
Nanotribology: nonlinear mechanisms of friction
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Abstract Friction with its related nonlinear dynamics is a vast interdisciplinary

field, involving complex physical processes over a wide range of length and time

scales. The accelerated progress in experimental and computational techniques, of-

ten leading to complex detailed dynamical patterns, has vigorously stimulated the

search and implementation of idealized experimental frameworks and simpler math-

ematical models, capable of describing and interpreting, in a more immediate way,

the essential physics involved in nonlinear sliding phenomena.

1 Introduction

Frictional motion plays a central role in diverse systems and phenomena that span

vast ranges of scales, from the nanometer contacts inherent in micro- and nanoma-

chines [1] and biological molecular motors [2] to the geophysical scales character-

istic of earthquakes [3]. Due to its enormous practical importance, the problem has

stimulated progress over the centuries. Historical figures from Leonardo da Vinci

onwards have brought friction into the field of physics, with the formulation of

time-honored phenomenological frictional laws, which have been referred to as the

Coulomb-Amontons laws. These statements can be summarized as follows: (i) fric-
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tional force is independent of the apparent area of contact; (ii) frictional force is

proportional to the normal load; (iii) kinetic friction (the force to keep relative mo-

tion at constant speed) does not depend on the sliding velocity and is smaller than

static friction (the force needed to initiate motion between two contacting bodies

at rest). Serious attempts were made in the first half of the 20th century toward a

microscopic understanding of these laws [4]. Whereas the basic physics underlying

sliding friction — non equilibrium statistical mechanics of solids, sheared fluids,

and moving surfaces — is in principle quite exciting, the field as a whole has (even

if with notable exceptions) failed to attract adequate interest by the physicist until

the last few decades, mainly because of a lack of microscopic experimental data.

Three quiet revolutions, of broad nature and unrelated to friction, are radically

changing this state of affairs. First, progress in the general area of complexity

provided new tools to tackle non-equilibrium disordered systems with interact-

ing degrees of freedom. Second, and crucial, the developments in nanotechnol-

ogy extended the study of friction and permitted its analysis on well-characterized

materials and surfaces at the nano and microscale [5]. Notably the invention of

scanning tip instruments of the Atomic Force Microscope (AFM) family [6] has

opened nanofriction as a brand new avenue, the use of the Surface Force Apparatus

(SFA) [7] has led to the systematic studies of confined mesoscopic systems under

shear, and the Quartz Crystal Microbalance (QCM) [8,9] has allowed us to measure

the inertial sliding friction of adsorbate submonolayers. Thanks to these methods,

a mass of fresh data and information on well defined systems has accumulated in

the last two decades. Third, computer simulations have had a strong boost, also al-

lowed by the fantastic growth of computer power. The numerical study of frictional

models on one hand, and direct atomistic molecular dynamics (MD) simulations on

the other hand, are jointly advancing our theoretical understanding [10]. Invaluable

initial reviews of the progress in our understanding of sliding friction can be found

in the books [11] and [12].

Despite the importance of friction and the growing efforts in the field, many key

aspects of friction dynamics are not yet fully understood. Fundamental theory is

still difficult in all fields of sliding friction, including nanofriction, since the slid-

ing motion generally involves sudden nonlinear stick-slip events, that cannot be

treated within traditional theoretical approaches such as linear-response theory and

hydrodynamics. Experiments in tribology have long suffered from the inability to

directly observe what takes place at the sliding interface. Although AFM, SFA and

QCM techniques have identified many friction phenomena on the nanoscale, many

interpretative pitfalls still result from indirect or ex-situ characterization of contact

surfaces. In the present chapter, we will briefly cover some aspects, progress, and

problems in the current modeling and simulation of sliding friction, from nano to

mesoscale.

One of the main difficulties in understanding and predicting frictional response is

the intrinsic complexity of highly nonlinear and non-equilibrium processes going on

in any tribological contact, which include detachment and reattachment of multiple

microscopic junctions (bonds) between the surfaces in relative motion while still in

contact [1,2,13]. Therefore friction is intimately related to instabilities that occur on
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a local microscopic scale, inducing an occasional fast motion of the corresponding

degrees of freedom even if the slider’s center-of-mass velocity is extremely small.

Understanding the physical nature of these instabilities is crucial for the elucidation

of the mechanism of friction, as we will emphasize below.

The present chapter covers the following different types of theoretical approach

to sliding friction: “minimalistic” models (MMs) described in Secs. 2 and 3, atom-

istic MD simulations considered in Sec. 4, and mesoscopic earthquakelike (mul-

ticontact) models briefly discussed in Sec. 5 (phenomenological rate-state models

will not be considered here; this topic is covered, e.g., in [14]).

2 The Prandl-Tomlinson Model

The Prandtl-Tomlinson (PT) model [16, 17] is the most successful and influential

MM so far suggested for description of nanoscale friction. In particular, it addresses

friction force microscopy (FFM) where friction forces are measured by dragging

an AFM tip along a surface. Qualitative conclusions drawn with this model provide

guidance to understand friction at the nanoscale, that often retain their validity in

more advanced models and MD simulations.

PT assumes that a point-like mass m (e.g., mimicking the AFM tip) is dragged

over a one-dimensional (1D) sinusoidal potential representing the interaction be-

tween the tip and a crystalline substrate. The point-like tip is pulled by a spring of

effective elastic constant K, extending between the tip position x and the position of

the microscope support stage, that is driven with a constant velocity v relative to the

substrate, see Fig. 1a. Thus, the total potential experienced by the tip consists of two

Fig. 1 (a) The Prandl-

Tomlinson model; (b) En-

ergy landscape for a soft

spring (low K). The total po-

tential (harmonic spring +
sinusoidal substrate) exhibits

different metastable minima,

giving rise to the stick-slip

behavior. (c) A representative

experimental friction pattern,

for increasing load. Lateral

AFM force vs position traces

demonstrate transitions from

smooth sliding (top) to single

(middle) and mostly double

slips (bottom). (Reproduced

from [15]). Similar patterns

can be generated within the

PT model.
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parts, the tip-substrate interaction and the elastic interaction between the tip and the

support, and can be written as

U (x, t) =U0 cos

(

2π

a
x

)

+
K

2
(x− vt)2 , (1)

where 2U0 is the amplitude and a is the period of the tip-substrate potential. Note

that in an AFM experiment the actual “spring constant” mimicked by K in the PT

model is not only due to the torsional stiffness of the cantilever but includes also the

contribution from the lateral stiffness of the contact. There is no attempt in the model

to describe realistically the energy dissipation into the substrate — all dissipation is

described by a viscous force −mγ ẋ, where γ is a damping coefficient. The instan-

taneous lateral friction force measured in FFM experiments reads F =−K (x− vt),
and the kinetic friction Fk is the time average of F .

The PT model predicts two different modes for the tip motion, depending on the

dimensionless parameter η = 4π2U0/(Ka2), which represents the ratio between the

stiffness of the tip-substrate potential and that of the pulling spring. When η < 1,

the total potential U(x) exhibits only one minimum and the time-dependent sliding

motion is smooth; for η > 1 two or more minima appear in U(x), and the sliding is

discontinuous, characterized by stick-slip, Fig. 1b. The value η = 1 represents the

transition from smooth sliding to slips by one lattice site (single-slip regime).

