)

and after a change of variables, z — 6%, Eq. (41) is re-
duced to the perturbed ¢* equation

—z5 — W+ 0° = —y(0Dzz + W), (46)

where the parameter v,

71.2

7= 53 (327 B3 + 3), (47)
is assumed to be small (for § > 1). Therefore, similar to
the previous case, we may apply the perturbation theory
for the kink of the ¢* equation® to obtain the approxi-
mate kink’s form as

W=o0 [tanhx + (x —tanhx) |, (48)

2 cosh?
where x = x/v/26.

Unlike the previous case, the transversal degree of free-
dom gives the same contribution to the kink mass as the
correction term to its form, since v ~ 1/§2. Using the
formulas (45) and (48) and the definition (16), we obtain
the kink’s mass as

V/2b2 ¥ 2 [(167wByb\>
~ — - —— . 49
el = 3 1+10+7< 5 (49)

If we take into consideration the property

+o0
/ dzu, = 167 Byb% i, | T2 = 0,

— 00

then in the continuum approximation the Hamiltonian
(38) may be written in the form

4 oo 2 62
Ez%#/ dm[(s ﬁzi+%(1——ﬁ)2)2—7 wzwg];
U — o0

i.e., the energy of a single NMK is

o 16b*By+/26 (1 3 ) (51)

E _ 2
k 3 107
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As has been pointed out above, all the characteristics
of NMK and NMAK are identical. For w — w* (i.e.,
for b — 0) we naturally get Ey — 0; i.e., this kind of
excitation does not exist in the 1D case.

IV. NUMERICAL SIMULATION RESULTS

The perturbation theory approach developed above
gives good estimations for the kink parameters only in
a restricted region of the system parameters, e.g., for
D> 1land a <1 (MK) or for § > 1and v < 1 (NMK).
In a real situation, a kink is localized at several (or even
a few) atomic sites so that the continuum approximation
is not valid to describe such types of structures. Be-
sides that, the very interesting, from the physical point
of view, cases of g ~ 1 or w ~ w* cannot be treated an-
alytically. Therefore, we investigate these cases with the
help of numerical simulations.

In numerical simulations we use the method proposed
in Ref. 20 and then used in Ref. 8. Namely, we start
from an appropriate configuration ({z;},{y;}) at t = 0
and then allow the atoms to relax to the configuration
corresponding to a minimum potential energy, solving
the Newton equations of motion which follow from the
Hamiltonian (3) with the additional friction force acting
on each atom, F}riction = —nz;. To obtain the saddle
configuration, we artificially keep the X coordinate of
the kink at the maximum of the PN potential. Namely,
we take the following configurations as initial ones.

(a) For the MK (M = N — 1, N is even) (see Fig. 1),

ground-state configuration,
2, saddle configuration,

ground-state configuration,
3w, saddle configuration,

zy=2n(l—-1), 1=3,4,...,N,

w=(-1)% 1=1,2,...,N.

(b) For the MAK (M = N +1, N is even) (see Fig. 3),

Ty = 2m,

— 6m,
27 5,

ground-state configuration,
saddle configuration,

(53)
x =27l'(l—}-1)7 l=3,...,N,
w=(-1, l=1,...,N.

(c) For the NMK (M = N and M, N are odd) (see
Fig. 4),
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zy=2nl, l=1,...,N,

— 07
Y1 = b,

__J —b, ground-state configuration,
Y2 = b, saddle configuration,

ground-state configuration,
saddle configuration,

(54)

w=(-1)', 1=3,4,...,N.

For the saddle configuration, we solve the Newton equa-
tions of motion artificially keeping x5 = const for cases
(a) and (b), and y; = y2 for case (c).

In our numerical simulations we take N = 50 for MK,
N =51 for NMK, and n = 1. The Newton equations of
motion are solved up to the time when all atomic veloc-
ities are smaller than 107%, and so we expect that the
static configurations are finally realized in the chain. For
the interatomic interaction we take V5 = 200, 8 = 0.3,
so that the width of 1D FK kink is Do ~ 13.17, the an-
harmonicity parameter oo ~ 0.197, and w* ~ 2.41. The
results of our simulations are presented in Figs. 5 and 6.

