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The kinetics and dynamics of frictional stick-slip motion of a slider of size
extending from mesoscopic upward is analyzed within the framework of a
multi-contact, earthquake-like model. The microscopic contacts are char-
acterized by a distribution of static thresholds for individual breaking. The
condition for an overall elastic instability leading to stick-slip sliding are
derived and details of the slip motion are studied theoretically. The crucial
model parameters emerging from this analysis include the delay time for
each micro-contact to reform after breaking, the strength of elastic
interaction between the contacts, the elasticity of contacts and of the slider,
and the distribution of static thresholds for their breaking. The dynamics is
also studied with the help of a scaling procedure. As a prototype
application, we adopt parameters appropriate to describe recent surface
force apparatus (SFA) boundary lubrication experiments. Despite sugges-
tions of extremely large lubricant viscosities, the experimental data are
shown to be fully compatible with ordinary, bulk-like viscosity values once
the multi-contact aspects are taken into account.

Keywords: boundary lubrication; nanotribology; viscosity; stick-slip

1. Introduction

Friction, one of the oldest, physically rich, and practically most relevant problems, is
in several important aspects still not fully understood. We concentrate here on
friction in conditions of boundary lubrication, when the sliding occurs without wear
or plastic deformation of the sliding surfaces, with a molecularly thin lubricant
film in between. It is well established that liquids confined to films thinner than five
to eight monolayers become layered and solid-like, so that the shearing of the film is
associated with a nonzero yield stress [1,2]. Perhaps because of that, a widespread
opinion is that the viscosity of the thin confined lubricant film is many orders of
magnitude higher than the bulk viscosity. Also, the experimentally observed critical
velocities of the transition from stick-slip to smooth sliding are over 106 times smaller
than that observed in molecular dynamics (MD) simulations. Although this last
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point had been resolved with the help of earthquake-type models [2,3], the question
whether there is indeed evidence of an abnormally large viscosity of the confined
lubricant fluid still remains unclear. In a recent paper, Klein [4] presented remarkable
surface force balance (SFB) studies of stick-slip friction across molecularly thin film
of octamethylcyclotetrasiloxane (OMCTS). This data is especially important since
SFB is quantitatively accurate, with a well-defined contact region between
molecularly smooth solid mica surfaces. Klein showed that a straightforward fitting
of the time dependence of the slider coordinate X(t) during slip in the form
M €XþM ~� _X ¼ Kðvdt� X Þ, whereM is the slider mass, K is the setup rigidity and vd is
the driving velocity, yields a value for the boundary fluid lubricant viscosity ~� about
104 times higher than that expected from the bulk viscosity of fluid OMCTS. Claims
of a factor 106 or even larger between boundary lubricant and bulk lubricant
viscosities had been made earlier on similar grounds [5,6], but had not been
physically substantiated. Recently Bureau [7] declared a lower factor 102 for the same
system, still too high to be reasonably explained. To be sure, the case of a monolayer
or bilayer confined between two planar surfaces is extreme and the fluid film
properties are understandably far from their bulk counterparts [2,8]; but already a
three-layer film, once melted during slips, should exhibit properties not very different
from the bulk ones, as is found in essentially all MD simulations [1,2]. A crucial
point here is that many simplified schematizations treating large systems of
mesoscopic and macroscopic size as though they were microscopic and homogeneous
are unjustified and may lead to misleading conclusions.

The aim of this work is to formulate and numerically simulate a scheme capable
of addressing boundary lubricated sliding from the mesoscale upward. On
sufficiently large length-scales the thin lubricant film, if not the sliding surfaces
themselves, can hardly be expected to remain homogeneous and uniform. Typically,
the initially solid lubricant film will consist of domains with different orientation or
structure, characterized by different yield stresses; it is therefore unreasonable to
assume that a mesoscopic or macroscopic lubricant film should melt and begin
sliding uniformly as a whole. Rather, different domains will generally start sliding
one by one, at different stress values. Systems of this type have been first described
with an earthquake-like model [9]. The scope of the present work is to show that,
once the proper parameters are identified and chosen, this approach describes very
well the lubricated sliding features of the surface force apparatus/surface force
balance (SFA/SFB) boundary observed experimentally. This modeling suggests
further simple experiments which could test our proposition. A preliminary version
of this work has been published as a short letter [10].

Our work is based on the time-honored earthquake-like (EQ-like) model,
developed from the original Burridge–Knopoff model [3,9–17]. Persson [13] was the
first to adjust the EQ model to sliding friction and describe qualitatively the stick-slip
and smooth sliding regimes observed in laboratory experiments. Yet, Persson’s
model, being one-dimensional, cannot reproduce quantitatively all experimental
aspects. Extension of the model to two dimensions [3] improved the agreement with
experiments, addressing in particular the critical velocity of the transition from
stick-slip to smooth sliding. Successively however [15,16], it became clear that an
important ingredient not previously appreciated is the distribution of static (yield)
thresholds. For the sake of simplicity in the previous variants of the model,
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all contacts were assumed to be identical, and the distribution of thresholds therefore
entered only implicitly through temperature fluctuations [13] or interaction between
the contacts [3]. However, proper incorporation from the very beginning of a
threshold distribution allows us to identify analytically the steady state solution of
the EQ model and to identify the conditions for the elastic instability which is the
necessary condition for the stick-slip to appear [18].

In this paper, we use the EQ-like model to describe mesoscopic boundary
lubrication with the following goals:

(i) to describe the slip dynamics in detail in the presence of multi-contact
inhomogeneity;

(ii) to consider the effect of elastic interactions between the contacts;
(iii) to consider the real dynamics of sliding contacts with the help of molecular

dynamics, highlighting the difference between that and predictions of the
EQ algorithm;

(iv) to consider the effects of elasticity of the sliders.

The paper is organized as follows. The model is described in Section 2. The model
parameters appropriate to SFA/SFB boundary lubrication experiments are discussed
and determined in a separate Section 3. The kinetics of the model is studied in detail
in Section 4, while its dynamics is considered in Sections 5, 6 and 7. Comparison of
simulation results with the SFB boundary lubrication experiments is presented in
Section 8, and Section 9 summarizes our results and conclusions.

