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The nonlinear dynamics of the Frenkel-Kontorova (FK) model with local impurities is considered
analytically. Impurity modes, i.e., nonlinear oscillations localized near the impurity, are studied.
We show that the low-frequency impurity mode can be regarded as a breather trapped by the im-
purity, and a similar approach is possible for the high-frequency mode. The stability of the non-
linear modes is investigated, and laws of their decay caused by nonintegrability of the system are
determined. Considering a single kink in the FK chain, we derive the effective equation of motion
for its collective coordinate, which takes into account inhomogeneities and the discreteness of the
model. The adiabatic interaction of the kink with an impurity is analyzed. We show that the
chain’s discreteness plays an important role in the kink scattering. In particular, the reflection of
the kink by a heavy-mass impurity is stipulated by the Peierls-Nabarro (PN) potential arising from
the lattice discreteness, so that the reflection does not occur in the continuum model. The threshold
velocity (or the threshold impurity mass) for kink reflection is determined by the amplitude of the
PN potential. We also demonstrate that local impurities modify transport properties of one-
dimensional systems, and the change of the kink diffusion coefficient depends on the character of
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the kink interaction with a separate impurity (repulsion or attraction).

I. INTRODUCTION

The study of nonlinear phenomena in inhomogeneous
and disordered systems is of a great interest' to under-
stand whether or not nonlinearity qualitatively modifies
the effects of disorder on transport properties, and, vice
versa, whether or not disorder modifies the remarkable
solitonic properties of nonlinear systems. To understand
the behavior of nonlinear excitations in disordered sys-
tems, it is important to investigate their interaction with
separate impurities (see, e.g., Refs. 2-6).

In the linear case, impurities generate a number of
features in the dynamics of a system under consideration.
Firstly, as was shown by Anderson’ (see also Ref. 8), the
transmission coefficient 7(L ) of the linear wave propaga-
ting through a disordered system of width L behaves like
T(L)=exp(—L /L), where A is the localization length.
Secondly, separate impurities in a harmonic lattice gen-
erate a new type of excitations, the so-called impurity
modes, i.e., local oscillations around the impurity atoms
(see the pioneer work,’ and also, e.g., Refs. 10-13). The
impurity modes have frequencies lying outside the fre-
quency zone of the ideal lattice and make significant con-
tributions into various characteristics of crystals with im-
purities.

As is well known, homogeneous nonlinear systems sup-
port the undistorted propagation of localized waves, the
so-called solitons. Both of the above mentioned effects
are strongly modified in the nonlinear case. For example,
the soliton scattering by impurities leads to a new mecha-
nism of the transport properties in disordered systems
(see Refs. 4, 5, and 14-16). Namely, it was demonstrated
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in numerical simulations'® that, due to modulation insta-
bility, a nonlinear periodic wave generates, in a focusing
nonlinear medium, a number of solitons which have a lit-
tle scattering by impurities.*> The dynamics of solitons
is mainly determined by their nature. Nontopological
(dynamical) solitons may be trapped by impurities to
form a nonlinear oscillating mode (see, e.g., Refs. 17 and
18) which fade due to discreteness effects. Otherwise, the
topological soliton (kink) behaves like a particle in
effective impurity potential (see survey!® and references
therein). In the last case the soliton propagation through
a disordered system is defined mostly by the dynamics of
the soliton near separate local impurity.’

Many effects in nonlinear systems of the condensed
matter physics may be considered in the framework of
the Frenkel-Kontorova (FK) model?®°, which describes
the behavior of a harmonic chain of atoms in a periodic
external potential. This model was proposed to describe
the mobility of dislocations in solids.?°"2* Then it was
successfully employed to investigate the dynamics of
crystal growth (e.g., Refs. 24-27) and the behavior of ad-
sorbed layers (e.g., Refs. 28-32). Namely, the layer of
atoms adsorbed on stepped or furrowed crystal surfaces
may be treated as a quasi-one-dimensional system where
adsorbed atoms (adatoms) situated in one “furrow” of the
substrate can be approximately regarded as a quasi-
independent chain of atoms, the periodic external poten-
tial being the substrate potential. In a long-wavelength
limit, excitations of the FK model are described by a non-
linear differential equation, the sine-Gordon (SG) equa-
tion (see, e.g., Ref. 23). Note that a number of physical
objects allowing a model description with the help of the
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SG equation is known: domain walls in magnetic materi-
als (see, e.g., Ref. 32), fluxons in long Josephson junctions
(e.g., Ref. 35), charge-density waves in quasi-one-
dimensional conductors,’? etc.

The exactly integrable SG system has the following im-
portant property: any nonlinear excitation can be
presented as a set (but not a superposition) of nonin-
teracting quasiparticles; phonons (quasilinear waves),
breathers (dynamical solitons), and kinks (topological sol-
itons). This is a result of the inverse scattering transform
applied to the SG equation (see, e.g., Ref. 34). Within the
scope of the SG model, excitations move freely and their
collisions are “elastic.”** For real physical systems, the
dynamics may be described in terms of the same quasi-
particles which, however, now interact with one another
or with impurities. The interaction of nonlinear excita-
tions with impurities plays an especially important role in
transport properties of one-dimensional systems because
the kinks and breathers may be trapped or reflected by
the local inhomogeneities. Note that the breather cap-
tured by an impurity may be regarded as a nonlinear im-
purity mode.

There are a number of papers considering the interac-
tion of solitons with impurities in the framework of the
SG model (see, e.g., Refs. 35-38 and also references in the
review paper!'®). Most of the studies are related to the
fluxon scattering by local inhomogeneities in long Joseph-
son junctions (JJ),>>363% where the inhomogeneities are
installed into the junctions during their fabrication (see,
e.g., Ref. 39).

For the FK model, a homogeneous vacuum solution of
the SG equation corresponds to a commensurate struc-
ture when all atoms lie in the minima of the substrate po-
tential while a kink (antikink) is an excessive atom (atom
vacancy) in the commensurate structure (see, e.g., Ref.
32). The motion of such excessive atoms along the chain
is described by the motion of kinks and, therefore, the
analysis of the kink dynamics is important to clarify, for
example, the surface diffusion and drift of adatoms.’!
From this point of view, it is an important problem to
study extended versions of the FK model which take into
account a more complex character of atomic interactions
in the chain, e.g., local anharmonic,?®?’ long-range ex-
ponential,***! or power*? interactions between atoms, as
well as the interaction between separate chains.*>**

In the framework of the FK model, two new features
in the soliton-impurity interaction arise. Firstly, in the
discrete atomic chain, a free motion of a kink corre-
sponding to a continuum SG model is substituted by its
motion in a periodic Peierls-Nabarro (PN) potential
whose amplitude is always less than the amplitude of the
substrate potential (see, e.g., Ref. 23). Parameters of a
kink moving in the PN potential are changed periodical-
ly, which results in radiation of phonons leading to the
kink pinning (e.g., Refs. 45-49). As a result, the discrete-
ness effects which are absent in long JJ’s may significantly
modity the dynamics of kink scattering by impurities.
The second feature of a discrete chain with impurities is
the excitation of nonlinear impurity modes during
soliton-impurity scattering.

