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Discreteness effects in the kink scattering by a mass impurity
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We demonstrate analytically that the repulsive character of a mass impurity is stipulated by discreteness effects in the sine-
Gordon system. The threshold velocity for the kink reflection by a heavy mass is calculated in the framework of the effective
equation of motion for the kink center in the discrete sine-Gordon chain. The result is determined significantly by the lattice
spacing, and the effect does not occur in a continuum model since then the Peierls—-Nabarro barrier vanishes.

1. Introduction

Recently there has been growing interest in soliton
propagation in disordered systems (see, e.g., ref. [1])
to clarify whether or not nonlinearity modifies qual-
itatively the effects of disorder on transport prop-
erties, and vice versa, whether or not disorder mod-
ifies the remarkable soliton properties of nonlinear
systems. In such a study, the scattering properties of
solitons from one impurity play an important role to
understand the total behaviour of nonlinear waves
in disordered systems (see, e.g., refs. [2-5]).

Most of the previous analytical studies are con-
cerned with the continuum limit. In physical appli-
cations, however, there is a natural minimum dis-
tance scale, a lattice constant, and discreteness effects
can significantly influence the dynamics and ther-
modynamic properties of the system under consid-
eration [6-18]. Moreover, results of computer sim-
ulations demonstrate that the lattice discreteness
causes a number of new effects in nonlinear systems
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[6,10,11,17,18]. The discreteness breaks the contin-
uous symmetry inherent in the nonlinear differential
equations associated with soliton solutions, giving
rise to a discrete symmetry characteristic of the un-
derlying lattice structure. This in turn leads to the
lifting of the spatial degeneracy associated with the
kink center and gives rise to a periodic energy po-
tential (the so-called Peierls-Nabarro (PN) poten-
tial) with characteristic barriers. The presence of the
PN potential provides pinning sites for the kink cen-
ter, and the kink cannot freely slide but its motion
is always accompanied by radiative effects (see, e.g.,
refs. [11,18]). <

To understand a number of features of the discrete
sine-Gordon (sG) model, Ishimori and Munakata
[8] employed first the perturbation theory (see, e.g.,
refs. [19,20]) to treat the effect of discreteness on
a continuum kink solution as a perturbation. This
approach allows us to consider discreteness effects
qualitatively, but it does not agree quite well with
exact results obtained from numerical simulations
(see discussions in refs. [16,18]). A more correct
analysis based on the projection operator technique
[21] gives rise to an essentially exact agreement be-
tween molecular dynamics simulationi and theory,
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because it uses the bare ground state of the discrete
model [16]. However, in many cases quite good re-
sults may be obtained with the help of an effective
equation of motion for the kink center using an ap-
propriate ansatz for the kink effective wave form in
the discrete system (see, e.g., ref. [17]).

For inhomogeneous models, impurities give rise
to effective localized potentials (see, e.g., ref. [20])
which lead to a number of new and important effects
together with discreteness ones. As a result, trans-
port properties of a disordered nonlinear system may
be strongly modified by the discreteness. The pres-
ent paper aims to consider analytically one of the ef-
fects. As is known, a mass impurity in the continuum
nonlinear system cannot reflect a kink, and the kink
cannot be trapped by the mass impurity, too. We
demonstrate using the discrete sG system as an ex-
ample, that the repulsive character of the mass im-
purity is stipulated by the discreteness of the model.
We calculate the threshold velocity of the kink al-
lowing the reflection which is determined signifi-
cantly by the lattice spacing. The kink reflection from
a heavy mass impurity has been observed in nu-
merical simulations for the discrete model [22].

