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We consider the nonlinear Klein—-Gordon chain including anharmonic interatomic interactions. We use a direct perturbation
method and a variational approach to obtain the approximate kink solutions of the model in the continuum limit taking the ¢*
and sine-Gordon chains as particular examples. The kink critical velocity due to the cubic anharmonicity is found analytically.
Some physically important parameters of the kink, such as its effective mass and energy, are calculated based on the approximate
solution and the results are checked by numerical simulations. It is demonstrated that the variational approach yields very accu-

rate results for the kink parameters.

1. Introduction

It is well known that a number of physical systems
may be described by the extended nonlinear Klein-
Gordon model: a chain of interacting atoms placed
in a nonlinear external potential. As examples, we
would like to mention dislocations in solids [1,2],
layers absorbed on crystal surfaces [3,4], hydrogen-
bonded systems [5,6]. When only nearest-neighbor-
ing interactions with the energy W(u,,,—u,) are
taken into account, u, being the displacement of the
nth atom from an equilibrium position, the Hamil-
tonian of the model in the continuum approxima-
tion reduces to the form (the lattice constant is equal
to unity, and dimensionless units are used)

H='j dx [huZ+ W)+ V)], (1)

-—Q0

{
where V(u) is the external potential, and the sub-
scripts ¢ and x stand for the derivatives in time and
space coordinates respectively. The equation of mo-
tion derived from the Hamiltonian is

Uy =W (U + V' (u)=0. (2)

If the external potential V' (u) has at least two equiv-
alent minima, say at u=u, and u=u, (u,<u,), so
that V(u,)=V(u,)=0, then eq. (2) supports top-
ological solitons, the so-called kinks, with the asymp-
totics u(—oo)=u,, u(+oo0)=u,. Analogously, an
antikink is defined as a solution with the asymptot-
ics u(—oo)=u,, u(+oo0)=u,.

Two important and well-known examples of the
model (1), (2) are the ¢* and sine-Gordon (sG)
models, whose potentials V' (#) have the form
V(u)=5(1-u?)* (¢*model),

=1—cosu (sG model) . (3)

Generally, the interaction potential W(u,) may be
approximated by the following expansion,

W(u,)=4ui+eP(u,), (4)

where € is a small constant parameter, and P(u,) ac-
counts for anharmonic interatomic interactions. Note
that in the special case of e=0 eqs. (2)-(4) reduce
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to the standard ¢* and sG models, which admit kink
solutions in the following form,

Uye=ttanh[(x—uvt)/y], (5)
ug=4tan"'exp[* (x—vt)/y], (6)
(7)

g perturbation is included (€#0), it is usu-
ally impossible to obtain an exact analytical solution
of eq. (2), and one needs to use qualitative analysis,
perturbation theory or numerical simulations (see
refs. [7-12]). The purpose of this paper is to dem-
onstrate that a variational approach may be used to
obtain an approximate kink solution of eqs. (2), (4),
and to calculate some important kink parameters
such as the effective mass of the kink and its energy.
The critical velocity of the kink in the perturbed sys-
tem is also determined by the variational method,
and the result is consistent with an exact formula.
Comparing the results obtained by the variational
method, direct perturbation approach and numeri-
cal simulations, we find that the variational ap-
proach gives very accurate results.

2. Perturbation method

Let us assume that eq. (2) has a travelling wave
solution,
u=u(z)=u(x-uvt), (8)

then, substituting eq.(8) into (2), we obtain the fol-
lowing second-order ordinary differential equation,

—7%u..—€eP" (u)u..+ V' (u)=0. (9)

Multiplying eq. (9) by u. and integrating over ( —co,
z) we obtain the first integral of eq. (9),

-4y’ ul—eQ+V(u)=0, (10)
where

0= [ dzP wuau =P (w)-P), (1)

- Q0

here for the kink (antikink) solutions the integra-
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tion constant is zero, because u—u, (#;) and u.—-0
when z tends to * oco.