The present paper aims to consider the dynamics of

kinks and nonlinear impurity modes in the FK model
with impurities. We demonstrate that the nonlinear
mode may be regarded as a breather localized on an im-
purity. The first papers devoted to this problem®®>! indi-
cated that nonlinearity may produce a new effect: impur-
ity modes may exist with frequencies close to the lower
edge of the linear spectrum for both signs of the impurity
mass changes. However, we show that the low-frequency
impurity mode near the light mass is unstable, and there-
fore it cannot exist even if nonlinearity is included in the
consideration. Due to the nonintegrability of the system,
the impurity modes slowly fade, emitting phonons (e.g.,
Ref. 11); thus, decay laws should be determined. For the
kink we derive the effective equation of motion for its
center in the discrete chain with an impurity. The
discreteness effects may drastically modify the kink
scattering by impurities. In particular, the mass impurity
in the continuous SG system cannot refiect the kink.
However, this effect is possible in the discrete chain, and
the amplitude of the PN potential plays a dominant role
in the threshold velocity (or the threshold impurity mass)
allowing the reflection. We also demonstrate that impur-
ities change the transport properties of the one-
dimensional systems. In particular, the change of the
diffusion coefficient of the kink sufficiently depends on
the character of the kink interaction with impurities (at-
traction or repulsion).

The paper is organized as follows. In Sec. II we de-
scribe the FK model with local impurities which change
the atomic mass in the lattice, strength between neigh-
boring atoms in the chain, and the substrate potential.
Considering a discrete chain in the harmonic approxima-
tion, we briefly observe results related to impurity modes
(Sec. III). Nonlinear impurity modes are investigated in
Sec. IV, and their decay is studied in Sec. V. Considering
a single SG kink in Sec. VI, we derive the effective equa-
tion of motion for the kink collective coordinate taking
into account the lattice spacing and inhomogeneities.
Analysis of this equation is also presented in Sec. VI.
Section VII discusses the influence of impurities on the
kink diffusion coefficient. Last, Sec. VIII contains a sum-
mary and concluding remarks.

II. MODEL

We start from the FK Hamiltonian
2

+%gj(xj+1—xj—b)2

1 dx;
H=219m "2
J

1 J—
+7sj 1—cos j

+v(x<)] , 2.1

where x; is the position of the jth atom. The first term in
Eq. (2.1) is the kinetic energy of the atomic chain, while
the last three terms describe the potential energy which
consists of the energy of a pairwise interaction of atoms
between themselves, the energy of atom interaction with
the substrate, and the external potential v(x). Here we
consider only the case of b=a when the commensurate
structure of atoms is the ground state of the system.

Then, the atomic coordinates x; can be represented as
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x;=ja+tu; . (2.2)

The equation of motion corresponding to the Hamiltoni-
an (2.1) has the form

dzuj du;
mj—;tT+mj177+gj(uj—uj+1)+gj_1(uj—uj_1)
+%ajsinuj——fj=0 ,  (2.3)
where f;= —0dv(ja +u;)/du;, and we have taken into ac-

count dissipative losses due to the energy exchange be-
tween the chain and the substrate [the second term in Eq.
(2.3)].

The standard FK model assumes homogeneous param-
eters: m;=m, n;=1, §;=g, €;=¢, and v(x)=0. For a
homogeneous chain it is convenient to use the normalized
units when m =1, €=2, and a =27, so that the Hamil-
tonian (2.1) takes the form

2
duj
dt

1

H0=2 2

+ig(u; —u;)*+(1—cosu;) | .

(2.4)

The harmonic approximation for the interparticle in-
teractions [second term in Eq. (2.1)] is valid if the intera-
tomic interactions are much stronger than their interac-
tion with the substrate, i.e., if g R 1. In another case we
have to improve the model (see, e.g., Ref. 42). In the case
g >>1, we may use the continuum approximation substi-
tuting into Eq. (2.1) the following expressions:
j—y=ja, uj—u(y), 3;— [dy/a. Using the transfor-
mation y—x=y+u(y) so that dy =dx[1—u,(x)], the
Hamiltonian (2.1) may be transformed into the following
one:

H=aq ﬂfdx[%m(x Jul+1ig(x)a’ul—v(x)u,

+le(x)(1—cosu)], (2.5)

€699

where the subscripts ‘“x” and ‘¢” stand for partial
derivatives in the space and time variables, respectively.
The third term in Eq. (2.5) describes the action of the
slowly varying external potential v(x) on ‘“excessive”
atoms in the chain; the latter is characterized by the den-
sity p(x )= —u, /2. This effect is well studied (see, e.g.,
Refs. 45 and 52) and we will not consider it in the present
study.

In this paper we investigate only local impurities in the
FK chain; when one of the atoms in the chain, say j =0,
has parameters which are different from the atoms of the
lattice, it is characterized by (i) the change of interaction
with the substrate,

go=2+Ac¢, (2.6a)
(i1) another mass,

my=1+Am , (2.6b)
(iii) the change of the interaction with its neighbors,

g0o=g-1=gtAg, (2.6¢)

and (iv) the change dissipative loss,
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ne=n+An . (2.6d)

The total Hamiltonian of the system in that case may be
presented as follows:

H=H,+8H , 2.7)

where H, is defined in Eq. (2.4), and
2

SH=1m +Agluy —uo)+(uo—u ]

Up
dt

+1Ae(1—cosuy) .

(2.8)

In the continuum approximation we have to put, in Eq.
(2.5), the following functions:

e(x)=2+Aead(x), (2.9a)
m(x)=14+Amad(x) , (2.9b)
g(x)=g+Agab(x) . (2.9¢)

III. IMPURITY MODES
IN THE HARMONIC APPROXIMATION

To study the linear excitations of the FK model, we
will consider small oscillations of atoms near their equi-
librium positions |u;| <<2 and put

cosujml—%uj2 . (3.1)

In this approximation, the FK chain without impurities
supports the linear waves,

u;(t)=u;(0)explio(k)t —ikaj] , (3.2)

where the frequency w(k) and the wave number k are
connected by the dispersion relation (a =27)

w*(k)=1+4g sin¥(wk), |k|<1 . (3.3)

In the inhomogeneous FK chain, impurities generate
the co-called impurity modes, the local oscillations of
atoms near the impurities.’~!3 The frequency of the im-
purity modes lies outside the frequency zone of the linear
spectrum (3.3). The analytical investigation of the impur-
ity mode may be carried out with the help of the Green-
function technique (see, e.g., Refs. 11 and 23). We briefly
present the results.

