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Abstract

We consider the ground states of a generalized Frenkel-Kontorova model with a transversal degree of freedom. The substrate
potential is taken to be sinusoidal in the longitudinal direction and parabolic in the transversal one. We assume that the atoms
in the chain repel each other with a Coulomb law and that the interaction has a long-range scale. The trivial ground state in this
system undergoes a phase transition to a dimerized (zigzag) ground state when the repulsion exceeds some critical value. We
show that for much larger values of the interaction parameters there exists the next (zigzag-2) dimerized ground state which
cannot be obtained from the previous one in a bifurcational way.

The well-known Frenkel-Kontorova (FK) model
describes a one-dimensional chain of atoms interact-
ing with harmonic forces in a periodic substrate po-
tential [1,2]. Introduced first to describe disloca-
tions in solids it has been later successfully used to
study other similar systems [3-5]. The application
of the model to real physical objects has required its
modification such as introduction of an anharmonic
[6,7] (including nonconvex [10]) potential of the
atom interaction or a substrate potential of more re-
alistic forms [6,9]. However, the main restriction of
the model still was its one-dimensionality. In their pi-
oneering papers [10,11] Srolovitz and Lomdahl have
introduced the isotropic 2-D generalization of the
simple FK model. This model has been treated nu-
merically and it has been shown that its behaviour is
much richer.

Braun and Kivshar [12] have proposed another
(anisotropic) 2D generalization of the FK model in

which the chain of atoms is still one-dimensional but
the atoms can move in the transversal direction. In
this version the substrate potential has a much larger
scale in the transversal direction than in the longitu-
dinal one and is taken to be parabolic. A similar sit-
uation takes place in the adsorption of atoms on ““fur-
rowed” or stepped surfaces [4,6,13]. The atoms form
weakly interacting chains along these surfaces and the
model can be applied to describe their diffusion
properties. The main advantage of this version of the
FK model is that being closed to a 1D model, it al-
lows analytical treatment. In the simplest case of
nearest and nearest-nearest atom interaction it has
been shown [12,14] that in the case of repulsion be-
tween atoms in the chain at some values of the inter-
action parameters the trivial 1D ground state (GS)
becomes unstable and the GS becomes dimerized.
The chain is now two-dimensional and has a zigzag-
like structure with opposite displacements of atoms
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in the transversal direction. The zigzag dimerized
structures allow the existence of the usual “massive”
kinks (a vacancy or an access atom in the chain) on
its background as well as that of the “nonmassive”
kink which is a pure 2D object and is called “non-
massive” because it cannot transfer mass in the sys-
tem [14].

Therefore, the generalized FK model has essen-
tially new properties: the atoms can escape from the
potential minima via the transversal degree of free-
dom, which makes the model much more unstable.
Strictly speaking, in order to have a rigorous model
we have to take into account the interaction between
all the atoms in the chain not restricting to nearest
atoms only. The purpose of this Letter is to consider
the dimerized ground states of the FK model with a
transversal degree of freedom with a long-range atom
interaction.

We consider an atomic chain with an anharmonic
atom interaction subject to a 2D substrate potential
periodic in one direction and parabolic in the trans-
versal direction. The Hamiltonian of the system has
the form

N
H= Y [§x}+iyE+(1—cosx)
k=1

+iw¥yi+ U], (1)
where
N+
Ue=4 .;. [V(reasd) +V(ree-i1 (2)

describes the potential energy of interaction of an
atom with the site k with N* nearest atoms, V is the
potential energy of the pairwise atom interaction, @
is the frequency of a single atom transversal vibra-
tion (we assume w> 1), and

rej= [ (X =)+ (Y= ;)12 3)

determines the distance between the atoms.

