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Abstract

By means of the crystallographic point group technique we construct elementary excitations (kinks) on complex ground
states of the Frenkel-Kontorova model with a transverse degree of freedom. These complex kinks consist of elementary
subkinks in euch subchain of the system and correspond to the minimally possible topological charge.
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The Frenkel-Kontorova (FK) model with a trans-
verse degree of freedom [1] is a quasi-2D general-
ization of the classical FK model [2]. It describes a
chain of atoms subjected to a two-dimensional poten-
tial which is periodic in one direction and parabolic
in the transverse direction. Consequently. the atoms
in the chain are allowed 10 move in two dimensions
although the chain itself is still one-dimensional. The
model may be considered as the simplest approxi-
mation for an amsotropic vector 2D FK model when
the interactions between nearest-neighboring rows are
negligible. Among physical applications of the model
one can mention the adsorption of atoms on furrowed
or stepped surfaces [3]. the surface reconstruction and
crystal growth [4].
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The introduction of an additional degree of freedom.
even in its simplest version. makes the model quite
rich in behavior. When the repulsion between particles
increases. the trivial ground state (TGS) of the sys-
tem undergoes a series of bifurcations. starting with
the transition to the zigzag ground state (ZGS) [2.5].
The dynamics of the model with a transverse degree
of freedom is certainly very different from the stan-
dard FK model. In particular. the bifurcations generate
cusps in the variation of the effective elastic constant
versus the magnitude of interatomic interaction, which
results in the change of the scenario of the Aubry
transitions for an incommensurate concentration of
atoms |6].

Another aspect of the model is that it has a large
number of metastable states for any value of the
interatomic repulsion. To investigate the metastable
configurations, one should first study elementary
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topological excitations in the model. i.e. Kinks and an-
tikinks. Kinks play an important role in the dynamical

and thermodynamical propertics of the system. They
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are responsible for mass and energy transport along
the chain. and are related to many important charac-
teristics such as. e.g.. the conductivity or the chemical
diffusion coeftficient. Studying (e.g.. numerically) the
transport properties. one should start with the ¢le-

mentary topological excitations. because any other

topologically stable excitations can be constructed of
the elementary ones. The problem of construction of

clementary excitations on a complex GS structure is
more general and may emerge in many physical sys-
tems possessing a4 GS which is infinitely degenerate.

A complicated character of the GS of the FK model
with a transverse degree of frecedom makes the prob-

lem of determination of the number and structure of

kinks non-trivial. It is clear that a “naive™ approach
of just inserting one additional atom into the chain
is not suitable anymore. becuase instead of one kink.
it will produce several kinks in the chain. The same
problem arises in the standard 1D FK model when
a GS is non-trivial. Aubry |7] has carried out a very
extensive work to prove the minimum-energy conlig-
urations and to find the structures of clementary ex-
citations in non-convex FK model. In this considera-
tion. a particular emphasis has been made on the role
and the value of the topological charge. Furthermore.
Tang and Griftiths [8] have constructed localized de-
fects of the FK model using the arca-preserving map
of the phase plane and associating a defect with a set
of heteroclinic points al the intersections of expanding
and contracting manifolds. Our work is totally in the
spirit of these ideas and in many scnse our method is
the same as the symmetry considerations used hefore
by S. Aubry in this previous works.

The present paper is aimed at the classification of

possible elementary excitations in the FK model with
a trunsverse degree of freedom. The Hamiltonian of
the system has the form

H = Zl: xA+ +(l~ms.u)

] R
RENCE UA:| . (1

i=1

describes the potential energy of interaction ot the
kth atom with N7 nearest neighboring atoms, V(1) is
the potential energy of the pairwise atomic interaction
(which is considered to be repulsive). w is the fre-
quency of transverse vibration ol i single atom. and

]
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determines the distance between atoms. We consider
the “fixed density™ FK model. i.c
chain of length L consisting of N particles into a sub-
strate potential which has M minima on the distance
Loand we assume the periodic boundary conditions.
When the frequency o of transverse vibrations of an

ve place the alomic

isolated atom tends to infinity. the zigrag-FK model
reduces 1o the standard one-dimensional FK model
[ 1]. where all atoms are aligned o a line. When the re-
pulsion between atoms in the chain increases. the GS
of the zigzag-FK model undergoes a sequence of bi-
furcations starting with the transition to the ZGS {6].
Further increasing of the repulsion leads to the bifur-
cation to the “rhomboidal™ GS. then 1o the “double
sigzag” GS and so on isee Fig. 1. Note that in order
1o keep the generalized form of the potential (1), in
this figure and in the ones below we have drawn the
forms of the solutions schematically. Readers inter-
ested in concerete parameters values for specitfic poten-
tial forms such as exponential or Coulomb. may find
them in [5.6.9.10]).