2. Model

Our chosen EQ-like model is shown schematically in Figure 1. Let there be N
‘‘contacts’’ (asperities, domains, regions, etc.) that couple the bottom immobile
substrate (the base) with the top substrate (the slider). All contacts are attached to
the bottom substrate through springs of elastic constants ki, i¼ 1, 2, . . . ,N. The
contacts are arranged in a perturbed 2D lattice (in simulation we first arrange
contacts at the regular sites of a triangular lattice of spacing a, and then randomly
shift them off the lattice by Dxi and Dyi, where Dxi, Dyi are small Gaussian random
displacements with zero mean and standard deviation Dx). This procedure gives the
unstressed positions of contacts ri;0¼ (xi;0, yi;0). When the system evolves, the contact

Figure 1. The earthquake-like model.
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positions change from ri;0 to ri¼ (xi, yi), where xi¼ xi;0þ lxi, yi¼ yi;0þ lyi, and lxi and
lyi are the stretchings (relative to the bottom substrate) of the ith contact along x and
y directions respectively. The spring force which acts on the ith pinned contact from
the bottom substrate is f

ðsubÞ
xi ¼ �kilxi. We consider in addition a pairwise elastic

interaction between contacts, described by the potential V(r)¼ g/r3, where g is a
constant [19,20]. Therefore, the force acting on the ith contact from its nearest
neighbors (NNs) is equal to f

ðintÞ
xi ¼ �

PNN
j ð j6¼iÞ @Vðxj � xiÞ=@xi ¼ 3g

PNN
j ð j6¼iÞ ðxi � xjÞ=r

5
ij;

in simulation we assume approximately that inside this formula
rij� rij;0¼ [(xi;0�xj;0)

2
þ (yi;0� yj;0)

2]1/2. The total force acting on the pinned contact
from its NNs and from the top substrate (the slider) is fxi ¼ f

ðsubÞ
xi þ f

ðintÞ
xi ( fyi is

defined in the same way).
We let the contacts couple ‘‘frictionally’’ with the slider in the following sense. As

long as the total force magnitude on the contact fi ¼ ð f
2
xi þ f 2yiÞ

1=2 is below a threshold
value fsi, the contact moves together with the slider. When the force exceeds the
threshold, the contact detaches from the slider and slides relative to the top substrate
for some time �i after which the contact sliding stops as it attaches again to the slider.
During its sliding the contact experiences a drag force from the slider
f
ðdragÞ
xi ¼ mi�i vsx � dlxiðtÞ=dt½ � (and similarly defined f

ðdragÞ
yi ), where vsx(t) and vsy(t)

are the two components of the slider velocity, mi is the effective mass of the contact
and �i is a corresponding damping coefficient. After the time �i, the contact attaches
again to the slider, and its stretching is determined from the condition that the total
force fi on the contact is equal to the backward threshold force fb [2].

The four parameters fsi, mi, ki, and �i characterize each contact. We assume the
thresholds fsi to take random values from a Gaussian distribution of mean value fs
and standard deviation Dfs,

PGð fsi; fs,DfsÞ ¼
1

Dfs
ffiffiffiffiffiffi
2�
p exp �

1

2

fsi � fs
Dfs

� �2
" #

: ð1Þ

In simulation, the distribution of thresholds Pc( f ) is defined on the interval 05f5fm,
where fm� fs so that we use the corrected distribution Pc( f )¼N
{PG( f )�PG(0)� ( f/fm) [PG ( fm)�PG (0)]}, where N is the normalization constant,
so that Pc( f ) satisfies the condition Pc(0)¼Pc( fm)¼ 0 [17]. In principle, both fsi and
mi should be proportional to the contact area Ai ¼ �a

2
i (ai is the contact radius). The

contact’s stiffness is given by ki� �c
2ai (see [13] and Appendix A in Ref. [17]), where

� is the mass density and c is the transverse sound velocity of the material which
forms the contacts. Reasonably, we take mi¼m fsi/fs and ki¼ k( fsi/fs)

1/2, where m
and k are the mean mass and stiffness of the contacts. When a contact is ‘‘reborn’’ we
assign new values to its parameters. The viscosity parameter �i is assumed to be the
same for all contacts, for example the bulk viscosity coefficient of the lubricant as
discussed below in Section 3.

The macroscopic slider, modeled as a solid body of mass M, experiences a force
FB from all contacts as described above (i.e. ~FB is the sum

PN
i
~fi of the forces from

the pinned contacts, plus the sum of drag forces from the sliding contacts). In
addition, it is externally driven through a spring of elastic constant K pulled with
velocity vd. Because the slider is solid, any abrupt events, e.g. the onset or stopping
of sliding, will excite vibrations with the setup frequency �S¼ (K/M)1/2;
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if undamped, these vibrations would disturb the results. In a real system, such
oscillations are damped due to internal friction within the slider setup. To
incorporate that effect, we introduce a viscous damping coefficient �S relative to
its average velocity, so that the slider motion is described by the equation

M €XþM�S _X� h _XðtÞi
� �

¼ FBðtÞ þ KðXd � X Þ, ð2Þ

where Xd¼ vdt and

h _XðtÞi ¼ �S

Z t

�1

dt0 _Xðt0Þ e��Sðt�t
0Þ , ð3Þ

and similar equations for the Y coordinate of the slider.
Our simulation is conducted with two separate algorithms: the EQ (earthquake)

algorithm, typical for cellular automata models, and the MD (molecular dynamics)
algorithm, where the atomistic dynamics of contacts is simulated. The EQ algorithm,
which ignores the microscopic dynamics of contacts, assumes that a contact remains
in the detached state for a ‘‘delay’’ time �i¼ �d, where �d is a parameter of the model.