We consider the commensurate “fixed density”
model, i.e. we place the atomic chain with N atoms
in the substrate potential with M minima assuming
the value 6=N/M rational and periodic boundary
conditions

Xien=X+20M, Yiun=yi, (4)
with N large enough and the number of neighbours

with which every atoms interacts equal to N*=2N.
(Generally speaking N* is chosen such that its fur-
ther increase does not affect the results.) The num-
ber of atoms N must be chosen to avoid the appear-
ance of “nonmassive” kinks, i.e. such that it may be
divided by 4. We also assume that the atoms in the
chain repel each other according to a Coulomb law,
ie.
V(r)=Vo/r. (5)
According to the results of Ref. [14] we may as-
sume that for small values of V; at fixed w (or for
large w at fixed V,) the ground state of the system

(1) is trivial, i.e. coincides with that of the 1D FK
model:

xk=2nk’ yk=0, = (6)

and then with the further increase of ¥, (decrease of
) it is dimerized,

Xe=2mk, ye=(-1)*b, (7

where the value of b in the case of long-range atom
interaction is determined by the equation

N2V (r(B)) _

2 Z \k\T))
iw+k§l re(b) =0, )
and
r(b)=2[b*+n2(2k-1)%]"2, 9)

To investigate the stability properties of these ground
states we use two methods. First, we investigate nu-
merically the linear sfability of the chain with N par-
ticles with given ground state calculating the eigen-
values of the corresponding elastic matrix. The
resulting diagram of linear stability is shown in Fig.
1. It is clear that for large values of V, the zigzag
structure (7) also becomes unstable.

In order to study the ground state of the system in
the region where the configuration (7) is linearly un-
stable we use the global integration of the Newton
equations of motion of the system (1). To avoid
metastable configurations, during the first 100 steps
in the associated equations of motion we introduce a
small random force with normal distribution and after
that allow the atoms to relax with the additional fric-
tion force F{ = —nx,. The obtained structure is just
the stable static configuration which corresponds to
the case x;=0. In the region where the structure (7)
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Fig. 1. The diagram of the linear stability of the system. In the
region TGS the trivial ground state (6) is linearly stable and ZG1
indicates the region for linear stability of the zigzag ground state
(7).
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Fig. 2. The zigzag ground state (7) of the system for ¥,=500.0,
w=2.0 obtained by direct numerical simulations of the Newton
equations of motion. The dashed vertical lines indicate the posi-
tions of the substrate potential minima.

is linearly stable the results of the two methods coin-
cide. The obtained zigzag structure is shown in Fig.
2.

Similar numerical simulations (with ground state
(7) as initial configuration) are applied in the region
of parameters where zigzag state (7) is linearly un-
stable. The obtained structure may be called zigzag-2
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since the absolute displacements of atoms in the
transversal direction have two values b, and b,. This
structure cannot be considered as the ground state of
the system since the resulting configuration is the fol-
lowing: two atoms with opposite displacements in the
transversal direction have the same x-coordinate, i.e.
occupy the same minimum of the substrate potential,
and the next minimum is empty, etc. This gives us
the idea how to obtain the next dimerized GS: to place
the chain of 2M atoms in the M minima, where M is
even. The resulting structure (ZG2) has the follow-
ing form,

xe=2n[k/2],
yk"_'(_l)[k/ZIbl, kOdd9
=(=1)21p,  keven. (10)

The values b, and b, are determined by the system of
equations

fw?b, + (by +b,)S, (b, +b;) + (b, —b,) S, (by — by)
+b,52(2b,)=0, (11)

Y?b, + (b +b-2)S,(b, +b,)
+(b2—b1)S1(b—b1)

+b2S2(2b2)=0, (12)
where
N*/2 7 1)
Si6)="3 %(,‘J”)” (13)
N*/2 7 2
S(0)="% %ﬁ (14)
PD(b) = [ (2n(2k—1))2+b7] 2,
r}‘z’(b)z[(41t(k—l))2+b2]'/2. (15)

The direct numerical simulations with the values (10)
as initial configuration and the method described
above shows that this GS is really stable (see Fig. 3).

The dimerized GS (10) cannot be obtained from
GS (7) in a simple bifurcational way since it has a
different coverage 6=N/M. The kinks existing with
it as a background must have more complicated
structure. For instance, in Fig. 4 we placed
N=2M-2=24 particles in M=13 minima of the
substrate potential which can be called a simple an-
tikink. The structure looks very much as if we had
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four subchains with a simple 1D kink in every one.

3000
Other structures have not such simple forms. Unfor-
20 00 tunately, the introduction of the transversal degree of
freedom leads to the mixing of atoms in the chain and
10 00 as a result the appearance of instabilities, which is
clearer for the strong atom interaction in the system,
000 i.e. in the region of dimerized structure (10).
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