Physically, stick-slip motion corresponds to jumps of the tip between successive

minima of U(x), due to elastic instabilities induced by the driving spring (∂U/∂x =
0, ∂ 2U/∂x2 = 0). Close to the inflection point the height of the barrier prevent-

ing the tip sliding decreases with increasing applied force as ∆E ∝ (const−F)3/2

[18–20]. This type of externally induced topological change in the free energy land-

scape is known as a fold catastrophe, and it has been found in many driven systems,

including superconducting quantum interference devices [21, 22], mechanically de-

formed glasses [23], and stretched proteins [24,25]. The simulation results obtained

for diverse systems show that the fold catastrophe scaling is accurate not only in

the immediate vicinity of the inflection point but over reasonably large intervals of

loads.

The possibility of slips of higher multiplicity (multiple-slip regime) occurs for

larger values of η > 4.604 [15]. However, this is the necessary but not sufficient

condition to observe multiple slips, since the dynamics depends also on the damping

coefficient γ . In particular, one can distinguish between the overdamped regime of

motion, γ > (ηK/m)1/2, where the tip jumps between nearest-neighbor minima of

the potential, and the underdamped regime, γ < (ηK/m)1/2, where, for η > 4.604,

the tip may perform multiple slips over a number of lattice sites and even overshoot

the lowest well of the potential U(x). In the latter case the minimal spring force

reached during stick-slip oscillations is negative.

The elastic instability occurring for η > 1 results in a nonzero value of the low-

velocity kinetic friction that is given by the energy drop from the point of instability

to the next minimum of the potential divided by a [26]. For η < 1 this instability

disappears and the friction is viscous, Fk → 0 for v → 0. The emergence of static
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friction can be interpreted as the arousal of a saddle-node bifurcation as a function

of η , realizing a sort of fold-catastrophe scenario [27].

In experiment, the effective value of the PT parameter η can be controlled by the

variation of the normal load on the contact, which changes the potential corrugation

U0 more than the contact stiffness. FFM experiments at low normal loads indeed

demonstrated smooth sliding with ultralow friction, connected to the absence of

elastic instabilities [15, 28]. At higher loads instead, “atomic” stick-slip took place

with the atomic periodicity of the substrate lattice, while increasing load further led

to a multiple slip regime as predicted by the PT model, see Fig. 1c.

In real systems at finite temperature, hysteresis and dissipation must disappear in

the zero-speed limit of sliding, where stick-slip instabilities are preempted by ther-

mal fluctuations. This regime is sometimes termed “thermolubricity” [18,19,29–32].

The main aspects of thermal effects on friction were considered in the pioneering

work of Prandt [16]. Thermal effects can be incorporated into the PT model (1) by

adding a thermal random force f̂ (t) and the damping term −mγ ẋ to the conservative

force between the slider and substrate, so that the tip motion is described by the

Langevin equation

mẍ+mγ ẋ =−∂U (x, t)/∂x + f̂ (t) . (2)

The random force should satisfy the fluctuation-dissipation theorem. As usual, it is

chosen with zero mean
〈

f̂ (t)
〉

= 0 and δ -correlated:

〈

f̂ (t) f (t ′)
〉

= 2mγ kBT δ (t − t ′) , (3)

where kB denotes the Boltzmann constant and T temperature. The random force and

the damping term arise from interactions with phonons and/or other fast excitations

that are not treated explicitly.

In the thermal PT model, (2) and (3), beside the PT-parameter η , thermal fluc-

tuations bring out a new dimensionless parameter δ representing the ratio between

the pulling rate v/a and the characteristic rate of thermally activated jumps over the

potential barriers, ω0 exp(−U0/kBT ), where ω0 is the attempt frequency [32]. As

a result, one should distinguish between two regimes of motion: (i) δ ≪ 1, regime

of very low velocities or high temperatures (typically v < 1 nm/s at room tempera-

ture), where the tip has enough time to jump back and forth across the barrier, and

(ii) δ ≫ 1, the stick-slip regime of motion, where thermal fluctuations only occa-

sionally assist the tip to cross the barrier before the elastic instability is reached.

In these two regimes the following expressions for kinetic friction have been sug-

gested [18, 19, 32]:

Fk (v,T ) = α (T )v+O
(

v3
)

, δ ≪ 1 , (4)

Fk (v,T ) = F0 −bT 2/3 ln2/3

(

B
T

v

)

, δ ≫ 1 and v < BT . (5)

Here F0 is the athermal (T = 0) low-velocity limit of friction, α(T ) ∝ (K/ω0)×
(U0/kBT )exp(U0/kBT ) is the equilibrium damping experienced by the tip (note that
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α is independent of the ad-hoc damping coefficient γ), and b, B are positive con-

stants which depend on m, K, a, U0 and γ but not on v and T . (4) describes the slow

friction regime (thermolubricity) and corresponds to the linear-response regime,

while (5) has been derived assuming that thermally activated depinning occurs in

the vicinity of the athermal instability point. The velocity and temperature depen-

dences of friction force predicted by (5) result from the fold catastrophe scaling of

the potential barriers, ∆E ∝ (const−F)3/2. In between the regimes described by (4)

and (5) one should observe a logarithmic dependence of Fk on velocity. However, it

is very difficult to distinguish between [ln(v)]2/3
and simple ln(v) behavior in ex-

periments as well as in numerical simulations [33]. The logarithmic (or [ln(v)]2/3
)

regime can span several decades, until v becomes so large that the inertial or viscous-

like effects set in. The [ln(v)]2/3
dependence of the average rupture force has been

also found in single-molecule unbinding experiments where the energy landscape

of complex biomolecules is probed by applying time-dependent forces [34].

The theoretical framework outlined above explained a number of FFM exper-

imental results on single crystal surfaces [29, 30, 35]. Furthermore, the statisti-

cal distribution of friction forces was measured to match predictions from the PT

model [36]. These results provide strong evidence that atomic stick-slip in FFM is

attributable to thermally activated slip out of a local minimum as described by the

PT model. Thermally activated stick-slip friction is seen in MD simulation at suffi-

ciently low speeds only, which are so far achievable through accelerated MD [37].

At higher speeds, friction is mostly determined by dissipative athermal dynamical

processes, which correspond to a fundamentally different regime of sliding. This

limits severely the regime of validity of comparisons of the PT model with MD

simulations.

(4) and (5) also predict that kinetic friction should decrease with increasing tem-

perature [18,19,38]. Thermal excitations help overcome energy barriers and reduce

the stick-slip jump magnitude, so that nanofriction should decrease with temperature

provided no other surface or material parameters are altered by temperature [39].

Recent experimental results [40–43], however, strongly disagree with the predic-

tions of (4) and (5). Friction forces exhibit a peak at cryogenic temperatures for

different classes of materials, including amorphous, crystalline, and layered sur-

faces. Instead, the temperature and velocity dependence of the kinetic friction is

well described by the multicontact model [42, 43].