In the MD algorithm, we assume that the detached contact moves until the
absolute value of its velocity (relative to the slider) reduces below the value
vb¼ fb/mi�i and, at the same time, the total force acting on the contact is lower
than fb. In more detail, the contact is re-attached back to the slider as soon as
f 2i ðtÞ þ j

~f ðdragÞi ðtÞj2 � f 2b . To estimate the contact sliding time, which we denote as �c,
let us consider its motion. When the contact detaches, it moves according to the
equation €lþ � _lþ ðk=mÞl ¼ �v. Its solution is l ðtÞ ¼ Dlþ lR cose!t� lI sine!tð Þe��t,
where Dl¼m�v/k, lR¼ l(0)�Dl, lI ¼ ��lR=e!, �¼ �/2, and e! ¼ ðk=m� �2=4Þ1=2
(we assume that the contact’s motion is not overdamped, so that e!4 0). This
gives �c � �

�1 ln l ð0Þe!=vmin½ �, where vmin� 1–10m s�1 is the minimal velocity for
smooth motion of a contact over a substrate [2,21]. This estimate leads to �c� 10�11 s
(since �� 1011 s�1, and the logarithmic factor does not change the order of
magnitude), a value which is negligibly small relative to characteristic times of the
system. The total delay time �i however should include, in addition to the real sliding
time �c, the time �f needed for formation (re-solidification) of the contact, so that
�i¼ �cþ �f. The time �f is generally macroscopic and is a parameter of our model as
further discussed below.

3. Parameters

The model parameters are chosen in the following way, mainly bearing in mind the
SFA/SFB (surface force apparatus/balance) for boundary lubrication experiment [4].
The number of contacts could be taken anywhere between N� 102 and 105 [1,2]; this
parameter is not crucial provided N� 1. The mass of the slider M and its rigidity K
are defined by the experimental setup to be discussed further below. The damping �S
is also determined by the setup and can be measured experimentally; typically it
should be of the order �S� 0.1�S. The driving velocity vd is defined by experimental
conditions and is of the order of mms�1 typically. The mean distance between the
contacts may be found as a¼ (A/N )1/2, where A is the ‘‘visible’’ contact area;
reasonable values are a� 1–103 mm [1,2].
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The delicate point here is to assign microscopic parameter values fsi, mi, ki, and �i
of the individual contacts. The threshold force fs can in principle be found with the
help of large-scale MD simulation, if the area of the contact Ai (or its linear size
ai¼ (Ai/�)

1/2) is known; the latter may be measured experimentally by optical
methods (Ai�A/N for SFB experiments with mica surfaces, and Ai�A/N for a
contact of rough surfaces). Also fs may be estimated from the yield stress
Pyield� fs/Ai (typically Pyield� 105–108Nm�2). However, the simplest solution is to
take this value from the experiment as fs¼Fs/N, where Fs is the measured maximal
spring force (Fs¼�sFl, where �s & 1 and Fl is the load). The ‘‘backward’’ force fb is,
as follows from MD simulations [2], of the order of fb� (0.01–0.1)fs (again, this
parameter is not crucial). A value of the contact stiffness k can be estimated as
k� �c2ai [10,13,17]. We expect the total stiffness of the sliding interface to be higher
than the setup stiffness, Nk�K.

The mass of the contact can be estimated as m � �a3i for the contact of rough
surfaces, or as m¼Aih� for the lubricating film, where � is the mass density of the
material which forms the contacts (i.e. of the substrate or of the lubricant
correspondingly) and h is the film thickness. The coefficient � defines the damping of
the contact motion relative to the slider and takes values of the order of
�� 1011–1012 s�1 (for phononic damping �� (0.01–0.1)!0, where !0 is a character-
istic frequency of the substrate, e.g. the Debye frequency). For the lubricating film,
the value of � can be linked with the bulk viscosity ~�bulk by the relation
� ¼ ~�bulk= h2�

� �
as follows from the equation for the drag force, m�v ¼ ~�bulkAiv=h.

Both the mass m and the damping � play a role in MD evolution of contacts, while in
the EQ algorithm they determine the drag force only.

The elastic interaction between the contacts becomes important when g/a3� fsa;
therefore, it is interesting to check how the system behavior changes with the
dimensionless parameter �¼ g/( fsa

4) (�� 1 corresponds to a very strong interaction).
Summing up, all parameters can be very reasonably estimated for a given
experimental system.

For our exemplification, we concentrate now specifically on the recent very
detailed SFB boundary lubrication experiment due to Klein [4]. The top and bottom
surfaces are in contact over an area A across a thin OMCTS film of thickness
h¼ 3.5	 0.3 nm (four molecular layers), under a load Fl¼ 42 mN. The slider total
mass M� 1.47 g is subject to a lateral force via a spring of constant K¼ 97Nm�1

pulled with velocity vd¼X0/�0� 10�2 mm s�1 (X0� 80 nm, �0� 8 s). Slip begins as the
yield stress KX0/A is reached. The top surface slips past the bottom surface for a time
�s� 0.025 s by an amount DX0� 60 nm, when the slider sticks; and so on. The time
per stick-slip cycle is �ss� 1 s. In the experiment [4], the slip curve X(t) is fit by a
homogeneous equation M €Xþ B _X ¼ KðXd � X Þ, where B ¼ A ~�=h, assuming that the
shear-melted film behaves as a Newtonian liquid with zero-fluid-velocity boundary
conditions, and effective viscosity ~� independent of the shear rate. The fit yields
~� ¼ 27	 4 Pa s, exceeding by a factor of 104 the bulk viscosity of OMCTS
( ~�bulk ¼ 2:5
 10�3 Pa s). At the instant of stick, when the film is assumed to solidify,
the slider undergoes ‘‘ringing’’ vibrations (decaying oscillations) with a frequency
	c� 45Hz (notice that �S¼ (K/M )1/2¼ 257 s�1, or 	S¼�S/2�¼ 41Hz). The static
friction threshold is Fs¼ 18 mN [4,22,23], and for the area one may take values given
by Klein and Kumacheva [22,23], A� 10�10m2.
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To summarize, our simulations explored the following parameters (see Table 1):
M¼ 1.47 g, K¼ 97Nm�1, h¼ 3.5
 10�9m, A¼ 10�10 m2, Fs¼ 18 mN, and fs¼Fs/N.
The contact area Ai¼A/N defines the contact mass m¼Aih�OMCTS, and the
lubricant damping coefficient is �¼ 2
 1011 s�1 assuming the ordinary bulk viscosity
~�OMCTS. Then mi¼m fsi/fs, ki¼ k( fsi/fs)

1/2 (see Appendix A in Ref. [17]), and we
assume that �i¼ �. The damping inside the slider can be found from the
experimentally observed decay of ringing oscillations, yielding �S¼ 0.2�S. Finally,
the driving velocity value in simulation vd¼ 0.1 mm s�1 is as usual taken larger than
in experiment so as to yield a viable simulation time, without any essential
differences or problems.