We will look for the kink solution of eq. (9) in the
form

u(z)=up(z)+ey(z), (12)

where uy(z) is the kink of the unperturbed system
(e=0). Substituting eq. (12) into eq. (10), per-
forming the expansion V(upg+ey)=~V(uy)+
€V’ (up)w, and using the relationship between u,(z)
and V(uy(z)), we come to the following first-order
equation,

Yugd(ywlug)'=-0Q. (13)

From eq. (13) we can obtain

Uo [
v(z)=- yzjdzu(}' (14)
The result (14) describes a correction to the kink
shape due to the anharmonic interatomic interac-
tions. It may be used to calculate some parameters
of the kink. For example, for the cubic and quartic
anharmonicity,

€P(u) =gous +73pus, (15)

we may obtain the perturbation-induced effective
mass of the kink in the form

my, = I dzu?|,_, = j dzud —e I dzQ

- 21.—%01012——%13, (16)
where

u2
l,,=J'du[V(u)]"/2, n=1,2,3. (17)

ul

Here we have used the relation ug=0a./2V(u,),
o=t 1. Therefore in the case of the ¢* and sG
models, we have

m=3/2-&ao—-%/28 (¢*model),

=8—3nac— P (sG model) . (18)
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3. Variational approeach

In order to apply the variational method, it is im-
portant to notice that the solution of eq. (9) is ac-
tually the stationary point of the following functional,

Ew= [ dzlhpui+e@)+v), (19
because the variation of E(u) is

SE(u)= j dz [—y*u..—€eP" (u)u..+V' (u)]8u

(20)

and 8E =0 obviously leads to eq. (9).

The above observation will be the starting point of
our variational method. Suppose that the main effect
of the perturbation eP(u,) is to modify the kink
shape, so that we will look for an approximate so-
lution of eq. (9) in the form of the following ansatz
(cf. ref. [13]),

u=otanh(lz/\/§) (¢* model) ,
=4 tan ' exp(olz) (sé model) , (21)

where the parameter /' (/> 0) is the kink width and
o=t 1 stands for the kink (6=+1) and the anti-
kink (6= —1). Substituting eq. (21) into eq. (19)
we obtain a function E(/). The parameter / can be
determined by looking for the minimum point of the
function E (/). For the cubic and quartic anharmon-
icities (15), the corresponding function E(/) is

E() =424+ E0al*+45/2 BIP+4/2/1
(¢* model),
=4y+3onal>+}p1P+4/1
(sG model) . (22)

The stationary point of E(/) must satisfy the equa-
tion dE/d/=0, which yields

P2 +¥/200l+&BIP—1/1P=0 (¢* model),
(23a)

(sG model).
(23b)

Note that if a= =0, eq. (23) will recover the exact

2+ ioanl+3p12—1/1>°=0

(WG(K,; /)«u&ﬁﬂ%\}‘u ) 0(< O .
(JLO)Q Co'mfﬂgghw (vmf «d l&.u&) ,’G: —{ leke .

bocal
(I? o< ol Obﬂ ol
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relationship between y and /, that is /=1/7.

If & and B are small, it can be proved that both
algebraic equations (23a) and (23b) have a solution
which are the local minimum points of the function
E(]). The solutions are positive near /=1/7. In prin-
ciple, eqs. (23) may be solved by the Newton
method. However, if the parameters « and f§ are suf-
ficiently small, we can use the first-order approxi-
mation to obtain

I=(1-&/20a/7*~%B/7*)/y  (¢* model) ,

=(1—toan/y*=38/7*) /7 (sG model) .
(24)

This, variational approach allows us to demonstrate
some important effects due to anharmonic interac-
tions. First, let us consider the ¢* and sG chains with
only cubic perturbation, then eqs. (23) reduce to

P2 +{5/20al’~1=0 (¢*model),

P2+ noal’~1=0 (sG model) . (25)

If ao<0, it can be easily proved that the necessary
conditions for egs. (25) to have positive solutions
are

Ly/a?>1  (¢* model), (26)

3y$/n2a?>1 (sG model) . (27)

Combining these two inequalities with eq. (7), we
obtain the kink critical velocities in these two
systems,

v2=1-(#a?)"321-1.00a?> (¢*model),
(28)

vi=1-(3n2a?)'3x1-1.95a?* (sG model).
(29)

The phenomenon of the kink critical velocity due to
anharmonic interatomic interactions was also dis-
cussed in refs. [1-12]). Here we may compare the
results of the variational approach with the exact
ones. Note that the first integral of eq. (9) is

ul+loud+iput=v(u). (30)

In case of a<0 and B=0, the left hand side of eq.
(30) as a function of u. has a local maximum
1y%/a? at u.= —y*/a. In order that the kink solu-
tions exist, the maximum value of the right hand side
of eq. (30) must exceed that of the potential V(u)

P
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(between the two equivalent ground states), which
is § for the ¢*, and 2 for the sG model (see ref. [12]).
Therefore, we obtain the exact results for the critical
velocities of the kink in these two systems:

vi=1-(1.5a?)"3=1-1.14a?*? (¢*model),
(31)

(sG model).
(32)

Comparing egs. (28), (29) with egs. (31), (32), we
conclude that the variational method gives good es-
timations for the kink critical velocities.