Several generalizations of the original 1D PT model include considerations of:

• two-dimensional (2D) structure of surfaces that led to the introduction of fric-

tional imaging of interfaces [44–47];

• coupling between normal and lateral motion of the slider [48,49] that led to a new

approach to control friction and wear by modulating the normal load [50, 51];

• flexibility of the AFM tip apex that led to a predictions of new regimes of motion

exhibiting complex stick-slip patterns [52, 53].
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3 The Frenkel-Kontorova Model

The basic model describing the sliding of crystalline interfaces is the 1D Frenkel-

Kontorova (FK) model (Ref. [54] and references therein). First analytically treated

in Ref. [55] and then independently introduced to describe dislocations in solids [56–

58], the FK model found subsequently a broad area of application, in particular, in

surface physics, where it is used to unravel the behavior of adsorbed monolayers.

The standard FK model Hamiltonian

H =
N

∑
i=1

[

pi
2

2m
+

1

2
K(xi+1 − xi −ac)

2 +
1

2
U0 cos

2πxi

ab

]

(6)

describes a 1D chain of N harmonically coupled “atoms” subjected to a sinusoidal

potential, see Fig. 2. The first term in (6) is the kinetic energy of the chain, the second

one describes the harmonic interaction of the nearest neighboring atoms with the

elastic constant K and equilibrium distance ac, and the last term is the interaction

of the chain atoms with the periodic potential of magnitude U0 and period ab. Static

friction is probed by driving all atoms with an extra adiabatically increasing force F

until sliding initiates.

The success of the FK model is partly due to the relevance of its continuum

limit, valid for large K, where the FK equations of motion reduce to the exactly

integrable sine-Gordon (SG) equation, the solutions of which, in addition to linear

waves (phonons), include the topological solitons (called “kinks”) and dynamical

solitons (“breathers”). Tribological processes in the FK model are ruled by kinks.

Consider the simplest case of the trivial commensurate ground state (GS), when

the number of atoms N is equal to the number of minima of the substrate potential

M, so that the dimensionless concentration θ = N/M = ab/ac is 1. In this case,

adding (or subtracting) one atom results in a chain configuration with one kink (or

antikink) excitation (more rigorously, kinks may be defined on the background of

any commensurate GS; in what follows, θ = 1 kinks will be indicated as “trivial”

kinks, while for a general case we will use the term “superkinks”). After relaxation,

the minimum-energy configuration corresponds to a local compression (or extension

in the antikink case) of the chain. Kinks move along the chain far more easily than

atoms because the activation energy εPN for kink motion [known as the Peierls-

Nabarro (PN) barrier] is always smaller (or much smaller) than the amplitude U0 of

the substrate potential.

Fig. 2 A sketch of the FK

model with the two competing

lengths: interparticle and

substrate periodicities.
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Because the kinks (antikinks) are associated with extra atoms (vacancies), their

motion provides a mechanism for mass transport along the chain so that they are

responsible for mobility, conductivity and diffusivity. The higher the concentration

of kinks, the higher is the system mobility [60]. When the GS is commensurate

(e.g., θ = 1), the first step to initiate motion in the FK model is the (e.g. thermally

induced) creation of a kink-antikink pair, see Fig. 3.

When the elastic layer is of finite extension, kinks are usually generated at a

free end of the chain and then propagate along the chain until disappearing at the

other free end [61]. Each run of the kink through the chain results in the shift of

the whole chain by one lattice constant ab. In the case of a finite film confined

between two solids, one may similarly expect that the onset of sliding is initiated

by the creation of a kink at the boundary of the contact. Subsequent kink motion is

the basic mechanism of sliding. In 2D or three-dimensional (3D) systems, concepts

of domain walls or misfit dislocations are used instead of kinks, but the physics of

these processes remains qualitatively the same.

A crucial role in the FK model is played by incommensurability. Let the sub-

strate period ab and the natural period of the chain ac be such that, in the limit of

an infinite system’s length, their ratio θ = ab/ac is irrational. In this case, under

a not too restrictive condition on θ [62], there exists a critical value of the elastic

constant K, such that for a higher rigidity the chain becomes effectively free of the

substrate, i.e., the static friction Fs drops to zero, and the kinetic friction becomes

very small. This phenomenon is known in physics from the beginning of the 1970s

as the commensurate-incommensurate transition, or (later on, when S. Aubry devel-

oped the rigorous mathematical theory) “the transition by breaking of analyticity”,

or simply the Aubry transition [63–68]. A simple explanation of the Fs = 0 sliding

state is the following: in this state, for every atom going up over the barrier, there is

Fig. 3 Atomic trajectories as

a function of time of the per-

fectly commensurate (θ = 1)

FK chain at the depinning

transition, at a small temper-

ature. The onset of motion is

marked by the nucleation of

a kink-antikink pair. The kink

and antikink move in opposite

directions, collide quasielasti-

cally (because of the periodic

boundary conditions), and

soon a second kink-antikink

pair is created in the tail of the

primary kink. This process

repeats with an exponential

(avalanche-like) growth of the

kink-antikink concentration,

leading to a sliding state.

(Adapted from [59])
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another atom going down, and the energy costs of these processes compensate ex-

actly each other. Roughly speaking, the incommensurate FK chain acquires a “stair-

case” deformation, with regions of approximate commensurability separated by reg-

ularly spaced superkinks. If there is a nonzero probability to find atoms arbitrarily

close to the maximum potential energy U0 these superkinks are unpinned and mo-

bile, otherwise they are pinned [69]. For a fixed value of U0, the FK GS undergoes a

transition between these two states at a critical value K = Kc of the chain stiffness.

The value Kc depends dramatically and discontinuously on the incommensurability

ratio ab/ac defining the interface; it takes the minimal value Kc ≈ 1.0291926 [in

units of 2U0(π/ab)
2] for the irrational golden mean ratio ab/ac = (1+

√
5)/2 [54].

For K > Kc there is a continuum set of ground states that can be reached adiabati-

cally through nonrigid displacements of chain atoms at no energy cost (the sliding

mode, or the Goldstone mode). On the other hand, for K < Kc, the atoms are trapped

close to the minima of the substrate potential and thus require a finite energy to

move over the corrugated substrate. Thus, for the incommensurate contact above

the Aubry transition (K > Kc) chain sliding is initiated by even the smallest driving

force and, accordingly, the static friction force vanishes, Fs = 0. On the contrary, for

K below Kc the two incommensurate 1D surfaces are locked together due to pinning

of the superkinks that separate local regions of common periodicity, and in this case

we expect stick-slip. Note also that a finite-size FK chain is always pinned, even

for an irrational value of ab/ac because of the locking of the free ends of the chain

(although an Aubry-like transition, exhibiting a symmetry-breaking nature, can still

be defined [70–72]).

In order to characterize the Aubry transition, it is convenient to introduce a “dis-

order” parameter ψ defined as the minimum distance of any atom from the nearest

top of the substrate potential. Near the critical point the transition from pinned to

sliding ground states occurs according to a power law,

ψ ∝ (Kc −K)χψ , Fs ∝ εPN ∝ (Kc −K)χPN , (7)

where the critical exponents χ depend on the incommensurability ratio, in particu-

lar, for the golden-mean case χψ ≈ 0.7120835 and χPN ≈ 3.0117222 [68, 73–79].