Let us introduce the Green function G(¢) and its
Fourier transformation G(w), defined in the usual way:

G(t;j1,j)=—ilm; m )T @ (1), (0)

. _ (3.4)
@(w;jl,j2)=%in})f_+ dt expliot —81t)G(t;]1,/2) »

where T is the time-ordering operator and u;(t) is the
displacement operator in the Heisenberg representation.
The function G(w) satisfies the matrix equation

(0*—B)G=1, (3.5)
where the matrix B has the elements
2
B(jl’jz):(mjlmjz)fl/z_ai (3.6)

aujlauj2
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For the homogeneous FK model with the Hamiltonian

H, the nonzero elements are
Bo(j,j)=1+2g, Bo(j,jtl)=—g, 3.7

where we have used the index “0” to note the homogene-
ous case. In this case, the matrix equation (3.5) produces
the chain of equations for the function

Goli1,i2)=Gollj1 =i,

e.g.
(@>—1—28)G(0)=1—2gG,(1) ,
(0*—1—28)G,(1)=—g[G,(0)+G(2)] , (3.8)

It is easy to show that the solution of Egs. (3.8) has the
form

Golj)= Ay, (3.9a)
where

y=—x+i(1—x2)12, (3.9b)

A=—i/[2g(1—xH'"?], (3.9¢)

x =(0*—1-2g)/2g , (3.10a)

and, in the case of |[x|> 1, the square root in Egs. (3.9)

should be taken as
(1—x3)12=—isgn(x)(x2—1)172 . (3.10b)

When —1<x <1, the frequency o lies in the region
Omin <© <@ pays Where 0 =1 and @, =(1+4g)!/? [see

Eq. (3.3)]. Note that the following expressions are valid:
G,(0)Gy(2)=G3(1) ,
X 5 (3.11)
glG5(1)—G§(0)]=Gy(1) .

When the local impurity is inserted into the chain, so

that the expressions (2.6) are valid, the matrix B may be
presented in the form B =§0 +8§, where
8B (1,1)=86B(—1,—1)=Ag, (3.12a)

8B(0,£1)=g[1—(14+Am) " 2]—Ag(14+Am)" /2,
(3.12b)

8B(0,0)=[LAe+2Ag —(1+2g)Am J(1+Am)~ ! .
(3.12¢)

The Green function of the chain with impurity satisfies
the Dyson equation

G=G,+G,8BG . (3.13)
The solution of Egs. (3.12) and (3.13) has the form
G(0,0)=Z '{G,(0)+8B(1,1)[G3(1)—G3(0)]} ,
(3.14a)

where
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Z=1—8B(0,0)G,(0)—48B(0,1)G,(1)
—8B(1,1)[Gy(0)+Gy(2)]
+[26B%0,1)—8B(0,0)8B(1,1)]
X[G¥(1)—G(0)] . (3.14b)

As is well known, zeroes of the function Z(w) determine
the spectrum of the FK chain with an impurity. In par-
ticular, solutions with |x|>1, i.., for 0<w<w,;, or
® > ., describe the local impurity modes. To analyze
the modes, let us consider the partial cases.

(a) Ae#0, Ag =Am =0. Then, 8B(0,0)=1Ae, and
equation

Z=1—G,(0)5B(0,0)=0

leads to the result that the impurity mode exists in the re-
gion w > w,,,, if Ae>0 (deep well), and it exists in the re-
gion 0 <o <@, if Ae <0 (shallow well). The frequency
of the impurity mode w, is determined by the equation

sgn(x )(x2—1)1"2=Ae/4g , (3.15)
which has a solution
0?=1+2g+(4g2+Ae?/4)V2, Ae20 . (3.16)

(b) Am+0, Ag =Ae=0. In this case,
8B(0,0)=—(1+2g)Am /(1+Am) ,
8B(0,1)=g[1—(1+Am)" 7],

and
Z=(1+Am) " [1+Amw?*Gy(0)] .

The local mode exists for Am >0 (heavy mass) in the re-
gion O0<w<w and, for —1<Am <0 (light mass), it
exists at w > o, and its frequency is defined by the equa-

min»

max

tion
sgn(x)(x?—1)"?=—Am(x+1+1/2g) . (3.17)
The solution is
() Ag#0, Am=Ae=0. Then, ©6B(1,1)=Ag,

8B(0,1)=—Ag, 5B(0,0)=2Ag, and
Z=1+Ag[—3G,(0)+4G,(1)—Gy(2)] .

The local mode exists only for Ag >0 (more strong in-
teractions with neighbors) and its frequency
0y (@1> wpn,,) is a solution of the equation (x > 1)

[1+(Ag/g)2+x)](x2— D ?=(Ag /g)x+1)*>. (3.19)

IV. NONLINEAR IMPURITY MODES

A. Low-frequency modes

We will study the low-frequency impurity modes for a
nonlinear lattice in the long-wavelength limit when the
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motion equations of the FK model may be transformed
to the SG equation

U, —u,,+sinu=0 . (4.1a)

Here, as usual, we introduce the dimensionless variable
z=x/l, I=ag'"?, (4.1b)

I being the kink width.

As is well known, the SG equation is the exactly integr-
able one3* and it has three types of nonlinear excitations:
phonons, kinks, and breathers. The latter is the non-
linear localized oscillations of the form

up(z,t)

Ll a—a»)7? sin(Q¢)
=4tan”! . 4.2
an Q  cosh[(1—02)"%]

The breather frequency ( lies in the bottom gap of the
linear spectrum 0<Q <wp;,=1. For a small amplitude
of oscillations i.e., in the case of B=(1—Q2)!"?2 <1, the
breather (4.2) may be transformed to the following form:

Uy (z,t)~=4Bsin[(1—B?/2)t]sech(Bz) . 4.3)

The frequency Q=1—p%/2 of localized oscillations is
close to the boundary frequency w;,=1. Thus, non-
linearity leads to the appearance of local oscillations in
the chain which are similar to the linear impurity modes
in the sense that their frequencies lie outside the linear
spectrum.

To analyze the influence of nonlinearities on the impur-
ity mode, or, vise versa, the influence of an impurity on
the breather oscillations, let us consider the FK model
with an impurity in the continuum approximation when
the system is described by the inhomogeneous SG equa-
tion:

m(z)u, —[8(z)u,], +E(z)sinu =0 , (4.42)
where, according to Eqgs. (2.9) and (4.1b),
Bz)=1+¢€8(z), € =Ae/2Vg ,
m(z)=1+€8(z), e,=Am/Vyg , (4.4b)

2(z)=1+68(z), e;=Ag/gVyg .