In Fig. 5 we present the results of numerical and ana-
lytical calculations for the kink energies. The continuum
approximation (solid curves in Fig. 5) gives rather good
estimations for MK (circles) when w < w* and w > wj
and for MAK (squares) when w is not close to w*, since
in that region the conditions D > 1 and a < 1 are not
satisfied. Unfortunately, for NMK good analytical esti-
mations are available only in a very small region near
w*, because our analytical approach assumes the small-
ness of b [see (43)], but this latter condition is valid only
in a small region (when v < 1).

In Figs. 6(a) and 6(b) we show the height of Peierls-
Nabarro potential. We should note that although in this
picture the value of epy seems go to zero when w > w* for
MAK and, when w > w§, for MK, in fact these values for

100.00
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4 o |
. o) |
] I
4 |
7 |
50.00 !
71 1
] |
X - ]
Lud 4 1
] |
0.00 + = —=—-- A_A_A_A_A_A_A_A_A_A.A.m,} A___:_____
d I 1
B | I I
7 ! I
: | 1
1 I I
] | i
—50.00 ! !
1 DDI ]
1 e
- I 1
- 1 1
7 | I
] | I
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FIG. 5. Kink energies vs the transversal frequency w for

“massive” kink (circles) and antikink (squares), and for “non-
massive” kink and antikink (triangles). The solid lines show
the analytical estimations for these values.

1D kinks are only small but not zeros: epny ~ 2x 10~ for
MAK and epy =~ 5 x 1075 for MK so that epy(MAK) >
epn(MK). For the dimerized structure the values of the
PN potential for MK is larger than for MAK in a wide
range of the parameter w. The function epn(w) has an
additional maximum associated with the appearance of
the dimerized MK created on the TGS.

The results of the numerical simulations for NMK are
shown in Fig. 6(b) by triangles. Recall that NMK'’s ex-
ist provided w < w*, i.e., for the DGS only. It is in-
teresting that epny as a function of w has a local min-
imum at w ~ 1.31. This effect is analogous to that is
known for a nonsinusoidal substrate potential.”>® Namely,
for 1.31 < w < w* the minimum of the potential en-
ergy is realized for the configuration shown in Fig. 4(a),
while the configuration of of Fig. 4(b) corresponds to
the saddle one. However, at 1 < w < 1.31 the situation
is just opposite: The configuration shown in Fig. 4(a)

0.25 4
i (a)
0.20
~ 0.15
[a ]
W ]
0.10 4
0.05 4
0.00 3 ST Srdro
1.00 1.50 2.00 2.50 3.00 3.50
* *
W 03] Wk
0.15 (b)
0.10 -
z 1
a-
w ]
0.05
0.00 4T T T T A
1.00 1.50 2.00 2.50
w .
FIG. 6. Peierls-Nabarro potential vs the parameter w for

(a) “massive” kink (circles) and antikink (squares), and (b)
for “nonmassive” kink and antikink (triangles). The points
are joined with a solid line by means of a cubic spline.
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corresponds to the saddle state, while the configuration
shown in Fig. 4(b) to the minimum. Moreover, close to
the value w = 1.41 both the configurations of Figs. 4(a)
and 4(b) correspond to local mazima of the energy, while
the minimum configuration is realized at an intermediate
state.

V. DISCUSSION

As we have shown, in the generalized FK model for
the case w > wj (as well as in the 1D FK model with
anharmonic interatomic interactions), a kink has a lower
effective mass m and a PN barrier epy, in comparison
with an antikink. If we suppose that the FK chain is
subjected to a thermostat with temperature T', and the
rate of the energy exchange between the chain and the
thermostat may be described by an effective friction co-
efficient 7, then the diffusion coefficient of a kink may be

estimated as®?2!
w a2 .
“Fi=2 exp(—epn/kBT), if 7 < wpn,
2 2
szTN:s exp(—epn/kgT), if n > wpn,

where wpny ~ (EPN/Zm)l/z, and kp is the Boltzmann
constant. Therefore, the kink (i.e., an extra atom in the
chain) should have a larger diffusion coefficient than that
for the antikink (a vacancy in the chain). The chemi-
cal diffusion coefficient D. (according to Fick’s first law,
D, describes the atomic flux in a nonequilibrium state
where the gradient of atomic concentration is small but
nonzero) coincides with the antikink diffusion coefficient
if the concentration of atoms, § = N/M, is slightly lower
than the value @ = 1, because in this case the mass trans-
port along the chain is carried out by antikinks