Now let us use the approximate solutions (21) to
calculate some physically important characteristics
of the kinks. Substituting eq. (21) into the Hamil-
tonian (1) and using the interaction energy (4) and
(15), we obtain the kink energy,

E.=(/2D 1+ (1+0?) 1+ &aol?+./28
(9* model),
=(4/D)[1+13(1+0v?) ]+ inaol® + 2817
(sG model). (33)

vi=1—(12a2)"3x1-2.29a?%>

Analogously, the kink mass may be calculated as
follows,

my = jdzu§|,=,=§\/§1 (¢* model) ,

=8/ (sG model) , (34)

where the parameter / is determined by egs. (23). It
is important to note that in the first-order approxi-
mation (24), the kink mass is the same as obtained
by the perturbation approach (cf. eqs. (18), (24)
and (34)). From these formulas we can see that, if
the cubic anharmonicity parameter « is negative,
then the kink profile is steeper than the antikink pro-
file, in other words, the kink is narrower than the an-
tikink. Meanwhile, the kink will have larger effective
mass than the antikink, thus the kink-antikink sym-
metry is broken due to the anharmonicity. The dif-
ference in the masses may be calculated directly from
eqs. (16) or (34), e.g., the first-order approxima-
tion result is

mc—mg 2210

mo 3 l| ’

(35)
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where I, and I, are defined by eq. (17), and my is
the mass of the kink (k) and antikink (k) in the un-
perturbed system. .

The asymmetry may lead to important nontrivial
physical phenomena in the study of mass transport
along layers absorbed on crystal surfaces [10] and
hydrogen-bonded chains [14]. For the latter sys-
tems, the asymmetry means that the mobilities of the
positively and negatively charged defects (either ionic
or bonding) are different.

As we have pointed out, for a given value of a <0,
there exists a critical velocity for the kink. It means
that there is a maximal energy for the kink in the sys-
tem, which can be calculated by using egs. (33), (28)
and (29). On the other hand, it is easy to understand
that there also exists a critical value for a, beyond
which the kink will not exist. From (28) and (29)
we can see that the critical values for a are (v.=0)

a=—%

=-2/n/3 (sGmodel) . (36)

(¢* model) ,

Substituting o into eqs. (25), we find that the crit-
ical value for / is \/3 in both the ¢* and sG system.
Therefore from eq. (34) we may calculate the crit-
ical masses of the kink,

(my)c=1/6~1.633
=8,/3~13.856 (sG model) . (37)

(¢* model) ,

Now let us check the above analytical results by nu-
merical methods. We use a conservative scheme to
discretize eq. (9) (see ref. [15]). The initial con-
ditions are taken to be (#(0), 4,(0) )= (0, «}) from
the ¢* model, and (4(0), u-(0) ) = (n, u3) for the sG
model, where u} and u5 are determined by eq. (30).
Due to symmetry we may carry out the calculations
in the interval (0, L) where L is taken to be 10. (The
interval (—10, 10) is large enough to contain a kink
which is localized.) First, we integrate eq. (9) with-
out perturbations (a=f=0). The numerical method
gives very accurate results. For example, the kink
mass calculated by the numerical method is accurate
up to order 10~° compared to the exact results. So
we believe that the numerical integrator is absolutely
reliable. Then we calculate the kink mass for differ-
ent choices of the parameter a (B being equal to
zero). The results are presented in figs. 1 and 2, from



Volume 157, number 4,5
1.5 M
2]
m *
<
z \,
e 1l B A
Z et
N4
.
T
07 L 1 1
-1.0 0.0 1.0

[0

Fig. 1. Effective mass of the kink in the ¢* model. The solid line
is determined by the variational approach, the dashed line is a
linear approximation (eq. (18)), the stars are the numerical
results.
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Fig. 2. The same as in fig. 1, but for the kink in the sine-Gordon
model.

which we can see that the variational approach gives
very good results. Furthermore, by numerical meth-
ods we find that the critical mass of the kink due to
negative anharmonicity (a<0) is about 1.3and 11.0
in the ¢* and sG models respectively, and these re-
sults agree with eqs. (37) estimated by the varia-
tional approach.

4. Conclusion

We have demonstrated that the variational ap-
proach may be applied to study the kink character-
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istics in the Klein-Gordon model including anhar-
monic interatomic interactions. It allows us to
calculate the critical velocity and mass of the kink
due to the anharmonicity with a good accuracy.
Comparing the analytical results with numerical
simulations for the ¢* and sG models, we conclude
that the variational approach gives much better re-
sults than the direct perturbation method.
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