For simplicity, we will only consider the case €; =€70,
€,=¢€3;=0, so that Egs. (4.4) reduce to

U, — U, +sinu =—ed(z)sinu . (4.5)

In the linear approximation, when sinu ~u, the impurity
mode is the solution of the linear equation

U, —u,,+ru=—edlz)u ,

u=A exp(—qlz|)cos(w,t) , (4.6)
where the frequency w, is defined by the relation

(1—0})?=—¢€/2. @.7)

Thus, it follows that, in the long-wavelength limit the im-
purity mode exists only for € <0. For |e| << 1, Egs. (4.7)

and (4.46) lead to the previously obtained Eq. (3.16).
To study the impurity mode in the nonlinear case it is

convenient to consider, instead of Eq. (4.5), the
equivalent equations
U, —u, +sinu=0, (4.8a)
U, loy —t,lo— =€sinu(0) . (4.8b)

Taking into account the small nonlinearity only, we put
sinu =~u —u3/6 and make the substitution
u=Wel+Ww*re i (4.9)

(the asterisk stands for the complex conjunction) in Egs.
(4.8) to obtain an equation for the complex envelope
Y(z,t),

2i¥, Vv, —1|¥P¥=0, (4.10a)
with the matching condition at z=0
V. lor—Y,lo—=€e¥(0) . (4.10b)

Having derived Eq. (4.10a), the condition ¥, <<¥, was
supposed to be held. Equation (4.10a) has the form of the
nonlinear Schrodinger (NLS) equation. Its soliton solu-
tion at rest has the form

W(z,t)=2Bexp(—if*t /2)sech[B(z—z,)] , (4.11)

zy being an arbitrary parameter. Note that solutions
(4.11) and (4.9) coincide with the small-amplitude breath-
er (4.3).

Looking for a solution of the inhomogeneous system in
the form

W(z,t)=2Bexp(—if’t /2)sech[B(|z|+2z,)], (4.12)

from the matching condition (4.10b), we obtain an equa-
tion for the parameter z:

tanh(fBzy)=—€/2f . (4.13)

Equations (4.12) and (4.9) yield the solution for atomic
displacements

u(z,t)=4Bsech[B(|z|+zy)]cos(Q,t),
0,=1-p/2.

The solutions (4.13) and (4.14) describe the nonlinear
impurity mode. It has different shapes for € <0 and €>0
(see Fig. 1). For € <0, Eq. (4.13) yields z, >0, and the im-
purity mode has a shape similar to the harmonic case
[Fig. 1(a)], and, in the limit z,— o, this mode coincides
with the harmonic one. The frequency ,; of the non-
linear mode is determined by Eq. (4.13) and, contrary to
the harmonic approximation, now it depends on the am-
plitude of oscillations, which is characterized by the pa-
rameter z,. According to Eq. (4.13), the solution of Eq.
(4.14) exists provided B> Lle| or Q, < ;.

In the case of €>0, Eq. (4.13) leads to z, <0, and the
impurity mode (4.14) has two maxima [Fig. 1(b)]. How-
ever, as will be shown in Sec. IV C, this mode is unstable.
Note that the solutions similar to those presented above
were first obtained in Ref. 51 (see also Ref. 18).

(4.14)
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FIG. 1. The shape of the low-frequency nonlinear impurity
mode for (a) € <0 and (b) €>0.

B. High-frequency mode

We now study the nonlinear oscillating mode localized
near the impurity with frequencies close to the maximum
frequency of the harmonic chain w,,,,=(1+4g)!/%

Let us consider the FK model defined by the Hamil-
tonian (2.4) and (2.6)-(2.8) for the case of Ae¥#0,
Am=Ag=0:

d’u ;
dt?

+g(2uj—uj+1—uj_1)+(1+%A56j0)sinuj:0 .

(4.15)

Since we are interested in frequencies close to w,,,,, for
which neighboring atoms oscillate in almost opposite
phases (i.e., short-wavelength limit), it is natural to intro-
duce the quantities v; defined as

uj=(—1)jvj . (4.16)

Because v; is a slowly varying function of the number j,
we can use the continuum approximation and transform
the difference equations (4.15) to the following differential

equation (@ =27)

v, +ga’v,, +4gv +sinv =0 4.17)
with the condition, at x =0,
ga(v,loy —vylo—)=—1LAesinv(0) . (4.18)

To study small-amplitude oscillations, |v]|<<1, we put
sinv ~v —v3/6, so that Eq. (17) takes the form

v, +gatv,, +wl,v—1v3=0. (4.19)
In the linear approximation, the solution of Egs. (4.18)

and (4.19) has the form (z=x /aV'g )
v(z,t)= A exp(—«|z|)cos(w;t) , (4.20a)

where k=w?—w?,,>0. The frequency w, is defined by
the relation

2 2

(0=l ?=Ae/4Vg (4.20b)

so that the solution exists only for Ae > 0.
In the nonlinear case, we look for a solution in the
form

v(z,2)=W(z,t)expliwnt )+ V*(z,1)exp(—iwmat) »
(4.21)

where W(z,t) is a slowly varying function. Substituting
Eq. (4.21) into Eq. (4.18), we may obtain the resultant
nonlinear equation for the envelope function ¥(z,?),

2@V, +V,, — L W|2¥=0 (4.22)
with the matching condition
W, o — ¥, o =—€¥(0), (4.23)

where, according to Egs. (2.9a) and (4.4b), e=Ae/2V'2.

Equation (4.22) is the NLS equation with different
signs of dispersive and nonlinear terms. As is shown, this
equation has no localized solutions similar to Egs. (4.10)
and (4.11), and, as a result, the solution shown in Fig.
1(b), is not possible. However, there is another solution
of the equation,

expli(B*/20my,)1 ]
sinh[B(z—z)]

Y(z,t)=2f

which has a singularity at z=z,. Using the matching
condition (4.23), we look for the impurity mode in the
form

W(z,t)=2Bexpli(B* /2w,y )t Jcosech[B(|z|+24)] ,
(4.24)

z, being a positive parameter which should be defined.
Substituting Eq. (4.24) into Eq. (4.23), we obtain the rela-
tion

coth(fBzy)=€/2 . (4.25)

Equations (4.21) and (4.25) yield the high-frequency non-
linear impurity mode (3 <<1) (see Fig. 2)

v(z,t)=4B cosech[B(|z]|+z4)]cos(Q,t) ,

5 (4.26)
QI:wmax+B /zwmax .

I e
T

AN

-z,0 z, z

FIG. 2. The shape of the high-frequency nonlinear impurity
mode for € > 0.
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The linear approximation (4.21) corresponds to the limit
zy— o, when the amplitude of oscillations tends to zero.
However, for the finite amplitude of oscillations
(0<zy < ), the frequency ); depends on the amplitude,
so that w,, <Q, < w;,.

max

C. Stability of impurity modes

In previous subsections we dealt with the quiescent im-
purity modes. However, in the limit case described, for
example, by Eq. (4.14), the NLS approach developed
above can be generalized to describe small oscillations of
the impurity mode near the inhomogeneity. These oscil-
lations will be called external to distinguish them from
the internal oscillations of the impurity mode with the
frequency Q,~1—pB%/2. The approach presented below
allows us to analyze the stability of nonlinear impurity
modes.