Fig. 4 The mobility B = v/F

normalized to the free-motion

value B f = (mγ)−1 as a func-

tion of the dc force F for the

classical FK model with the

“golden-mean” concentration

for different values of the

elastic constant K below and

above the Aubry threshold

Kc ≈ 1.0291926. The equa-

tion of motion included an

external viscous damping,

with a friction coefficient

γ = 0.1. (Adapted from [54])

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 

 

"forward" (T =0,   =144/233)

 K=1.2
 K=1.1
 K=1.0291926
 K=0.9
 K=0.8

B 
/ B

f

force



10 N. Manini, O.M. Braun, and A. Vanossi

Notice that the Aubry transition exhibits a scaling behavior as typical for critical

phenomena. The exponents in (7) are called super-critical because they only apply

to the locked side of the transition, K ≤ Kc.

Likewise, one may introduce also sub-critical exponents for the sliding state

above the Aubry transition. An important subcritical quantity is the effective vis-

cosity Γ = limF→0 F/(mv) which describes the steady-state average velocity v in

response to an infinitesimally small dc force F applied to all atoms (to avoid infinite

acceleration, an external damping γ should be included in the equation of motion).

Γ is zero in the SG limit (K → ∞) and diverges at the Aubry transition. For the

golden-mean concentration, Γ scales as

Γ (K) ∝ (K −Kc)
−χΓ (8)

with χΓ ≈ 0.029500. The scaling (8) is only appropriate immediately above the

Aubry transition, while at K ≫ Kc, Γ decreases toward γ . Accordingly, for any

K > Kc the mobility B = v/F remains lower than its maximum value (mγ)−1 even

in the F → 0 limit as illustrated for K & Kc in Fig. 4. A “frictionless” motion of the

truly incommensurate GS exists only in the SG (K → ∞) limit, where the substrate-

corrugation U0 term adds no dissipation to the one brought in by the γ term.

Vanishing static friction has been first found within the FK model for mutu-

ally incommensurate periodicities and sufficiently hard infinite lattices [68]. Later

on [80–82], this effect was predicted for infinite incommensurate contacts, and

called superlubricity. The term superlubricity has been criticized as misleading,

since it might wrongly suggest null friction in the sliding state in analogy to super-

conductivity and superfluidity. Instead, incommensurability of periodic interfaces

cancels only one of the channels of energy dissipation, that originating from the low-

speed stick-slip elastic instability. Other dissipative processes, such as the emission

of sound waves, still persist, and therefore even in the case of complete incommen-

surability the net kinetic friction force does not vanish, although in the superlubric

regime one expects a substantial reduction of the friction force relative to a similar,

but commensurate case.

Detailed experimental studies of superlubricity have been performed recently

for friction between a graphite flake attached to the FFM tip and an atomically

Fig. 5 The data points show

the average friction force

versus the rotation angle

measured by [83]. The curve

through the data points shows

the calculated friction force

from a PT-like model for a

symmetric 96-atom flake.

(Reproduced from [84])
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flat graphite surface [83–85]. Super-low friction forces (< 50 pN) were found for

most relative orientations of the flake and the substrate, for which the contacting

surfaces find themselves in incommensurate states (see Fig. 5). For narrow ranges of

orientation angles corresponding to commensurate contacts, stick-slip motion was

observed and friction was high (typically 250 pN).

The kinetic friction properties of the FK model [86, 87] are probed by adding

a (e.g. Langevin) thermostat as described for the PT model above. Even above the

Aubry transition, where Fs = 0, the kinetic friction force Fk is nonzero, because the

dynamics at any finite speed results in the excitation of phonons in the chain. At

finite T , pinning can be overcome by thermal fluctuations, which can initiate sliding

even in the most-pinned state, the fully commensurate one, see Fig. 3. Finally, we

remark that friction in the dynamically driven FK model describes fairly the onset

of sliding of a crystalline contact [88], but it cannot account for the highly inelastic

plastic or quasi-plastic deformations of the surfaces characterizing real-life friction

experiments.

The dimensionless atomic concentration θ = N/M = ab/ac in the FK system

plays a crucial role since it defines the concentration of “geometrical” superkinks.

As mentioned above, these excitations can be defined for any background com-

mensurate atomic structure θ0 = p/q, where p and q are relative prime integers. If

the concentration θ slightly deviates from the background value θ0, the GS of the

system corresponds to large domains with background commensurate structure θ0,

separated by localized incommensurate zones of compression (expansion) called

superkinks (super-antikinks).

Fig. 6 The mobility B = v/F

versus the force F for the

underdamped (γ = 0.12) FK

model with exponential in-

teraction (Keff = 0.58) (a)

for θ = 21/41 (superkinks

on the background of a

θ0 = 1/2 structure), and

(b) for θ = 21/31 (superkinks

on the background of the

complex θ0 = 2/3 structure).

(Reproduced from [89])
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When the external force increases, the FK system with a non-trivial GS exhibits

a hierarchy of first-order dynamical phase transitions from the completely immobile

state to the totally running state, passing through several intermediate stages charac-

terized by the running state of collective quasiparticle excitations, or kinks of the FK

model. As an example, let us consider the θ = 21/41 case when the mass transport

along the chain is carried out by trivial kinks constructed on the background of the

θ0 = 1/2 structure. As the average distance between the kinks is large (equal to 41ab

in the GS), the kink-kink interaction is weak, and the atomic flux is restricted by the

overcoming of kinks over the PN barriers (see Fig. 6a). When the driving force F

increases, the now-tilted effective PN barriers are lowered (simultaneously with the

original barriers of the substrate potential), resulting in the increase of the single-

kink mobility. Thus, at zero temperature the crossover from the locked B= 0 state to

the kink-running state takes place at the force F ≈ Ftk =CπεPN/ab, where the factor

C ∼ 1 depends on the shape of the PN potential. The mobility in the kink-running

state is B ≈ θkB f , where θk = 1/41 is the dimensionless kink concentration.

The further scenario depends on the value of the damping coefficient γ . At very

low damping, γ < 0.05, there is no intermediate stages, because the running kinks

destroy themselves as soon as they start to move: they will cause an avalanche driv-

ing the whole system to the totally running state of atoms similarly to that shown in

Fig. 3. At larger damping, γ > 0.05, the above-mentioned intermediate stages with

running kinks exist. A mechanism of the second abrupt increase of the mobility de-

pends on γ too (for details see [54,89,90]). Between the kink-running stage and the

totally running state there may be a specific “traffic-jam” regime [54].

This qualitative picture holds also for a more complex atomic structure like

θ = 21/31 [89] (see Fig. 6b for N = 105 and M = 155). In this case the state of

running trivial kinks is preceded by the state of running superkinks. The GS in this

case corresponds to domains of the complex θ0 = 2/3 commensurate structure, sep-

arated by superkinks with an average spacing 30ab between them. On the other

hand, the θ = 2/3 structure can be viewed as a dense lattice of trivial kinks de-

fined on the background of the θ0 = 1/2 structure. This specificity clearly manifests

itself in the B(F) dependence. During the force-increasing process, there are now

two sharp steps of increasing of the mobility B. The first one, at F = Fsk ≈ 0.08Fs,

corresponds to the situation where the superkinks start to slide, whereas the second

step, occurring at F = F ′
tk ≈ 0.18Fs, corresponds to the transition of the trivial kinks

to the running state.