For other model parameters, not directly extractable from experiment, we used
N¼ 4080 for the number of contacts, fb¼ 0.1 fs for the backward force, Dfs¼ 0.01 fs
for the threshold dispersion, and �d¼ 5
 10�4 s for the delay time. As for the
elasticity of the contacts, an estimation from k� �c2ai yields kN � 102

ffiffiffiffi
N
p

Nm�1.
In simulations, we used kN¼ 2000Nm�1 so that the condition Nk�K is satisfied
(note that excessive k values would yield Runge–Kutta steps too small to be
handled). For these few relatively arbitrary parameters, we took care to check
systematically the stability of physical results against reasonable variations.

4. Simulated kinetics

A typical example of stick-slip motion and frictional force resulting by simulation of
our EQ model with the chosen parameters is presented in Figure 2. As one can see by
comparing with Figures 1 and 2 in Ref. [4], the theoretical stick-slip is quite similar to
the experimental data, including the large initial stick spike and subsequent spikes of
smaller amplitude. In the following, we address the underlying physics of this overall
result for the spring force F(t)¼K[vdt�X(t)], with its detailed aspects and their
dependence upon model parameters.

Table 1. Simulation parameters.

Parameter Value Comment

M 1.47
 10�3 kg Ref. [4]
K 97Nm�1 Ref. [4]
h 3.5
 10�9m Ref. [4]
A 10�10m2 Ref. [22,23]
Fs 18 mN Ref. [4,22,23]
�S 257 s�1 Ref. [4]
�S 51.4 s�1 0.2 �S

N 4080
fs 4.41
 10�9N Fs/N
m 8.2
 10�20 kg (A/N ) h�OMCTS

k 0.49Nm�1 Nk�K
� 2
 1011 s�1 bulk value
�d 5
 10�4 s
vd 0.1 mms�1
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4.1. Elastic instability

Stick-slip generally appears as the result of an elastic instability of the pinned state

[1,18]. Firstly let us consider the case of a rigid slider, K¼1. This case was studied in
[16,17], where the evolution law of the system reduced to a master equation, allowing
an analytical investigation. When the slider begins to move adiabatically, _X4 0, it
experiences a friction force F1(X )50 from the interface. At the beginning jF1(X )j
grows linearly with X, jF1(X )j �NkX, until it reaches a value �Fs�DFs. Here many
contacts have broken and are not yet reformed, and the growth gives way to a drop
during a displacement x*�Dfs/k down to Fb¼N fb. At this point a majority of
contacts (though no longer all of them) have been reborn, and sliding hardens again.

The same picture remains qualitatively correct if the slider is not rigid but stiff
enough, K4K*, where

K� ¼ maxF 01ðX Þ, F 01ðX Þ �
dF1ðX Þ

dX
,

provided the driving velocity is not too high so that the motion is adiabatic
(a condition easily satisfied in experiment). The time dependent spring force F(t) is,
according to Newton’s third law, to be compensated by the force from the interface,
F(t)þF1[X(t)]¼ 0. If the slider is soft enough, K5K*, the slider motion becomes

unstable at the point Xc, where Xc is the (lowest) solution of the equation
F 01ðX Þ ¼ K. Let this occur at the instant tc. After the unstable point, t4tc, the
equation of motion for DX¼X�Xc and Dt¼ t� tc is

MD €XþM�S D _X� hD _Xi
� �

¼ F1ðXc þ DXÞ � F1ðXcÞ þ Kvd Dt� KDX , ð4Þ

which has to be solved with the initial condition DX¼ 0 and D _X ¼ vd at Dt¼ 0.

Figure 2. Calculated slider spring force in the stick-slip regime. Parameters as given in the
text, and �¼ 0. The inset shows the detail of a slip, with the sudden force drop and mechanical
ringing oscillations.
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In our model, the function F1(X ) near the point Xc can be approxi-
mated as F1ðX Þ � F1ðXcÞ þ F 01ðXcÞDXþ 1

2F
00
1ðXcÞDX2 þ 1

6F
000
1ðXcÞDX3, so

that F1ðXc þ DXÞ � F1ðXcÞ � KDX ¼ 1
2F
00
1ðXcÞDX2 þ 1

6F
000
1ðXcÞDX3. Introducing

the dimensionless variables x¼K(X�Xc)/Fs and �¼�S(t� tc), we obtain for the
slider coordinate

d2xð�Þ

d�2
þ
�S
�S

dxð�Þ

d�
�

�
dxð�Þ

d�

�� �
¼ D1� þD2x

2 þD3x
3, ð5Þ

where D1 ¼ vd
ffiffiffiffiffiffiffiffiffi
KM
p

=Fs, D2 ¼
1
2 ½F

00
1ðXcÞ=Fs� Fs=Kð Þ

2, and D3 ¼
1
6 ½F

000
1ðXcÞ=Fs� Fs=Kð Þ

3.
Solution of Equation (5) should be sought with the initial condition x(0)¼ 0 and
dx(�)/d�j�¼0¼D1. At short times, �� 1, the solution has the form
xð�Þ � D1� þ

1
6D1�

3. Thus, as X(t) grows at t4tc, the spring force decreases during
a slip time – determined by the setup inertia – �s � 
��1S in the form