Let us look for a solution u(z,t) of Eq. (4.8) in the

form [cf. (4.14)]
u(z,t)=4Bjsech(Bj!zl+¢j]cos(ﬂlt) , 4.27)

where j=1 for z <0 and j=2 for z>0. Inserting Eq.
(4.27) into the boundary condition (4.8b), we readily ob-
tain the equations

Bisech¢,=pB,sechd, ,
fBitanh¢,+B,tanhd,=—€ ,

(4.28a)
(4.28b)

where we have set sinu(0)=~u(0). The system of two
linear equations (4.28) for B; yields

B;= —ecosh¢; /(sinh¢; +sinhg,) . (4.29)

Small external oscillations of the impurity mode can be
described by setting ¢, , =@t (), ¥ <<¢, where ¢=p8z,
is a constant and # is a slowly varying function in time.
Inserting these expressions into Eq. (4.29), we obtain the
values of B, ,:

Bi= _%6? %etanth—e( 1 $¢)e—2¢+0(¢3e —24)
(4.30)

{recall that exp(—2¢)= —(B—Le) /e is a small quantity].

The underlying SG equation (4.5) for small u corre-
sponds to the following Lagrangian expanded in powers
of the wave field up to u* terms:

L =7fj:dz[utz——uzz——uz-i—%u“—eu 28(z)] . (4.31)

Inserting (4.27) and (4.30) into (4.31), in the first approxi-
mation we may obtain the effective Lagrangian averaged
in the fast internal oscillations,

2
day —2¢ 3.2, —4
—* —12 ‘.
ar | eYe

L=T—-U=—4e (4.32)

In the lowest approximation we have used

dB __edy

dt 2 dt

As a result, we immediately find the frequency w of the
small external oscillations
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w?=—3e(B+1Le), (4.33)

where we have substituted

exp(—2¢)=—(B+1e)/e .

The result (4.33) is valid provided w? <<e€? (cf. Ref. 18).

Clearly, the small external oscillations of the nonlinear
impurity mode are stable only for € <0 [Fig. 1(a)]. In the
opposite case, € >0 [Fig. 1(b)], in contrast to predictions
of Refs. 50 and 51, the nonlinear impurity mode is unsta-
ble and it will decay into two independent SG breathers.

In a general case €,70, €,70, €;70, the nonlinear im-
purity modes can be constructed in a similar way. The
low-frequency mode has the form given by Eq. (4.14), and
the high-frequency mode is described by Egs. (4.16) and
(4.26). It may be proved that the nonlinear modes with
2y >0 [see Fig. 1(a)] are stable whenever the modes simi-
lar to those shown in Fig. 1(b) (z, <0) are unstable in
respect to small shifts of their maxima away from the im-
purity. Thus, the nonlinearity does not change the condi-
tions for the appearance of impurity modes established in
Sec. III, but it reduces the frequency of local oscillations
with the increasing of their amplitude.

V. DAMPING OF IMPURITY MODES

In this section we briefly discuss the lifetime of the lo-
calized vibrational excitations. Evidently, those in the
exactly integrable systems local excitations, such as
breathers in the SG system or impurity modes in the har-
monic chain, have an infinite lifetime. However, in the
nonintegrable systems, the lifetime should be finite due to
the energy exchange between different degrees of freedom
caused by their nonlinear coupling.

Firstly, let us consider the low-frequency impurity
mode. According to Sec. IV A, in the long-wavelength
approximation this mode can be considered as a breather
pinned by the impurity. Therefore, it is useful to discuss
briefly the breather stability in the nonintegrable systems.
As is well known (see, e.g., Ref. 34), the existence of exact
regular time-periodic solutions is a remarkable property
of exactly integrable nonlinear systems. While the ex-
istence of stationary one-soliton solutions (e.g., kinks in
the FK chain) does not purport exact integrability, it is
usually believed that only integrable systems possess ex-
act oscillating states (breathers) which lose no energy
through radiation. (Some discussions of the point and
efforts to construct periodic breatherlike solutions in a
more general Klein-Gordon equation may be found in
Ref. 53.) However, in many problems, physically impor-
tant equations are not exactly integrable, and breathers
slowly fade due to energy emission even if dissipative
losses are absent. The emission rate due to the nonin-
tegrability is usually exponentially small in the case of
small-amplitude breathers (see, e.g., Refs. 53—-57). For
example, in the so-called double SG equation

U, —u, t+sinu =esin2u ,

the energy emission rate W for the small-amplitude
breather (4.3) is*’
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mle’exp(—2V 27 /B) .

Analogous results may be obtained for other perturbed
terms.”> 57 Therefore, the small-amplitude breather in
nonintegrable homogeneous systems is a long-lived oscil-
lating object.

The situation is drastically changed for the inhomo-
geneous systems®’ when the breather interacts with an
impurity. In the above-mentioned case, the exponentially
small factor in W is exp(—wk /f3), k being the radiation
wave number, and k /f3 is proportional to the ratio of the
breather’s size ~8~ ! [see Eq. (4.3)] to the radiation wave-
length A=2m/k. If a perturbation contains its own
length scale L, the mentioned ratio changes into L /A,
and, in particular, if L <1, the energy emission rate is not
exponentially small, i.e., a breather is not very long lived.
This is valid for the breather pinned by an impurity too.

Let us consider again the case Ae#0, Am =Ag =0,
which is described by Eq. (4.5). All necessary calcula-
tions for this case have been made by Kivshar and
Malomed.?”%® Here we briefly describe the results from
the viewpoint of the dynamics of the nonlinear impurity
modes. The large-amplitude SG breather (4.2) with 851,
which can be considered as the coupled kink-antikink
pair oscillated near the impurity, emits radiation very fast
to be transformed into a small-amplitude breather (4.3)
with B <<1. The evolution of the breather’s frequency Q
is governed by the equation’’

Q()=Q(0)+Ce*, C=0.014 .

The law (5.1) is valid provided ¢ St*~¢e 2. For t>t*,
the breather becomes a small-amplitude one, and its ener-

(5.1)

gy emission rate takes the form!'®3’
:.;_8_‘;7__2_62[61(31_6)]3 , (5.2)

where B'=p+1e is the breather amplitude defined at

z =0 [see Eqgs. (4.13) and (4.14)]. According to the equa-
tion

dE ,
Lo 1698 — _yy
dt dt
E,, being the breather energy, at the final stage of the
breather evolution (0 <3’ <<¢), its amplitude evolves as

B’ ~const/(|e|’)!/?, (5.3)

so that the breather decays according to the power law
(5.3). Of course, the same is true for the nonlinear low-
frequency impurity mode (4.14).