2. Effective equation of motion for the kink center

We consider a discrete sG system which can be de-
rived from the following Lagrangian,

L=y {mnaz-;k(um —u,)?

n

el

where u,, is the displacement at the lattice site n, k
is the elastic constant, 2U, is the amplitude of the
external potential, and a is the lattice spacing. To in-
clude a mass impurity in the model, we put

m,=m+(M-m)d,, (2)

where m is the mass of particles in the lattice, and
M is the mass of the impurity. From the Lagrangian
(1) we can deduce the motion equations governing
the displacement field dynamics,
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m(]+ M—;mano)an—k(un+l +un—l —2“,,)

n . (2n
+U, a sm( 2 u,,)_O . (3)
Introducing the dimensionless variables
1'=£t, '¢,,=2t-u,,, (4a)
a a
and setting
24 o ki 4w
”—Io’ m; O—ma2 0>
cz
1%: > 6m=M—m, (4b)
Wo

eq. (3) becomes
do, _
de? ~

2
_8_m6 (d¢”) . (5)

[¢n+l +¢n—l —2¢n]—”2 Sin¢n

m ™\ dt

In the notations (4), the parameter u has the mean-
ing of the ratio of the lattice spacing a to the kink
width /; and c is the sound velocity. We now assume
that the coupling constant 42 between the lattice and
the periodic potential is small. With this condition,
the distorted kink can reasonably be approximated
by the ansatz (see, e.g., refs. [16-18])

D, (t)=4 tan~"[exp(pg,) ] , (6a)
where
E=n=-Y(1). (6b)

Ansatz (6) is based on the well-known exact solu-
tion to the sG equation in the so-called “non-rela-
tivistic” limit (see, e.g., ref. [20] ). Our aim is to de-
rive an effective equation of motion for the kink
center Y(7). We will use the reduced Lagrangian ap-
proach [17]. The Lagrangian

= [5(0) (e am)

-i(¢n+l_¢n)z-ﬂ2(l—cos¢n)] (7)
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corresponds to the normalized equation (5). As-
suming the existence of the function &,(7) of the
discrete variable n in the form (6), we can rewrite
the Lagrangian in the form

o] () 2] 2 om

2
e G ®

cosh?uY m \dr

where we have used the following results:

4o, ___2¢ dY 1—cosd, -2
dt ~  coshué, dt’ "™ cosh?ué&,’

& —dtap-tS0RUGE) 24
Pns1 =Py =4 tan cosh(ué, +4pu) = coshué,
Using the Poisson sum formula
5 finkyh= jdxf(x)

2nsx
x| 1+2 3 cos{ ZX) |, 9)
sm=1 h

and keeping only the first-order term in eq. (9) (i.e.,
s=1), we can rewrite the effective Lagrangian of the
system in the following reduced form,

dY 4n?
L= 4“[(dr) 4 sinh (72/ ) ws(z”y’]

2u2  dm(dY
cosh?(uY) m ( ) (10)

As aresult, the variational principle associated with
the kink center Y leads to the generalized equation
of motion:

&X 4 sm(ZnX)
dt? ~ sinh(n3/p)
2
1 u sinh X &m
t3 2 cosh’X m (d‘t) (1)
where
X=uY. (12)

The value defined by the first term in the r.h.s. of eq.
(11),
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8r*
u sinh(n?/p)’

has the meaning of the frequency of vibrations in the
PN potential. Note that the projection operator ap-
proach [16] using the bare ground state of the dis-
crete sG lattice yields a similar result with the nu-
merical coefficient 4 instead of n2/3~3.3. Thus the
above approximation is quite good.

(13)

w,’,:

3. Kink scattering by a mass impurity

When the discreteness is absent, the kink collec-
tive coordinate X(7) and the velocity X(t) are con-
nected by the relation (see eq. (11))

X(1)=X(0) exp[—4(8m/m) sech*X(7)]
~X(0)[1-4(8m/m) sech®X(7)] . (14)

In the case of a heavy-mass impurity (dm>0) the
kink decreases its velocity near the impurity. How-
ever, it cannot be reflected by it because of
8(X) ~ X(0). The discreteness allows the kink to be
reflected by the impurity. To analyse the kink dy-
namics and calculate the threshold velocity, let us
consider the function

y=X*(1)=y(X) . (15)
Substituting (15) into eq. (11) yields
. sinh X
=2¢, sm(xX)-l-ezym, (16)
where
4n3 ,uw,, dm 2n
€= Ssinh(x?/p) = =t =
(17)

Eq. (16) may be simply integrated to yield

X
.V(X)=exp( 3 eth)[C"'z‘l -([;in(icx’)

€y ,
X exp(——2 ooshzx,)dx ] , (18)

C being an arbitrary constant. The dependences y(.X)
at different C are depicted in fig. 1. The curve at C=0
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v where .
c>0 _ [ sin zx
oo I(2)= .([_coshzx . (20b)
. ceo Taking account of egs. (6) and (12b), we may de-
fine the threshold velocity of the kink reflection by
the mass impurity as follows,
- _c(dX) _ o
o < Va= ”(dt)“—ﬁ [(dm/m)I(2r/u)]"/>.