FðtÞ � FðXcÞ � ðK
2vd=6MÞðt� tcÞ

3,

where 
¼ (6 Fs�S/K vd)
1/3 (
� 2.21 for the chosen set of parameters). Numerical

solution of Equation (5) is shown in Figure 3 (right-hand curves).
If, by contrast, the lubricant film were hypothetically to melt instantly and as a

whole at t¼ tc, then for t4tc we would have F1ðXc þ DXÞ ¼ �M�D _X, and the
motion would be described by

d2xð�Þ

d�2
þ
�

�S

dxð�Þ

d�
þ
�S
�S

dxð�Þ

d�
�

�
dxð�Þ

d�

�� �
¼ D1� þD0 � x, ð6Þ

Figure 3. Drop of the spring force DF(�)/Fs¼D1�� x(�) versus dimensionless time
�¼�S(t� tc) for the slider motion after the unstable point (X4Xc) according to numerical
solution of Equation (5) (right-hand, black curves, sequential breaking of contacts) or
Equation (6) (left-hand, blue curves (color online), instant melting of the lubricant) for
Dfs/fs¼ 0.01 (solid curves; D0¼ 0.94, D1¼ 2.1
 10�3, D2¼ 2.2
 105, D3¼ 1.91; �¼ �S¼ 0)
and for Dfs/fs¼ 0.1 (dashed curves; D0¼ 0.794, D2¼ 3.61
 103, D3¼ 4.03
 10�2).
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where D0¼F1(Xc)/Fs. In this case, the solution for �� 1 is x(�)�D1 �þB�2, so that
the spring force drop at slip is given by

DFð�Þ=Fs � �B�
2

with B ¼ 1
2 D0 � �D1=�Sð Þ. This gives a slip time �s � ���1S with

�¼ [2/(D0� �D1/�S)]
1/2. Numerical solution of Equation (6) is shown in Figure 3

(left-hand curves). An estimation gives �� [2/(1� b)]1/2 with b¼ �mvd/fs� 3.7
 10�7

for the chosen set of parameters. The main outcome is that by assuming instant
overall lubricant melting the resulting slip time is shorter than in the multi-contact
case. Of course one may make �s as large as desired by using artificial values for the
lubricant viscosity � orders of magnitude larger than the bulk value; but except for a
monatomic film, there are, as was said, no physical grounds for that assumption.

4.2. Slip details

Details of the slip such as the slider velocity, the force exerted by the contacts, and
the number of broken contacts are shown in Figure 4. During the slip time �s, the
slider velocity grows up to a value vm��S Fs/K. As the slider accelerates, contacts
break, and the force FB(t) acting on the slider from the contacts drops and rises with
increasing frequency between zero and a maximum value, the latter less and less able
to compensate the spring force F(t) (dashed in Figure 4). This continues until after a
typical reforming time similar to �d (here of order 5 msec) enough contacts are
reborn so that the acceleration reverses. From this point the peak values of FB(t)
after each breaking grow as FB(t)¼Ct with a rate C¼Nkvt eventually becoming

Figure 4. Details of the first large slip shown in Figure 2: (a) the slider velocity; (b) the spring
force F (dashed curve: red online) and the force from contacts FB (solid curve); and (c) the
number of detached contacts Nd as functions of time.
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large enough to cross the slowly decreasing spring force F(t) (in Figure 4 that
crossing is reached around t¼ 1.924 s). Here the spring and the block reaction forces
compensate, and the sliding undergoes arrest. In fact the slider even retracts slightly,
as it first settles by breaking a few contacts backwards, and then oscillates about its
newly reached stuck state. Therefore, during an individual slip the substrate reaction
force FB oscillates with a rough period �B�Fs/Nkvm�K/Nk�S between successive
contact breakings. This contact-breaking feature should form a strong observable
component of time-dependent frictional noise, always present provided that �B5�s,
or K5Nk. By contrast, no such multi-contact noise is expected for uniform lubricant
melting; future experiments might in principle distinguish the two mechanisms just
based on that.

4.3. Ringing

Following the slip, the slider sticks, and the spring force shows ringing. For
�d 5��1S , ringing occurs with a high frequency �L¼ (Nk/M)1/2¼ 1.17
 103 s�1

(so that �L� 2�/�L¼ 5.39
 10�3 s). During the slip, many contacts reform so that
the spring force drops to values that are positive and much higher than Fb [10].

The ringing frequency slows down when �d 4��1S . In this case, the spring force
drops to negative values and then oscillates around zero with the frequency �S

during the time �d. The contacts reform well after the slip has occurred, leading to a
stable stick-slip steady state.

The ringing vibration amplitude decays as e��St because of the internal damping
introduced in Equations (2) and (3). When that is neglected, the dependence F versus
vdt takes a ‘‘universal’’ form (compare Figures 2 and 5). Thus, if the velocity is so
small that �ss � ��1S and the ringing oscillations are completely damped during the
time �ss before the next slip, then the details of ringing do not influence
the stick-slip. If on the contrary the driving velocity is so high that �ss �5�

�1
S , then

the oscillations disturb the system dynamics and may even eventually lead to smooth
sliding.