3.1 Extensions of the Frenkel-Kontorova Model

Many relevant generalizations of the FK model have been proposed so far to cover

a large class of frictional relevant phenomena. They mainly consist of modifications

of model interactions or of dimensionality. For realistic physical systems, anhar-

monicity can be introduced in the chain interatomic potential, see Ref. [54]. The

main novelties here include effects such as a broken kink-antikink symmetry, new
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types of dynamical solitons (supersonic waves), a possible breakup of the antikink

soliton followed by a chain rupture, and a modified kink-kink interaction. Strong

anharmonic effects are responsible of a strong kink-antikink asymmetry in recent

experiments of friction in repulsive colloids [91,92], see chapter ??. Likewise, non-

sinusoidal periodic substrates, characterized, e.g., by sharp bottoms and flat bar-

riers [93], have been investigated to address atoms adsorbed on a metal surface.

Complex unit cell substrates [60, 94], as well as quasiperiodic [95, 96] and disor-

dered corrugated profiles [97–99] have also been considered. These deviations from

the standard FK model may lead to qualitatively different excitations such as differ-

ent types of kinks, phonon branches, and to changes in the kink-antikink collision

scenario. From a tribological point of view, different types of sliding behavior are

to be expected at low-driving forces, when the dynamics is mainly governed by the

motion of kink-like structures.

A very important generalization of the standard FK chain with relevant conse-

quences for the tribological properties (critical exponents, scaling of friction force

with system size, mechanisms of depinning, etc.) involves increasing the dimension-

ality of the model. Especially the 2D generalized versions of the FK model [11, 54]

are naturally applicable to the description of a contact of two crystalline surfaces

(i.e., the case of “dry” friction), in particular as is realized in QCM experiments,

where 2D monoatomic islands of adsorbate atoms slide over a periodic crystalline

substrate [8], or, very recently, in 2D colloidal monolayers over laser-generated op-

tical lattices [91, 92, 100, 101]. Among 2D generalized FK models we mention the

model consisting of two coupled FK chains [102], the 2D “springs and balls” FK

model describing a 2D layer of harmonically interacting atoms in the 2D periodic

substrate, the scalar anisotropic 2D FK model treating a system of coupled 1D FK

chains, the vector anisotropic 2D FK model (e.g., the zigzag FK model), the vec-

tor isotropic 2D FK model [103–106], and the 2D tribology model [88, 107] (see

also [54] and references therein).

The approaches based on these models are especially powerful in the investiga-

tion of the transient behavior at the onset (or stopping) of sliding, which is quite

difficult to study in fully realistic 3D models (e.g., see [108]). As a typical example,

let us describe the onset of sliding observed in the vector 2D FK model, where a

2D layer of atoms is subjected to a periodic substrate potential with the triangular

symmetry [108]. The transition from the locked to running state is mediated by the

formation of an island of moving atoms in a sea of essentially stationary particles.

The size of the moving island grows quickly in the direction of the driving force, and

somewhat more slowly in the perpendicular direction. Inside the island the atoms

largely maintain their triangular structure due to the stiffness of the atomic layer.

Hence one sees areas of essentially perfect triangular lattice surrounded by a closed

boundary of partial dislocations. In simulation, due to periodic boundary conditions,

the island eventually joins up on itself. There forms a strip (“river”), oriented parallel

to the driving force and bounded in the direction perpendicular to the driving force,

in which particles move along the periodically-continued system. Outside this stripe

the particles are immobile. This stripe then broadens perpendicularly to the driving
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direction until all atoms are moving. The evolution of this scenario is illustrated in

a series of snapshots in Fig. 7.

Noncontact AFM tips oscillating on top of kink-like adsorbate regions [109]

dissipate significantly more than nearly in-registry regions. This mechanism is ex-

plained by the higher softness and mobility of solitonic regions [110–113], and it

has been demonstrated by the dynamics of an incommensurate FK chain, forced and

probed by a locally-acting oscillation [114].

In investigating confined systems under shear, FK-like models with just one par-

ticle [115–117] or an interacting atomic chain [118–120] embedded between two

competing substrates have led to uncover peculiar tribological phenomena related

to stick-slip dynamics or to the appearance of remarkable sliding regimes of motion.

For example, velocity quantization phenomena have been reported [121,122] in the

motion of an idealized 1D solid lubricant.

In slider-lubricant-slider geometry [120] sketched in Fig. 8c, the lattice mismatch

can give rise to peculiar and robust “quantized” sliding regimes, characterized by a

nontrivial geometrically fixed ratio of the mean lubricant drift velocity and the exter-

nally imposed translational velocity. In detail, the speed ratio w = vcm/vext remains

pinned to exact “plateau” values over wide ranges of parameters, such as sliders cor-

rugation amplitude, external velocity, chain stiffness and dissipation (see Fig. 8a),

and is strictly determined by the length ratios alone. The plateau mechanism has

been interpreted in terms of solitons, formed by the mismatch of the lubricant pe-

riodicity to that of the nearer matching substrate, being rigidly dragged forward by

the advancing sinusoid representing the other, more mismatched, slider.

The finding of exact plateaus implies a kind of “dynamical incompressibility”,

namely identically null response to perturbations or fluctuations trying to deflect

the CM velocity away from its quantized value. In order to probe the robustness

of the plateau attractors, an additional constant force Fext , acting on all particles in
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Fig. 7 Successive snapshots of the mechanism of the locked-to-running transition in the vector

2D FK model for the LJ interaction with Keff = 0.9, γ = 0.141, T = 0.05, and F = 0.9933. The

positions of the atoms are indicated by circles. The x component of the particle speed is shown in

grey scale: from zero (black) to maximum (lightest grey) velocity. (Adapted from [108])
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the chain, was introduced. As expected, as long as Fext remains sufficiently small,

it has no effect whatsoever on the velocity-plateau attractor. The plateau dynamics

is only abandoned above a critical force Fc. The transition, occurring for increasing

external driving force Fext acting on the lubricant, displays a large hysteresis, and

has the features of depinning transitions in static friction, only taking place “on the

fly” [123, 124]. Although different in nature, this phenomenon appears isomorphic

to a static Aubry depinning transition [67, 68], the role of particles now taken by

the moving solitons of the lubricant-substrate interface. The confined model was

extended beyond the standard sinusoidal corrugation of (6): the quantized velocity

remains, but a nonsinusoidal corrugation can affect the parametric region where the

velocity plateau extends [125].

A quantized sliding state of the same nature has been demonstrated by MD simu-

lations for a substantially less idealized two-dimensional model [126], where atoms

of a lubricant multilayer film were also allowed to move perpendicularly to the slid-

ing direction and interact via Lennard-Jones potentials (see Fig. 9). This dynamical

regime, is shown to be robust against the effects of thermal fluctuations, quenched

disorder in the confining substrates, and over a broad range of loading forces. By

Fig. 8 (a) The average drift

velocity ratio w = vcm/vext of

the chain as a function of its

lubricant stiffness K for differ-

ent commensurability ratios

(r+,r−), with r± = a±/a0:

commensurate (3/2,9/4),
golden mean (GM) (φ ,φ 2)
(φ ≃ 1.6180 . . .), spiral

mean (SM) (σ ,σ2) (σ ≃
1.3247 . . .), and (φ−1,φ). The

(φ ,φ 2) 1/1 plateau value is

w = 0.381966 . . ., identical

to 1− φ−1 to eight decimal

places. (b) The main plateau

speed w as a function of r+.