Fig. 1. The function y=X? at different values of C. All curves are
symmetric for x<0.

xeo

S
N x

Y

Fig. 2. The phase plane of the dynamical system (15), (16). All
curves are symmetric for x<0. Curve “s” is the separatrix cor-
responding to the threshold condition for the kink reflection.

corresponds to the separatrix “s” (fig. 2) on the phase
plane which divides two different types of the kink
motion, namely, transmission (C> 0) and reflection
(C<0) (see fig. 2). To calculate the threshold ve-
locity, we put C=0 and consider the asymptote of
eq. (18) at X— +oo,

y(X)— 2% (1—=cos kX)

X— +o00

——dx'. (19)

The last term in eq. (19) describes the shift of the
phase curves due to the impurity. The kink reflection
is possible for ;>0 only. Using egs. (15), (17) we
may obtain the threshold value,

: u: ,om
(‘;’—f) =L 03 12n/n) .
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(20a)

(21)

When the kink velocity V at infinity is fixed but the
impurity mass is a parameter, the kink will be re-
flected by the impurity provided

M>M. =m[1+g(2n/u)(v/c)?], (22a)
where
g(z)= Hnh(inz) (22b)

T 2n%zl(z)

As a result, the critical mass depends on the squared
kink velocity and it is inversely proportional to the
PN potential. In the limit a—0 the critical mass tends
to infinity.

Using the result (22), we can make some esti-
mations of the critical mass calculating the integral
(20b). For example, the calculation at z=2r yields
I(2n)~0.17 and, as a result, M,~42m at V'=0.3c.
At z=8 we obtain I(8) ~0.13 which yield at V=0.2¢
the very large critical mass M.~ 280m. This strong
difference of the critical masses depends on the cor-
responding (exponential) dependences of the PN
potential on the lattice spacing (see eq. (13)).

As a matter of fact, our formulas (21) and (22)
are obtained in the framework of the perturbation
theory when 8m/m is not so large. Nevertheless, we
believe that the qualitative aspect of the central re-
sult is correct while a quantitative agreement with
numerical investigations of the same problem may
be not so good. In this connection, it is important to
note that the kink reflection by a mass impurity has
been observed in numerical simulations of the ¢*
model performed in ref. [22]. As was observed in
this paper, the critical mass M, for the kink reflec-
tion is 40-60 m at ¥'=0.29¢ which is of the same or-
der as was obtained above. Unfortunately, a more
detailed comparison is not possible, because the
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mentioned paper was devoted to another problem. for useful discussions, and R. Scharf for help in nu-

merical calculations.

4. Conclusions References

k4

In this study we have used the effective equation
of motion for the kink center in the homogeneous
discrete sG model to calculate the threshold velocity
for the kink reflection by a heavy mass impurity. The
Peierls—Nabarro barrier arising from lattice discrete-
ness plays a dominant role in the reflection. Clearly
the effect does not occur in a continuum model since
then the Peierls—-Nabarro barrier vanishes. Such an
effect has been observed in numerical calculations
[22] for the ¢* model with a mass impurity because
in numerical simulation the discrete version of a
continuous model is always used, as a matter of fact.
Existence of the Peierls-Nabarro potential in non-
linear inhomogeneous systems may lead to a number
of other new and important phenomena and strongly
modify transport properties of nonlinear waves in
disordered systems. In particular, impurities may
strongly modify the kink diffusion coefficient as well
as change the probability to create a kink-antikink
pair in a thermalized sG chain. The problems are now
under consideration and results will be presented
elsewhere (see, e.g., ref. [23]).
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