DC(G) |g=1_05 Dc_ = Dk(MAK) (56)

Otherwise, when # = 1 + 0, the mass transport is carried
out by kinks, and

D.(0) lo=1+0= D} = Dy(MK). (57)

As long as the FK chain is exactly one dimen-
sional, the anharmonicity parameter o is positive, and
epN(MAK) > epn(MK), thus leading to the relation

D; < Df. (58)

Therefore, the diffusion coeflficient D, as a function of
should jump like the increase at 8 = 1.

The existence of a transversal degree of freedom
changes drastically this picture. Namely, when w* < w <
wj, the repulsion forces between the neighboring atoms
in the region of a kink exceed the forces which hold the
atoms within the 1D line, the atoms begin to escape out
of the line, and the kink becomes less mobile than the an-
tikink, D7 > D7, so that the jump in the function D.(6)
at 8 = 1 changes its sign. In the case of w < w* the sys-
tem GS becomes dimerized, and now we have two differ-
ent types of kinks, “massive” and “nonmassive.” If T' #
0, concentration of thermally created kinks is determined
mainly by their creation energy, ny o« exp(—FEy/kpT),
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where Ej, = 1[Ej(kink) + E (antikink)]. From Fig. 5 it
follows that Ex(NMK) < E,(MK), so that the follow-
ing inequality should be valid: nix(NMK) > ni(MK).
Therefore, “nonmassive” kinks will give the main contri-
bution to thermodynamic properties of the quasi-2D sys-
tem such as heat capacity, free energy, etc. On the con-
trary, dynamical properties of the chain (such as conduc-
tivity, diffusional properties, etc.) will be mainly deter-
mined by “massive” kinks. As can be seen from Eq. (33)
and Fig. 5 for a wide range of values of w, a dimerized
“massive” antikink (a vacancy) is more mobile compared
with a dimerized “massive” kink (an additional atom in
the chain).

The proposed generalized FK model which describes a
chain with a transversal degree of freedom can be directly
applied to describe surface diffusion of atoms adsorbed on
antsotropic (furrowed or stepped) crystal surfaces when
the adsorbed atoms form a 2D system of parallel chains
(along furrows or steps). In such a case, the model (1)
and (3) corresponds to the situation when the interac-
tion between the neigboring chains is weak and it can
be neglected. This may be valid, for example, when the
distance between the steps is large enough as it is at
high-order vicinal surfaces. So our model may be used
to predict the value of the diffusion coefficient D, in that
case. However, in a general case we have to take into
account the interaction between the chains, thus coming
to a more realistic 2D FK model. The situation when
the 2D structure is formed by a system of coupled stan-
dard FK chains was considered in Refs. 22 and 23. Anal-
ogously to that study, we may consider a 2D structure
composed of weakly interacting FK chains with transver-
sal degrees of freedom. Such a model will correspond to
an anisotropic 2D FK model. In the case w = 1 we come
close to the isotropic FK model studied by Lomdahl and
Srolovitz,'?13 where the substrate potential is periodic
in both directions.

Another interesting generalization of the model (1) and
(3) is to consider a situation when the number of atoms,
N, is not equal to the number of wells, M. Recall that
the standard FK model with a variation of § = N/M dis-
plays a number of interesting physical phenomena such as
commensurate-incommensurate phase transitions, devil’s
staircase structures, etc. We may naturally expect that
the behavior of the generalized FK model will be more
rich due to the existence of nontrivial GS’s and the pos-
sibility of phase transitions between them. Besides the
diffusion properties, this model may be very useful to
describe crystal-growth processes.
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