4.4. Dependence upon model parameters

The steady state behavior of the slider, either stick-slip or smooth sliding, is
controlled by two model parameters – the contact reforming time �d and the
dispersion Dfs of micro-contact breaking thresholds. Indeed, one may suppose that
the elastic instability will always result in stick-slip motion. However, the condition
K5K* is only necessary but not sufficient for stick-slip; the second condition is to
have a nonzero delay time, �d40. This was demonstrated in our previous work [10]:
if �d¼ 0, despite some initial stick-slips, the system eventually approaches smooth
sliding. We note that in Persson’s original simulation [13] of the EQ model, where
stick-slip was demonstrated, the delay time �d corresponded to the contact sliding
time necessary for its velocity to fall to zero. The same is demonstrated below in
Section 6, where we present results of MD simulation for the system. However, the
sliding time is only one (relatively small) contribution to �d.
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Then, the existence of the elastic instability itself is controlled by the dispersion

Dfs of micro-contact breaking thresholds. In fact

K� ¼ maxF 01ðX Þ � Nk fs=Dfs: ð7Þ

Thus, if Dfs is small enough to cause K*4K, then we have stick-slip; otherwise there

is smooth sliding. In the stick-slip regime, an increase of Dfs leads to the decrease of

the stick-slip period �ss (see [10]). The slip time �s characterizing the drop of spring

force F(t) during slips also increases with Dfs, although only slightly, because the

distribution of threshold displacements xsi¼ fsi/ki rather than the distribution of the

threshold forces fsi plays the main role in system kinetics. The distribution of xsi is

narrower than the distribution of fsi, because fsi and ki tend to change synchronically

due to the relationship ki / f1=2si . The ratio Dfs/fs should typically decrease with the

time of stationary contact due to aging of contacts during stick. This agrees with

earlier arguments that aging is responsible for the much lower velocity of the

transition from stick-slip to smooth sliding observed in experiment when compared

to MD simulations [1,2,16,17,21].
The precise values of other parameters of the model are inessential. For example,

Figures 6 and 7 demonstrate the change of system behavior for different values of the

parameters fb and k, respectively. Moreover, the slip time remains approximately

unchanged even if we increase the model parameter � (which corresponds to the film

‘‘viscosity’’ in the uniform melting interpretation of boundary layer stick-slip) by a

factor 105 as demonstrated in Figure 8.

Figure 5. Frictional spring force calculated with the same parameters as in Figure 2 but with a
higher driving velocity vd¼ 1mm s�1.
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5. Interaction between contacts

Special attention must be devoted to study the role of interactions between the

contacts, introduced in Section 2. Roughly speaking, the interaction influences

the system kinetics in the same way as a narrowing the dispersion Dfs: the stronger

the interaction, the wider the range of model parameters where stick-slip operates.

Figure 7. The same as in Figure 2 but for softer contacts with kN¼ 200Nm�1.

Figure 6. The same as in Figure 2 but for a lower backward force fb¼ 0.01 fs.
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To demonstrate this result, we calculated with the help of the EQ algorithm the

system kinetics with increasing interaction (�¼ 0–0.3) using softer contacts

(kN¼ 200N/m) and larger dispersion Dfs/fs¼ 0.3. The results are presented in

Figure 9. For this choice of parameter, the system quickly goes to smooth sliding in

the case of zero interaction (Figure 9a), but develops stick-slip for strong interaction

�¼ 0.3 (Figure 9d). Details of the slip are shown in Figure 10: without interaction,

the detaching of contacts is sequential (Figure 10a), while for a strong interaction, all

contacts tend to detach simultaneously, and the force FB drops much more abruptly

to zero (Figure 10d). The interaction may lead to the appearance of an avalanche of

contact breaking as was described in [3]. Whereas for �¼ 0 the contacts break

sequentially, one after the other, for �40 one contact breaking may trigger the

breaking of the nearest contacts, and generate an avalanche whose average size

increases with � as shown in Figure 11. For large enough strength of interaction, here

�¼ 0.3, the avalanche may cover the whole system (Figure 11d).

Figure 8. Dependences F(t) for different lubricant viscosity � (other parameters as in
Figure 2).
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Analytical expressions for the avalanche size have been given in [3]. If we write
the force due to interaction between the contacts 1 and 2 as fint¼ keff(x1�x2), then
keff ¼ 3 �fs=a ¼ 3 �Fs=

ffiffiffiffiffiffiffiffi
AN
p

. The interaction becomes important if k� 	keff, where
	� 4 is the number of nearest neighbors. Defining �* by the equation k¼ 	keff, we
expect that the interaction is irrelevant if �� �*, while in the opposite case the
interaction is so strong that all contacts move together. For the chosen set of model

Figure 9. Dependence of the frictional spring force F(t) for different strengths of the contact–
contact interaction � from no interaction (a) to a strong interaction (d). kN¼ 200Nm�1,
Dfs/fs¼ 0.3.

Figure 10. Frictional spring force F(t) (dashed: red online) and block interface force FB (t)
(black solid curve) during slip for (a) noninteracting and (d) strongly interacting contacts.
Parameters as in Figure 9.
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parameters and kN¼ 200Nm�1 we obtain �*� 0.15 in agreement of the numerical
results of Figure 11.

6. MD simulation including contact interactions

The cellular automata EQ algorithm used above completely ignores real dynamics of
the contacts. To remedy that, we apply the molecular dynamics approach. While of
course MD is much more realistic, it has a problem of time-scales. The
individual motions of the contacts are characterized by a frequency
!l¼ (k/m)1/2¼ 7.73
 108 s�1, whose inverse sets the time step size. The bottleneck
is the slow characteristic slip time, equal to the inverse inertial slider frequency
�S¼ (K/M )1/2¼ 2.57
 102 s�1. This is many orders of magnitude longer, hard to
manage in a brute force MD simulation. The problem may be circumvented with the
help of a trick. If we reduce artificially the slider mass, say M! ~M ¼ s3M with a
scaling factor s� 1, this will increase the characteristic slider frequency,
~�S ¼ ðK= ~M Þ1=2 ¼ s�3=2�S. If at the same time we rescale other dynamical variables
in the form Fs ! ~Fs ¼ s2Fs, t! ~t ¼ s3=2t, X! ~X ¼ s2X, and v! ~v ¼ s1=2v, then the
dependence F (t) remains almost unchanged, so long as the rescaling leaves the
motion of individual contacts still much faster than that of the whole slider.
The virtual independence of the frictional force upon s is demonstrated in Figure 12.