To consider the high-frequency impurity mode (Fig. 2),
the discreteness of the FK chain should be taken into ac-
count from the very beginning. In this case, calculations
of the lifetime may be carried out by the diagram pertur-
bation theory (see, e.g., Ref. 58). The amplitude of the

impurity mode decreases exponentially,
A(t)= A(0)exp(—mn,t/2), (5.4)

where 7, is the sum of different contributions. For exam-
ple, we may include the anharmonicity of the interaction
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FIG. 3. Diagrams for decay of the impurity mode excitation.

potential of the nearest-neighboring atoms,
lex? > lgx(1+yx),
that leads to the contribution

n’~72fda)’G(w')G(a)1—a)') (5.5)
and corresponds to the decay of the impurity excitation
into two phonons [Fig. 3(a)]. Besides, the anharmonicity
of the substrate potential
4 _
1—cosu ~lu’—Au*, A=4,

causes the decay into three phonons [Fig. 3(b)] and leads
to the contribution

7'~ [do' [de"G(0)G(0")G(w,—w'—a") . (5.6)

We have no aim to present the results in their exact
form for the FK chain because they have a cumbersome
form and were obtained for the three-dimensional lattice
(see, e.g., Refs. 11 and 59-61). Note only that the contri-
bution (5.5) is nonzero if 2w, <w; < 2w,,,, (analogously,
770 if 30, < @; <3wp,,). Unlike the harmonic lattice
with acoustic spectrum, the FK chain has the optical
spectrum  (w,;,70). Therefore, in the case of
Omax < 20y, OF g <3 /4, there exists the forbidden gap so
that n'=0 for impurity mode frequencies satisfy the in-
equality wp,, <w; <20, Analogously, n''=0 if g <2
and @, <w; <3wpn,. In these cases the impurity mode,
possibly, decays by the power law similar to the low-
frequency case.

Above we have supposed that the system is in its
ground state and only one localized mode is excited, i.e.,
that the system temperature 7T is equal to zero. However,
the rate of phonon damping 7, essentially depends on T,
and the value of 7, increases with temperature (for details
see, e.g., Refs. 60 and 61). Moreover, at T+#0, the dia-
grams in Fig. 3 lead to the nonzero contributions for the
low-frequency modes as well as for the high-frequency
modes with frequencies lying in the forbidden zone.
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Thus, the power law (5.3) for 7'=0 must be changed to
the exponential law (5.4) at T > 0.

Finally, we have to note that there always exists the en-
ergy exchange between the FK chain and the substrate.
This exchange may be described by some friction
coefficient 7 [see Eq. (2.3)], and it leads to the additional
contribution to the total rate 7, in Eq. (5.4), i.e.,
n,=mn+n"+7". In particular, for the FK chain of ad-
sorbed atoms, the contribution 7 is the main one.®’ Thus,
usually in real physical systems, the amplitude of the im-
purity mode decays by the exponential law (5.4) with typ-
ical rates 7, ~ 107 1-1073 (see Refs. 59-61).

VI. KINK SCATTERING BY IMPURITIES
IN A DISCRETE CHAIN

A. Effective equation of motion for the kink center

To derive an effective equation for the dynamics of the
SG kink center, it is convenient to use the effective La-
grangian approach (see, e.g. Refs. 6 and 62). Let us start
from the Lagrangian of the inhomogeneous FK model:

du 1 2
. 2mu;
—5¢€; |1—cos p (6.1)
Considering a single-point impurity, we put
ej=£+A88j0, Ae=E—¢ , (6.2a)
m;=m+Ambd,, Am=M-—m (6.2b)
g =g +Agd;, Ag=G—g, (6.2¢)

where the parameters E, M, and G are those related to
the impurity.
Introducing the dimensionless variables,

=(c/a)t, ¢;=12m/a)u; (6.3)
and setting
u=a/l,
I=c/w,,
(6.4)
c2=ga2/m R
=272 /ma?
the Lagrangian (6.1) becomes
2
1 |d¢ . Am
L=A43 |~ +=28,
?’ 2 d’T] ! m 610]
1 A
oy [T 8 4
Ae
—u? 1+TSjO (1—cos¢j)J , (6.5)

where A =m/(c /27)% In the notations (6.4), the parame-
ter u has the sense of a ratio of the lattice spacing a to the
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kink width /, and c is the sound velocity. We now assume
that the coupling constant u? between the lattice and the
periodic potential is a small parameter. With this as-
sumption, the distorted kink can reasonably be approxi-
mated by the ansatz (see, e.g., Refs. 6, 49, and 62)

¢;(r)=4tan"'(expuf;) (6.6)
where
E=j—Y(r) . (6.7)

The ansatz (6.6) is based on the well-known exact kink
solution of the SG equation in the “nonrelativistic” limit
(see, e.g., Ref. 34). Our aim is to derive an effective equa-
tion of motion for the kink coordinate Y(7). Assuming
the existence of the function ¢;(7) of the discrete variable
Jj in the form (5.6), we can rewrite the Lagrangian (6.5) in
the form

2
L/A=2 i;l -2 Ecosh_z(ug,,)
i 2££2 Am dYy
cosh’(nY) m dr
— |Bgy Ae | (6.8)
g £

where we have used the following relationships:

a¢; _ 2u 4y

dr cosh,uéj dr’

1—cos¢; =2/cosh’u§; , (6.9)

_ inh(u/2) 2
) —d.=4 1 sinn{u ~ 71 )

0174 2 cosh(ug;+u/2)  coshug;

Using the Poisson sum formula,
S flnhh= J " 7ax 10 [142 3 cos 27;”‘ ,
n=-—ow s=1
(6.10)

and keeping only the first-order term in Eq. (6.10) (s =1),
we can rewrite the effective Lagrangian (6.8) in the fol-
lowing reduced form:

2
L/a=d4u| | %X —‘—47I2—cos(27TY)
dr smh(':r/,u)
Ll fam | [ax | [ag, ae
m dr g €
2
x— 2B (6.11)
cosh’(uY)

In the presence of dissipation and driving force, i.e., the
terms mmnu; —f; in the left-hand side (lhs) of Eq. (2.3),
the variational principle must include the generalized
force associated with the damping and driving (see de-
tails, e.g., in Ref. 62). As a result, the variational princi-
ple associated with the kink center Y leads to the general-
ized equation of motion
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d*x 473 27X dXx
= Si +L — _
a?  sinh(rtp) o | e | T 20t Tar
2
u sinhX Am d_X
2 cosh’x m dr
TR S N AT
14 €
where
X=puyY, (6.13a)

and the dimensionless
coefficient are defined as

F=2nwf/ga ,

driving force and friction

(6.13b)
(6.13c)

The value defined by the first term in the rhs of Eq. (6.12),
i.e.,

IF'=un/w, .

8t

— Y, 6.14
wsinh(7?/p) ©19

wi=
has the sense of the frequency of vibrations in the
Peierls-Nabarro (PN) potential, the term a);sin(z'er /n)
being the PN periodic force generated by the discreteness
of the chain. Note that a projection operator approach*
using the bare ground state of the discrete SG lattice
yields the similar result with the numerical coefficient 4
instead of 72/3=~3.3. Thus, the above approximation is
quite good.