(c) A sketch of the model.

(Reproduced from Ref. [121])
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evaluating its tribological properties in terms of averaged kinetic friction Fk exerted

on the top slider, this lubricant quantized sliding has been found [127] to be charac-

terized by significantly low values of Fk, see Fig. 10.

While certain of these phenomena, such as chaotic and inverted stick-slip mo-

tion, two types of smooth sliding and transitions between them, have already been

observed [128, 129], others are still waiting for experimental confirmation.

Last but not least, the combined Frenkel-Kontorova-Tomlinson (FKT) model [130,

131] has been introduced including harmonic coupling of the interacting chain

atoms to a sliding body. The FKT model introduces more degrees of freedom than

the PT model, and it has been used to describe effects of finite size and stiffness of

the AFM tip and of normal load on friction [132, 133]. The latter effect has been

modeled assuming that the amplitude U0 of potential corrugation increases propor-

tionally to the applied normal force. The validity of the FKT model has been tested

by 3D MD simulations [133], which confirmed the outcome of the model for most

investigated regimes except for the limit of very low stiffness and high normal load.

Unlike the FKT model where the breakdown of superlubricity coincides with the

emergence of the metastable states, in 3D simulations certain metastable states ap-

pear to reduce the frictional force leading to nonmonotonic dependence of force

on normal load and tip compliance. Increasing dimensionality and adding realis-

tic features to the FK model brings its extensions into closer and closer contact to

full-fledged MD simulations.

4 Molecular Dynamics Simulations

The simple low-dimensional MMs discussed above are useful for a qualitative un-

derstanding of many physical aspects of friction. To address subtler features of a

specific interface, one should go beyond MMs including atomistic structural details

of the interface. Such an approach is provided by MD simulations.

Fig. 10 As a function of the

adiabatically increased (cir-

cles) or decreased (squares)

top-substrate velocity vext, the

three panels report: (a) the av-

erage velocity ratio w; (b) the

average friction force expe-

rienced by the top substrate;

(c) the effective lubricant

temperature, computed using

the average kinetic energy in

the frame of reference of the

instantaneous lubricant center

of mass. (Reproduced from

Ref. [127])
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Advances in computing hardware and methodology have dramatically increased

our ability to simulate frictional processes and gather detailed microscopic infor-

mation for realistic tribological systems. MD simulations represent controlled com-

putational experiments where the dynamics of all atoms is obtained by solving nu-

merically Newton or Langevin equations of motion based on suitable interparticle

interaction potentials and the corresponding interatomic forces. The geometry of the

sliding interface and the boundary conditions (e.g. as sketched in Figs. 11 and 12)

can be chosen to explore friction, adhesion and wear.

A worthwhile guide to atomistic MD simulations of frictional processes focusing

on fundamental technical aspects (realistic construction of the interface, appropri-

ate ways to impose load, shear, and the control of temperature) can be found in the

review articles by [135,136]. By following the Newtonian dynamics of a system exe-

cuting sliding for a significant amount of time, quantities of physical interest such as

instantaneous and average friction force, mean (centre-of-mass) slider velocity, heat

flow, and correlation functions are numerically evaluated. Unlike standard equilib-

rium MD simulations of bulk systems, frictional modeling inherently involves non-

equilibrium conditions and a nonlinear dissipative response to the external driving.

A standard practical assumption is to add Langevin terms to Newton’s equations,

like in (2) and (3) for the PT model at finite temperature.

The choice of the appropriate interaction forces between atoms represents a ma-

jor problem. If U{R1,R2, ...RN} is the total energy of the system as a parametric

function of all atomic coordinates {Ri}, the force on atom i is Fi = −∇Ri
U , per-

fectly determined once U is known. Unfortunately, this is generally not the case,

because U is determined by the quantum mechanics of electrons — a much bigger

and unsavory problem to solve. Ab-initio MD, e.g. of the Car-Parrinello type [137],

has not really been of use so far in sliding friction, mainly because it can handle

only rather small systems, typically hundreds of atoms, for relatively short times,

typically ≪ 1 ns. Most MD frictional simulations are therefore based on reason-

able empirical interatomic forces (“force fields”), ranging from relatively sophisti-

Fig. 11 Sketch of a typical

MD simulation of a boundary-

lubricated interface under

shear. Periodic boundary

conditions are applied in the

x-y directions.

Fig. 12 A simulated

truncated-octahedron Au459

cluster sliding with one of its

(111) facets over a mobile

graphite substrate. (Repro-

duced from [134]).
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cated energy surfaces accounting for electrons at the density-functional level or at

the tight-binding level [138], to angle-dependent many-particle potentials, to simple

pairwise potentials (e.g. Lennard-Jones or Morse), to basic simple models of elas-

tic springs which represent extensions of FK-type formulations. In practice, several

reliable force fields, parameterized to fit different ranges of experimental data and

material combinations, are available in the literature [139–143]. While this allows

qualitative atomistic simulations of sliding friction, it is often far from quantitative.

For example, during such a violent frictional process as wear, atoms may change

substantially their coordination, their chemistry, sometimes their charge. Once a spe-

cific system is understood after the elaborate development of satisfactory potentials,

the mere change of a single atomic species may require a complete reparametriza-

tion of the interatomic forces. As a result, systematic frictional studies may become

quite a challenge in the absence of a consistent set of potentials. A promising ap-

proach consists in the use of the so-called reactive potentials [144–146], capable of

describing chemical reactions and interface wear, with the advantage, for large-scale

atomic simulations, of a good computational efficiency compared to first-principle

and semi-empirical approaches.

4.1 Thermostats and Joule Heat

In a tribology experiment, mechanical energy is converted to Joule heat which is

carried away by phonons (and electron-hole pairs in metals). In a small-size simula-

tion, the excitations generated at the sliding interface propagate and crowd-up into

an excessively small region of “bulk” substrate, where they are back-reflected by

the cell boundaries, rather than properly dispersed away. To avoid overheating and

in order to attain a frictional steady state, the Joule heat must therefore be steadily

removed. If this removal is done by means of standard equilibrium thermostats such

as velocity rescaling or Nosé-Hoover or even Langevin dynamics, an unphysical

dissipation is distributed throughout the simulation cell, so that simulated atoms do

not follow their real conservative motion, but rather execute an unrealistic damped

dynamics which turns out to affect the overall tribological properties [147]. Simi-

larly in the PT and FK models, the damping parameter γ is known to modify kinetic

and frictional properties, but there is no clear way to chose the value of γ .