Comparison of the simulation results obtained with the EQ algorithm with
those of the MD simulation presented in Figures 13 and 14 demonstrates two

Figure 11. Time dependence of the number of broken contacts Nd(t) during slip for different
interaction strengths. Parameters as in Figure 9.
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important features. Firstly, in the EQ algorithm the contact sliding time �c is zero,
while �c40 for real MD dynamics. According to Figure 13, the number of detached
contacts is nonzero for a time interval of the order of ~�c � 0:1, or, in unrescaled
units, during a time of �c ¼ s3=2 ~�c � 10�4 s, which is much longer than that predicted
by the crude estimate given above in Section 2. Thus, in a real system the delay time

Figure 13. Slip dynamics of the EQ and MD algorithms with the scaling factor s¼ 10�2. The
number of detached contacts versus time for EQ (black solid) and MD (short-dotted: red
online). Inset: the spring force (solid) and the force from contacts (short-dotted) for EQ (right-
hand, black curves) and MD (left-hand, red curves: color online). Dfs/fs¼ 0.3, kN¼ 200Nm�1,
�d¼ 0; other parameters as in Figure 2.

Figure 12. Spring force versus time for the EQ algorithm for two values of the scaling factor
s¼ 1 (a) and s¼ 10�2 (b). Dfs/fs¼ 0.3, kN¼ 200Nm�1, �d¼ 0.005 s; other parameters as in
Figure 2.
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�i¼ �cþ �f is always nonzero, even if the contact reforming time �f is zero. Therefore,
a real system should always exhibit stick-slip behavior provided K5K*, although the
amplitude of stick-slip may be very small and masked by ringing.

Secondly, the EQ and MD simulated avalanche dynamics for the system of
interacting contacts (�40) are also different: an avalanche propagates instantly with
the EQ algorithm, while in the MD case, it does that at a finite rate as demonstrated
in Figure 14. In this respect, the MD result is more accurate, whereas the
instantaneous propagation in EQ appears to be a mean-field artifact. An investi-
gation of the concerted motion of contacts, e.g. calculation of the size, shape and
evolution of the avalanche of broken contacts, deserves a separate study which lies
outside the scope of the present work.

7. Nonrigid sliders

In our schematic model of the SFA/SFB setup shown in Figure 1, the sliding massM
is concentrated at the end of the driving spring, i.e. the slider plus spring form a
pendulum. In a more realistic situation, however, we must forgo rigidity of the slider;
both its mass and elasticity are distributed through the slider as shown in Figure 15.
One may think that in this case, only the lowermost slider atomic layer starts to move
at the onset of slip. Therefore, a characteristic frequency will be defined by
the mass Ml of the layer and its rigidity Kl, which will lead to a much higher

Figure 14. Dynamics of the model calculated with the EQ (a)–(c) and MD (d)–(f) algorithms
for the interacting contacts with �¼ 0.04/s2. The top panels (a), (d) show several stick-slip
cycles, while the middle and bottom panels show details of one slip, the spring (F(t), dashed:
red online) and interface (FB (t), solid curve) forces (b), (d) and the number of detached
contacts (c), (f) as functions of time. The parameters are as in Figure 13.
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(atomic scale) frequency. A similar question – which mass, either the total massM or
the layer mass Ml, defines the time-scale of the system – already appeared in the
problem of minimal velocity for atomic-scale smooth sliding. As was proven
elsewhere [21], if the slider velocity decreases, first the lowermost layer stops; then a
so-called stopping wave emerges and removes the kinetic energy of the rest of the
slider. As a result, the time-scale of the problem is determined by the layer mass Ml,
and the minimal velocity is of atomic-scale order ofm s�1. Now, however, the
situation is just the opposite – the time-scale of the onset of sliding is determined by
the total slider mass M and its rigidity K.

To show this, let us consider a model similar to that used in [21]. Let the slider
consist of Nl layers, each of mass Ml¼M/Nl, elastically coupled by springs of elastic
constant Kl¼K Nl (see the inset in Figure 16). In the stationary state, when the

Figure 16. Slip kinetics for the nonrigid slider consisting of Nl¼ 16 (dashed: red online) or
Nl¼ 64 (black solid curve) layers (top-right inset shows the whole stick-slip cycle). Bottom-left
inset shows the layered model of the slider: the first layer is in contact with the bottom
substrate, while the last layer is moved with the velocity vd.

Figure 15. The earthquake-like model with a nonrigid slider.
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bottom layer is fixed and a force F is applied to the top layer, the latter will shift on
the displacement DX ¼

PNl

l¼1 DXl, where DXl¼F/Kl, so that DX¼F/K as before in
the rigid-slider model. Now let the top layer be driven with the velocity vd, while the
bottom layer be in contact with the bottom substrate as before. The dependence of
the elastic force within the slider on time, obtained with simulation for two different
values of Nl, is presented in Figure 16 (note that now we may discard the artificial
damping �S in the equations of motion, because internal degrees of freedom are
included). As seen, the slip kinetics is almost independent of the number of layers Nl

and is determined by the minimal slider mechanical frequency �S.
The frequency �S can be found with the help of elasticity theory [24]. Let the

slider have a cylindrical shape of height L and radius r, and be characterized by the
section S¼�r2, geometrical inertial momentum I ¼ 1

4�r
4, mass density � and

Young’s modulus E. If the cylinder foot is fixed and a force F is applied to its top, the
latter will be shifted by a distance DX¼FL3/3EI (the problem of a bending pivot, see
[24], Section 20, example 3). Thus, the effective elastic constant of the slider is
K¼ 3EI/L3. The minimal frequency of bending vibration of the pivot with one fixed
end and one free end is given by �S¼ (3.52/L2) (EI/�S )1/2 (see [24], Section 25,
example 6). Taking M¼ �SL, we obtain �S� 2.03 (K/M)1/2.

The frequency of ringing vibrations after the slip is either �S (if F(t) oscillates
around zero in the case of �d 4��1s ) or �L, i.e. much higher in the case of �d 5��1s .
However, the question is more involved: in the model we assumed that the bottom
substrate (the base) is rigid and fixed. In a real setup, only the bottom of the base is
fixed, while the base has its own mass MB and elasticity KB. When the sliding stops
and the two substrates are pinned together, the whole system of mass
M�¼MBþMþNm should oscillate with a frequency� (KB/M�)

1/2.
Unfortunately, we do not know the experimental value for the parameter KB.