Our aim is 1o give a simple unique recipe 1o con-
struct, and at the same time 0 classity, the possible
Kinks in the ground states of the FK model. For the
trivial and zigzag ground states the procedure is triv-
tal and known: In order to obtain a kink solution. one
has to translate the chain to one period of the GS and
then “link™ two GS's. Therefore.

The trivial GS admits simple kink can additional
atom inserted into the chainy and an antikink (a
vacancy). The distinguishing feature is that an-
harmonicity ol the interatomic potential breaks
the kink—antikink svmmetry of the classical FK
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1. Ground states structures for the Frenkel-Kontorova

model with a transverse degree of freedom.

model, now they are characterized by different ef-
fective masses and energies [2.5].

ii. The zigzag GS admits two types of Kinks: the

kink and antikink, and the ‘“‘non-
“massive”

“massive”
massive” kink |5] (see Fig. 2). The
kinks can be described in terms of the perturbed
sine-Gordon (SG) equation so that they are of-
ten referred as SG kinks [2]. The “non-massive™
kink appears owing to the existence of additional
inverse symmetry of the chain. It represents a
phase kink and can be described in terms of the
perturbed @*-equation [5] so that it can be also
called @*-kink. This kink does not participate
in the mass transport along the chain. but makes
contributions to the thermodynamical properties
of the system.

"Massive" kink
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Fig. 2. Kinks structures on the zigzag ground state.

In order to find elementary excitations in a4 com-
plex GS. we use the technique of crystallographic
point groups presented in [9] which we briefly
review here. Consider a complex GS of the FK
model with # = : p coverage so that the period
of the GS is p and each elementary cell of the
GS consists of r atoms. First of all we represent
a complex GS by a set of + subchains each one
having a trivial GS structure. The quantity which
plays the central role in the approach is a total
topological charge of the excitation Q = ¢/ p-
where

,
ot = D _(& + pty). 4)

i=1

In this expression g; is the so-called “color”™ of
the 7th subchain which is equal o the number
of translations of the right-hand side of the sub-
chain within an elementary cell, and r is the
number of periods of GS structure for which the
subchain is translated. Because the subchains are
strongly interacting. the following condition must
be fulfilled:

gmodp =g. (5)

Furthermore. since topological charges are ad-
ditive. the elementary cxcitation should corre-
spond to a minimum topological charge. Then the
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solution of the problem reduces to the solution of
the following equation:

ph = ¢ +7¢. (6)

i.c. we have to find such integers ¢ and /i (1 < Do e Co .
¢ < p) which minimize the value ¢ for the ’ f oL Y
given structure. The answer is the following:
(1) When r and p are relatively simple. the GS Fio 3.
admits the existence of a single kind of cle-
mentary topological excitation. the SG kink "Massive" kink
with [¢| = 1.
(2) When r and p have a common divisor jj > | N T\ ' N T\' ! T
(this case corresponds to the situation when + \l |\+ \1 \l I
b

1 '

the point group includes the “inversion™ sym-

" toplt . 3T
metry). two kinds of kinks cam exist: Massive" antikink

(1) The SG kink with [¢uw| = Jjo and the 1\ D T\l \
structure determined by Eqs. (6) and (5). I\ NI\”? L ' T\ P | -
(b) The @+, or phase kink with ¢ = 0 and ! N \,\l,‘ : X f
the structure characterized by the color "Non-massive" kink
g=p/2
Based on this method we complete the consid- T\: ;..\,I N ~_ T\l N :
cration of possible elementary excitations on the # \l \‘* l\*L N <\* N N '
complex GS structure in the FK model with a R
transverse degree of freedom: Fig. 4. Kinks structures on the double ziezag ground state

iti. The “rhomboidal™ ground state has the configu-
ration & = 3 : 4. The solution ol Eq. (6) gives
¢ = land ¢y = 1. If we denote & (k) the subkink
(subantikink) in a subchain, then from Eq. (5) we
can obtain the kink structure as K = (k. 3k.k}
and for an antikink K = {&. 3k. k). The kink and
antikink structures are presented in Fig. 3.

iv. The “double zigzag™ GS ¢# = 4 : 4 has addition-
ally the “inversion™ symmetry and thus it has (wo

degree of freedom. These excitations correspond 1o a
minimally possible topological charge in the system
and consist of subkinks in every subchain. The sub-
Kinks arc spatially bounded in a localizes region so
that a kink for a complex GS should have a shape
mode usually. During kink motion along the chain. the
subkinks structure muy rearrange. give birth to addi-

o . . ‘ tional subkinks and subantikinks. but the total number
types of kinks. the “massive™ kink with ¢, =

AQ = 1)y and ¢ = 2, and the “non-massive™
kink with ¢,y = 0 and ¢ = 2 (sec Fig. 4). The
“massive” kink is characterized by the structure
{k. k. k. Kk}, while the non-massive kink has the References
configuration {24. 2k.2k.2kY.

Starting with these clementary excitations as ini-

of elementary excitations should correspond 1o a sin-
¢le kink (antikink) in the whole chain.
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