B. Adiabatic interaction of the kink with an impurity

First of all, it is pertinent to note that, in the absence of
the discreteness effects [i.e., when the first term in the rhs
of Eq. (6.12) is absent], the interaction of the SG kink
with a local inhomogeneity was investigated in a number
of works (see, e.g., Refs. 1, 18, 19, 38, and 56). The
discreteness of the chain leads to the additional periodic
potential so that the total effective potential for the kink
motion may be presented as follows:

Ut X)=U,(X)+ U;(X) , (6.152)
2
(X)=—2T L X | (6.15b)
p sinh(7? /) u
3
Ux)= R84 Be B (6.150)
g € | 4cosh’X

and the motion equation may be rewritten in the form
(F=I"=0)

2
sinhX

d2X=_dUeﬂ‘(X)+_& )
cosh3X

dr? dx 2

As follows from Egs. (6.15¢) and (6.16), the effect of two
terms ~Ag and ~ Ac is the same, but the mass impurity
gives an additional contribution to the effective equation
(6.16) which cannot be included into the effective poten-
tial U g(X).

First, we will consider the case Ag0, Ae7#0, Am =0,

Am
m

ax
dr

(6.16)

FIG. 4. The phase plane corresponding to Eq. (6.17) for (a)
(Ag/g+Ae/e)>0 and (b) (Ag /g +Ae/e)<0. Separatrices are
shown by dashed curves.

when the kink dynamics is determined by the effective
potential (6.15). In this case, Eq. (6.16) conserves the
effective energy
1 v2 _ _dx
E,=3X;+Ug(X)=const ,.X = 3
and the system dynamics on the phase plane (X _,X) is
determined by the dependence

Xr=i[2Ek - [Jeff()()]l/2 ’

(6.17)

and it is shown in Fig. 4. The potential U consists of
the frequently oscillating PN potential U, (with the
period p <<1) and the slowly varying impurity potential
U,. Far from the impurity (|X|>>1), the kink velocity is
modulated by the PN potential, and, at small velocities,
the kink may be pinned by a PN well. The impurity po-
tential U, reaches its extremum at X =0,

U(0)=1p1 ﬁ+% , (6.18)
Thus, in the case of
Ag/g+Ae/e>0, (6.19a)

the impurity potential is repulsive [see Fig. 4(a)], and the
kinks with small velocities are reflected by the impurity.
Clearly, in this case, the small-velocity kinks are trapped
in space between such impurities. Otherwise, if

Ag/g+Ae/e<0, (6.19b)
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the impurity potential is attractive [see Fig. 4(b)], so that
the kink may be pinned by the impurity and its frequency
in the vicinity of the impurity is (¢ <<1)

d?U;
dx*?

Ag | Ae
g

QZ_

1,,3
M

X=0

. (6.20)

However, if the kink energy is so small that the kink is
pinned by the PN well, then it oscillates with the frequen-

cy

o dZUeﬂ_
J dx? |x=x
1—2sinh2X,
=2t | B8 Ao | TS 6
’ g € cosh“Xj

where X;=u(j++), and ja is the distance from the im-
purity.

It is important to note that the local impurity potential
U; acts on kinks and antikinks in the same way, whenev-
er the “external” impurity potential [see the last term in
Eq. (2.3)] moves kinks and antikinks in the opposite
directions.

Let us now consider the mass impurity. According to
Eq. (6.16), at Ag =Ae=0 the kink dynamics is described
by the equation

d*X _ 47 .| 2mx
- Sin
d7®  sinh(m?/u) u
2
Am dX sinhX
44| 2m ek | sinhd 6.22
2 | m dT | cosh’X (6.22)

When the discreteness is absent, the kink coordinate X (7)

FIG. 5. The phase plane (X,,X) corresponding to the kink
scattering by a mass impurity in the continuum approximation
for (a) Am >0 and (b) Am <O.
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and its velocity X _(7) are connected by the relation

X, (1)=X,(0)exp -—‘%—Aéisecth(r) ) (6.23)

In the case of a heavy impurity (Am >0), the kink de-
creases its velocity near the impurity; however, it cannot
be reflected by it because of X (7)~X _(0) (see the phase
plane shown in Fig. 5). The discreteness allows the kink
to be reflected by the impurity. To analyze the kink dy-
namics in this case and calculate the threshold velocity,
let us consider the function

y=X2(r)=y(X) . (6.24)
Substituting Eq. (6.24) into Eq. (6.22) yields
y'= di;; =2¢,sinkX +e,p :;:}g ) (6.25)
where we have introduced the notations
2
€= sinh‘::;/y) = ,uza;p , 62=,uA7m, K:2‘u—77 . (6.26)
Equation (6.25) may be simply integrated to yield
€
y(X)=exp |— m
C—|—261fde’sin(Kx’)exp _ET R
0 2 cosh“x
(6.27)

C being an arbitrary constant. The dependence y(X) is
depicted in Fig. 6 for €,>0. The curve at C =0 corre-
sponds to the separatrix which divides two different types
of the kink motion, namely, transmission (C >0) and
reflection (C <0). To calculate the threshold velocity, we
put C =0 and consider the asymptotic of Eq. (6.27) at

X— o,

Sinkx
cosh?x

X~ X)+ee, [ 7d (6.28)
y(X)=— COSK. €16, J ~dx .
The last term in Eq. (6.28) describes the shift of the phase
curves due to the impurity. Using Eqgs. (6.24) and (6.26),
we obtain the threshold velocity for the kink reflection by

FIG. 6. The function y=X? at different values of the param-
eter C for €,>0. The curve at C =0 (shown by dashed curve) is
the separatrix corresponding to the threshold condition.
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a heavy mass impurity
172
I

— CwP

Vonr

dX

dr

Am
m

2T

Vee= »  (6.29)

<
u

cr

Where
I x)— dv Slll(xv COSh y .
( f() )/

When the kink velocity V at infinity is fixed but the im-
purity mass is a parameter, the kink will be reflected pro-
vided

2

2mm , (6.30)

__2mm |V
wpI*(2m /1)

M>M_ =m+ ;

so that the critical mass is inversely proportional to the
amplitude of the PN potential and directly proportional
to the squared kink velocity.

When the dissipation and dc driving are present, the
mean kink velocity is determined by the energy balance

Vo=cF/2aT=f/mn . (6.31)

Substituting Eq. (6.31) into the threshold condition (6.29),
we obtain the threshold value of the driving force allow-
ing the kink transmission through the mass impurity

lf1>fa=maV, , (6.32)

V.. being defined in Eq. (6.29).

It is interesting to note that the kink reflection by a
mass impurity has been observed in numerical simula-
tions performed for the discrete ¢* system.®* As was
demonstrated in that paper, the critical mass M. for the
kink reflection is much more than the mass of the lattice
atoms and it depends on the kink velocity. According to
our result (6.30), the effect is quite evident and it is deter-
mined by the discreteness effects in the nonlinear chain.