The elastic energy stored in the interface and the substrates during stick is
dissipated during slip as well as during subsequent ringing oscillations. The latter can
easily be estimated if the amplitude and frequency of these vibrations are known. The
other part of the stored energy is dissipated during slip when F(t) drops. Every
contact’s sliding-stopping event excites phonons in the substrates, and the energy is
dissipated continuously at every breaking-reforming of individual contacts before it
finally goes to substrate heating.

8. Discussion and comparison with experimental SFB boundary friction

We can now compare our results with the boundary lubrication data provided by
Ref. [4], where SFB measurements between mica surfaces with a four-layer OMCTS
lubricant film were carried out as described in Section 3. The interpretation originally
provided to account quantitatively for the slow observed slip time was that the
lubricant melted as a whole at slip, and that the viscosity of the confined fluid could
be as high as 104 times that of bulk OMCTS.

The mechanism of slip onset (either sequential breaking of the contacts or the
instant melting of the lubricant film) determines the details of the slip kinetics which
in principle may be resolved with precise SFA/SFB experiments. Firstly, the initial
decrease of the spring force at the onset of slip should follow the law DF(t) / (t� tc)

3
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for the EQ model, while instantaneous melting will exhibit the dependence DF(t) /
(t� tc)

2 (see Figure 3). Moreover, in the instantaneously-melting case the sliding
starts (i.e. the slider velocity begins to increase) when F 0(tc) 0, while for the EQ
mechanism, F0(tc)50. Secondly, during slips the substrate reaction force FB should
oscillate with the period �B�K/Nk�S as described above in Section 4.2. This
contact-breaking feature may form an observable component of time-dependent
frictional noise, always present provided K5Nk, while no such multi-contact noise is
expected for uniform lubricant melting.

The order of magnitude of the slip time �s during which F(t) drops is in both cases
determined by the inverse mechanical frequency ��1S ¼ ðK=MÞ

�1=2 of the setup. In
our multi-contact model, this time remains approximately unchanged even if we
increase the model parameter � (which corresponds to the film ‘‘viscosity’’ in the
uniform melting interpretation of boundary layer stick-slip) by a factor of 105 as
shown in Figure 8. This point might easily be checked experimentally by changing,
for example, the loading force, because the force damping associated with the
lubricant viscosity in the uniform melting interpretation is directly proportional to
the contact area, which in turn is roughly proportional to the load. The large
viscosity of the thin confined lubricant film inferred in the uniform melting model is
therefore strongly questioned by our model, where the same data are explained by
realistic inhomogeneous multi-contact sliding. In our model, the drop of the spring
force F(t) is gradual not because viscosity is high, but as a consequence of the slowing
down and consequent breaking (melting) of different contacts (domains).

9. Conclusions

In summary, given the problem of mesoscopic boundary lubrication, we have

(i) described the slip dynamics in detail in the presence of multi-contact
inhomogeneity;

(ii) considered the effect of elastic interactions between the contacts;
(iii) considered the real dynamics of sliding contacts with the help of molecular

dynamics, highlighting the difference between that and predictions of the
EQ algorithm;

(iv) considered the effects of elasticity of the sliders.

Our main conclusion is that a realistic model of dry friction or boundary lubrication
of mesoscopic or macroscopic size sliders must first of all incorporate the
distribution of static thresholds. The stick-slip motion takes place if and only if
two conditions are satisfied: first, the slider is soft, K5K*, where K* is defined by the
interface properties, Equation (7), and second, the delay time for contact reforming
is nonzero, �i �d40. If at least one of these conditions is violated, the steady-state
motion reduces to smooth sliding, and stick-slip is lost. However, the MD
simulation, where atomistic motion of contacts is directly incorporated, shows that
the latter condition, �i40, should be satisfied ‘‘automatically’’.

Our second result concerns the investigation of the role of elastic interaction
between the contacts. We showed that this interaction leads to ‘‘effective narrowing’’
of the distribution of static thresholds. Therefore, even if the dispersion of thresholds
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is rather large, e.g. Dfs/fs� 1 as in the case of contact of rough surfaces [17], the
stick-slip motion may nevertheless be realized due to concerted sliding of the
contacts.

Thirdly, we discussed the problem of the effective viscosity of a thin lubricant
film. The tribological setup may be treated as a damped pendulum which is
characterized by two characteristic times – the period ��1, and the damping time
(the inverse of its damping coefficient, ��1). Whichever of these times is the shortest
determines the system kinetics [25]. Experiments demonstrate a slowing down of slips
for a narrow lubricant film, often interpreted as a strong increase of its viscosity. We
showed that the slip slowing may be explained with the EQ model, if the film is
inhomogeneous and consists of domains with different static thresholds. Moreover,
this conclusion remains valid for a nonrigid slider as well.

In the previous work [3] devoted to the EQ model, the following conclusions were
stated: in order to describe the stick-slip to smooth sliding transition in agreement
with experiments, the system must (i) be two-dimensional, (ii) include interaction
between the contacts, (iii) include some chaotic features (either in positions of
contacts or/and in the initial configuration), and (iv) incorporate aging. In the
present work, we prove that in fact items (i) and (ii) are not crucial; instead, the
model must incorporate the distribution of thresholds Pc( fs) (items (i)–(iii) just act to
produce this distribution). As for aging of contacts, it is still important in order to
describe the dependence of friction kinetics on the driving velocity vd; this question
deserves further detailed study.

Among other important questions which were not studied yet within our model,
we should mention: (i) the role of temperature, (ii) incorporation of the elastic
deformation of the slider, (iii) investigation of the sliding interface in order to
calculate (or to extract from experiments) the distribution Pc( fs), and (iv) the study
of the distribution of delay times as well as the mechanism of contact aging
(for example, if the lubricant is locally melted because of sliding, �f corresponds to
the time for nucleation and growth of solid grains in the liquid lubricant). These
questions are deferred to future studies.
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