To solve this problem, one should attempt to modify the equations of motion in-

side a relatively small simulation cell so that they reproduce the frictional dynamics

of a much larger system, once the remaining variables are integrated out. One ap-

proach is to use in Langevin equations a damping coefficient which depends on the

coordinate and velocity of each lubricant atom; these dependences can be take to

fit the known dissipation of atoms adsorbed on a surface [148]. In turn, this method

requires a modification of the standard Langevin technique [149]. A more rigor-

ous approach is a recent implementation of a non-conservative dissipation scheme,

based on early formulations by [150–152] and subsequent derivations by [153–155],

that has demonstrated the correct disposal of friction-generated phonons, even in the
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relatively violent stick-slip regime [156, 157]. All atoms near the sliding interface

follow plain Newton’s equation, while the atoms in the deepest simulated layer,

representing the boundary layer in contact with the semi-infinite heat bath, acquire

additional non-conservative (and non-Markovian) terms which account for the time

history of this layer through a memory kernel [153, 154]. Nanofriction simulations

exploiting this dissipative scheme have recently been implemented that conceptually

and practically improve over a traditional Langevin simulation.

4.2 Size- and Time-scale Issues

Modern CPUs perform of the order of 109 floating-point operations per second

(FLOPS) per core. Classical MD can take advantage of medium-scale paralleliza-

tion, with fairly linear scaling to approximately 102 cores, thus affording about 1011

FLOPS. As the calculation of the force acting on each atom (usually the dominating

step in a MD calculation) can require, depending on the complexity and range of the

force field, 10 to 102 operations, the product of the number of simulated particles

N times the number of time-integration steps Nstep per runtime second on a mod-

ern medium-size parallel computer is approximately N Nstep ≃ 1010. With a typical

time-step of ∼ 1 fs, a medium-size simulation involving N = 105 atoms can progress

at a rate of 105 fs per second, i.e. approximately 109 fs = 1 µs in a simulation day.

This total time scales down for larger systems sizes.

These estimates should be compared with the typical times, sizes, and speeds

of tribology experiments. If we wish to address macroscopic sliding experiments,

the speed would be in the 0.1 to 10 m/s range: in 1 µs the slider advances by

0.1 to 10 µm, i.e. approximately 103 to 104 typical lattice spacings, enough for

a fair statistics of atomic-scale events (but hardly sufficient to gather significant data

about phenomena such as the diffusion of additives or of wear particles within the

lubricant, or step- or defect-related phenomena). In a nanoscale FFM experiment,

however, the tip advances at a far smaller average speed (i.e. ≃ 1 µm/s) and we

can simulate a miserable ≃ 1 pm advancement in a typical run, far too short to ob-

serve even a single atomic-scale event, let alone reaching a steady state. Therefore,

whenever long-distance correlations and/or slow diffusive phenomena and/or long

equilibration times are expected, MMs will perform better than fully atomistic MD

simulations. There is nevertheless so much physical insight to be extracted from MD

simulations that it makes sense to run them even at larger speeds than in AFM or

SFA experiments; and indeed, the sliding speed adopted in most current atomistic

MD frictional simulations is in the m/s region.

While the high-speed kinetic friction is reproduced adequately in MD simulation,

it is not so for the static friction which essentially depend on the system size, usually

decreasing with the increase of the interface area. To overcome this problem, one

may use scaling arguments which allows to find the large-area static friction from

MD simulation for a rather small system [158].
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One of the challenging problems for MD simulations is to account for the transi-

tion from stick-slip to steady sliding. In SFA and AFM experiments, stick-slip with

its associated hysteresis and large friction generally disappears for speeds larger than

∼ 1 µm/s, while in MD simulations the transition takes place in the m/s range. This

major discrepancy (up to ∼ 6 orders of magnitude in speed!) between simulations

and experiments has been discussed [159–162], and relates to the effective spring-

force constants and mass distributions, that are hugely different in the two cases, and

much oversimplified in simulations. Several attempts to fill these gaps rely on meth-

ods, including hyperdynamics, parallel-replica dynamics, temperature-accelerated

dynamics, and on-the-fly kinetic Monte Carlo devised in recent years [163–165].

Another important aspect present in experiments and largely missed by MD sim-

ulations is the ageing of contacts due to the interface relaxation. Contact ageing is

believed to be responsible for the increase of the static friction force as a function of

the contact time. Direct imaging of contact regions in samples under a normal load

shows a logarithmic growth with time [166], leading therefore to a slowly increasing

static friction. At the phenomenological level, frictional ageing is well described by

rate and state friction laws, widely used in geophysics [167], but its microscopic ori-

gin is still debated. The main mechanisms that have been invoked in the past to ex-

plain it are plastic creep [168] or chemical strengthening at the interface [169]. In a

recent paper [169], AFM was used to explore ageing in nanoscale contact interfaces,

finding supporting evidence for the second mechanism, since when the contact sur-

face was passivated it showed no ageing. It is however likely that at larger scales and

loads plastic creep would also play an important role. Beyond its direct relevance

for friction, the intriguing issue of contact ageing occurs in other non-equilibrium

disordered systems such as granular media or glasses.

4.3 Multiscale Models

Since it is currently impossible to treat atomistically all the characteristic length

scales that mark the dynamical processes entering the friction coefficient of en-

gineering materials, a rising effort is nowadays devoted to develop multiscale ap-

proaches. The basic consideration is that unless conditions are very special, all pro-

cesses far away from the sliding interface can be described approximately by con-

tinuum mechanics and simulated using finite elements, allowing for a macroscopic

description of elastic and plastic deformation. The advantage of these continuum-

theory methods is that it is possible to increasingly coarse-grain the system as one

moves away from the sliding contact, thereby highly reducing the computational

effort. Several groups [170, 171] combine the atomistic treatment of the interfacial

mating region, where displacements occur on an atomic or larger length scale, with

a coarse-grained or finite-element continuum description elsewhere, where strains

are small and continuous. The main difficulty lies in the appropriate matching condi-

tions between the atomistic and continuum regions [172]. Since the detail of lattice

vibrations (the phonons), which are an intrinsic part of any atomistic model, can-
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not be fully represented at the continuum level, conditions must be met that at least

the acoustic phonons should not be reflected excessively at the atomistic-continuum

interface. In other words, matching at this interface must be such that sound de-

formations transmit with reasonable accuracy in both directions, which is vital to a

proper account of Joule-heat disposal into the bulk. Chapter ?? covers this issue.

4.4 Selected Results of MD Simulations

Here we survey some results from the growing simulation literature, certainly not

providing an adequate review of the field. With two sliding surfaces separated by a

thick fluid film, friction is mainly determined by the lubricant viscosity. The friction

coefficient can be calculated using the Navier-Stokes equations, showing a mono-

tonic increase with the relative sliding velocity [173]. For small driving velocity

and/or high load, the lubricant cannot usually keep the surfaces apart and solid-

solid contact eventually ensues. But even before full squeezeout, a liquid confined

within a nanometer-scale gap ceases to behave as a structureless fluid — it becomes

layered and even may solidify when thickness decreases below about five molecu-

lar layers. Pioneering studies of confined systems under shear reveal a sequence of

drastic changes in the static and dynamic properties of fluid films in this “boundary-

lubrication” regime.