Finally, it is to be noted that the case of kink scattering
by an impurity with changed dissipative losses, when
m;=m+tAnd;, in the motion equation (2.3), was con-
sidered in Ref. 38.

C. Radiative effects

Above we have used the so-called adiabatic approxima-
tion when radiative losses are neglected. However, dur-
ing the scattering, the kink generates phonons, and this
radiation may change the kink dynamics. The radiative
effects are of three types.

The first type of radiation arises in the case when the
kink propagates in a periodic external potential. The
emission is caused by the discreteness effects and it is
clearly absent when the PN potential vanishes. This
emission was studied numerically and analytically in
Refs. 47, 49, and 64. In particular, in the case of extreme
discreteness (g S 1), the emission rate of the moving kink
exhibits well-defined changes at some critical velocities.%*
The trapped kink oscillated in the nonlinear PN potential
well emits large and sudden bursts of radiation when the
frequency of oscillation reaches certain critical values
corresponding to resonances with the linear spectrum.*

The second type of radiative effects is related to the

kink scattering by an impurity. During the scattering the
kink interacts with the impurity and generates phonons.
As a result, its velocity is changed. This emission may be
calculated in the lowest approximation as the kink emis-
sion in the continuum SG model with local inhomo-
geneities. A number of such problems was considered in
the review paper.!” The main result of such a scattering
is the exponentially small emission of phonons in the lim-
it ¥V <<c, V being the kink velocity (see details in Ref. 19).

At last, the third type of radiative effects is the excita-
tion of an impurity mode by a scattering kink. The prob-
lem may be considered as radiative because it is stipulat-
ed by the kink energy lost due to excitation of the impuri-
ty mode oscillations. This effect was studied numerically
for the ¢* model.®> Unlike the above two effects, the
latter cannot be investigated in the framework of the
lowest approximations of the perturbation theory.

VII. KINK DIFFUSION
IN A CHAIN WITH IMPURITIES

For many applications of the FK model, for example,
for surface physics, mass transport along the chain is a
very important problem. As distinct from two- or three-
dimensional systems, in the one-dimensional atomic
chain impurities cannot be by-passed, and therefore im-
purities may drastically change the transport properties
of the system.

In the FK model, the chemical diffusion along the
chain is determined by the motion of kinks (see, e.g.,
Refs. 42, 65, and 66). For the temperature of the system
T, which is lower then the amplitude of the PN potential
E,, the kink’s motion has an activated character, so that,
for the homogeneous FK chain, the kink diffusion
coefficient is equal to%®

D,=Ra?, (7.1)
where a is the lattice constant, and the escape rate R is
determined by the Kramers theory®’ as

Dp
R~=2exp(—E, /kT) . (7.2)
2 p

Note that here we have taken into account the energy ex-
change between the chain and the substrate, and suppose
that the friction coefficient 77 has an intermediate value
(see details in Refs. 42 and 60).

In the presence of impurities, the external potential for
kink motion is changed. According to Eq. (6.15), the
minima of the effective potential are equal to (we suppose
Am =0 for simplicity)

U;=Ugluj+p/2), (7.3)

and the maxima are determined by the expression

U.

i (7.4)

:Ep + Ueff(.u'j) .

Thus, the escape rate from the jth well to the (j +1)th
one takes the form

 ;
Rj+1,jzﬁexp("Ej+1’j/kT) , (7.5)
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where the frequency w; is determined by Eq. (6.21), and

the activation energy for the jump j—j +1 is equal to

Ei1,;=Ui11;— 0

~E,—1u* |28 4 B¢ —H———s‘“hi ) (7.6)
g € | cosh’(uj)

Let us suppose that the average distance between im-
purities is Na. Then the kink diffusion coefficient may be
presented as

D=DK , (7.7)

where the value of K is determined by the escape rates
(7.5) (see Ref. 68). The expression for K takes a simple
form if all these minima of the external potential are
equivalent, Uj =0, so that

Rjt1,;=R;;j+1=R; ,
or if all maxima of the effective potential have the same
value U; ,, ;=E,, so that

=R

Rji1,;=R;—1;=R; .

According to Ref. 69, in these cases

K=(R)/R , (7.8)
where
1 1Y 1
= (7.9)
(R) N<R;

As follows from estimations*>% for adsystems, it is usual-
ly valid g ~ 1, so that the kink width / ~qa, and only one
well or barrier, say j =0, is changed significantly. In this
case,

NR,

sz . (7.10)

If Ry=R or N >>1, then
K=1—(R —R,)/NR, .

For R, >>R, we may obtain the result K ~N /(N —1)R 1
and for NRy;<<R, K=NR,/R <<1. Therefore, the
above estimations demonstrate that impurities may in-
crease (if Ry >>R) or decrease (if NR, <R) the diffusion
coefficient of the kink. Thus, the influence of impurities
on transport properties of the kink-bearing systems is
very important.

VIII. CONCLUDING REMARKS

We have considered the nonlinear dynamics of the FK
chain with local impurities. In the linear limit, the most

OLEG M. BRAUN AND YURI S. KIVSHAR 43

important dynamical effect in such an inhomogeneous
chain is the appearance of impurity modes that contrib-
ute to the physical characteristics of the inhomogeneous
system. The impurity modes have frequencies lying out-
side the spectrum zone, and they are, in fact, eigenstates
of the system in the harmonic approximation. Non-
linearity leads to transformations of the impurity modes.
The nonlinear impurity modes may be, in principle, con-
structed for various parameters of the chain, but they are
stable only at the conditions when there are impurity
modes in the harmonic system. Therefore, the conclusion
of Refs. 50 and 51 that nonlinearity may strongly change
the condition for creation of impurity modes is not valid.
Note that the low-frequency modes may be considered as
SG breathers pinned by inhomogeneities. The impurity
modes have a long lifetime and, in principle, they may be
observed in spectroscopic experiments.

The most important excitation of the FK chain is a
kink, because kinks transfer a mass along the chain. For
example, transport properties of stepped or furrowed
crystal surfaces are mostly defined by the kink diffusion
along special directions in adlayers. According to our re-
sults, the interaction of kinks with impurities may change
the kink diffusion coefficient. It is interesting that the
change (decreasing or increasing) depends on the total
character of the kink-impurity interaction (repulsion or
attraction). Note also that inhomogeneities may change
the nucleation rate to create kink-antikink pairs from the
vacuum (ground) state of the nonlinear chain. In such a
case, the effect of repulsive impurities should be more
efficient. These problems are now under consideration.

We have considered the FK chain, taking account of
its applications to the system of one-dimensional atomic
chains adsorbed on stepped or furrowed crystal surfaces.
As was mentioned in the Introduction, the same model
may be employed (in its discrete or continuum versions)
to a number of various models of the condensed matter
physics for which the FK model is applied. The results
obtained for the dynamics of the inhomogeneous FK
model may also be useful for those systems.
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