SFA experiments [174] and MD simulations [175, 176] have both shown clear

upward frictional jumps, in correspondence to squeezout transitions from N to

N −1 lubricant layers. The lubricant squeezout for increasing load becomes harder

and harder, corresponding to a (near) crystallization of the initially fluid lubri-

cant [177–179]. But friction would not necessarily always jump upward during the

layer-by-layer squeezout: it could jump downward as well, if lattice mismatch be-

tween the compressed boundary lubricant layer and the rigid substrates jumped from

Fig. 13 (color online). Top

view of a snapshot of a 3D

MD simulation of the soli-

tonic pattern arising at the

boundary layer of a solid lu-

bricant (light grey) in contact

with a perfect crystalline sur-

face (dark/red), induced by

a 16% lattice-constant mis-

match. The Lennard-Jones

interaction of this simulation

favors in-registry hollow sites,

while unstable top sites mark

solitonic regions. Other layers

were omitted for clarity.
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commensurate to incommensurate, the latter superlubric with a mobile soliton pat-

tern, as sketched in Fig. 13.

MD investigations of a melting-freezing mechanism in the stick-slip phenomenol-

ogy of boundary-lubricated films were carried out by [180–183]. Various realistic

models for lubrication layers in very specific contexts have been investigated with

extensive MD simulations [162,184–187]. During sliding, a thin lubricant film may

be solid or liquid, depending on the interplay between the strength of interaction of

lubricant molecules with the surfaces and between themselves. In the case of weaker

interaction with the surfaces, the sliding takes place at the lubricant-surface inter-

face, and the lubricant film remains in the solid state. And if the substrate and the

solid lubricant both have near-ideal crystalline structures and these structures are

incommensurate, superlubric sliding with zero static friction and very low kinetic

friction ensues: the solid lubricant may provide minimal friction coefficient. But in

practice the surfaces, as well as the lubricant, are unlikely to retain undefected crys-

talline structures. The presence of impurities or defects between the sliding surfaces

can, even in a relatively small concentration, leads to pinning and nonzero static

friction [188], thus destroying superlubricity. However, if one carefully chooses the

parameters of the lubricant, the perfect sliding could again be achieved, because the

lubricant may self-order itself during sliding [189].

In the opposite case of a strong interaction of lubricant molecules with the sur-

faces, the latter are covered by lubricant monolayers which protect surfaces from

wear, and sliding occurs somewhere in the bulk of the lubricant film. In this case the

film usually melts during sliding (a thin lubricant film, however, is not completely

liquid typically, it has a layered structure imposed by the surfaces, and slips often

occur by a layer-over-layer mechanism [162]). The kinetic friction for a liquid lubri-

cant film, even for very thin films (but thicker than two molecular layers), is caused

by lubricant viscosity. A lower viscosity implies better lubrication, i.e. lower kinetic

friction. Thus, the “best lubricant” is vacuum: the viscosity is zero, so the friction

should be zero too (more rigorously, even in the case of a vacuum gap between

sliding bodies, due to quantum effects a nonzero friction arises even at zero temper-

ature [190,191]). Air and water are excellent lubricants (recall how slippery is a thin

water film over the ice surface; note also that nature adopted aqueous solutions as a

lubricant in the articular joints of animals).

However, a low viscosity easily leads to squeezing out of the lubricant from the

sliding interface; then the surfaces come in direct contact and start to be eroded by

rubbing wear. That is why in machinery oil-based lubricants are used typically. An

oil has large viscosity which leads to high friction, but it is also hard to squeeze out

of the contact zone due precisely to its high viscosity. Thus, lubrication engineering

is in a permanent search for a compromise: on one hand, the viscosity should be

low to provide low friction, but on the other hand, it must be large enough to avoid

oil squeezing out and machinery wear. This problem is especially actual for nano-

devices, where traditional lubricants often fail to operate.

For a liquid lubricant, the role of the shape of lubricant molecules is also non-

trivial. Simulation [192] showed that brush-forming lubricants, e.g. head-glued

molecules which work like a hair, provide better lubrication — even if the surfaces
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are pushed together so strongly that most lubricant is squeezed out leaving fewer

than two monolayers, it continues to operate providing smooth sliding.

To some degree, MD can address relevant realistic features, including the rough-

ness of real surfaces. Even if one polishes the surfaces and makes them smooth, they

still consist of domains with different orientation because of the mismatch between

the crystalline structures. Simulation [193, 194] showed that when two crystalline

surfaces (even with a few lubricant layers in between) are rotated relatively each

other, the static friction force changes with the misfit angle over more than one or-

der in magnitude.

Finally, in the case of a lubricant which melts during sliding but solidifies at

stick, the formation of solid droplets (grains) pin the surfaces by bridges; but these

bridges are not formed instantaneously, not all at once. The bridges, grains, domains,

asperities, etc. acquire different sizes and therefore different stress values to be bro-

ken at the subsequent slip. The interface is always divided into areas characterized

by different thresholds for the onset of sliding. Therefore, such a parameter as the

static friction force is in fact not a physical quantity, it describes some average value

measured in an experiment (and its value depends on the way the experiment is or-

ganized). This fact must be taken into account in description of real tribosystems,

and this may be done with the help of the earthquakelike model considered in the

next Sec. 5.

5 Earthquakelike Models

An earthquakelike (EQ) model, known also as a multi-contact model, assumes that

the contact between two surfaces is realized only at certain points. Typically for

a dry contact of rough surfaces these contacts are associated with asperities, but

they may otherwise represent molecular bonds or capillary bridges, or they may

account for patches of solidified lubricant or its domains for the case of lubricated

friction. The contacts are characterized by a continuous distribution of the static

threshold values Pc(xs). A contact itself behaves as follows from MD simulation

and tip-based experiments — it operates as an elastic spring until the local shear

force fi = kxi (k is the elastic constant and xi is the contact stretchings) is below

a threshold value fsi = kxs, and breaks when the threshold is exceeded. When the

upper block moves, the forces on the contacts increase, and at some moment they

start to break in sequence, one after another, with weaker contacts breaking earlier

and strongest contacts resisting to the last. Once a contact is broken, it slips and then

is reformed again. Such a model was used in many studies [42,43,159,195–200] and

successfully accounted for friction at the meso- and macroscale. Models of the same

class were also used to describe the failure of fibre bundles and faults [201–203].

The master equation. The EQ model, being the cellular automaton model, allows

no analytical treatment. Its kinetics, however, may be reduced to the so-called master

equation (ME), also known as the kinetic equation, the Boltzmann equation, etc. It
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reads as follows [204, 205]:

[

∂

∂X
+

∂

∂x
+P(x)

]

Q(x;X) = δ (x)
∫ ∞

−∞
dξ P(ξ )Q(ξ ;X) , (9)

where Q(x;X) is the distribution of the stretching x when the bottom of the sliding

plate has advanced at position X , and P(x)∆X is the fraction of contacts that break at

the stretching x when the plate moves by ∆X . The latter is related to the distribution

of the breaking thresholds Pc(x) by

P(x) = Pc(x)/Jc(x) , Jc(x) =
∫ ∞

x
dξ Pc(ξ ) , (10)

which simply says that the fraction of the contacts that break when X increases by

∆X are those that have their thresholds between x and x+∆X divided by the total

of fraction Jc(x) of contacts which are not yet broken at stretching x.

(9) and (10) can be generalized to incorporate thermal effects, and can also

be supplemented by another equation describing the aging of contacts [205]. The

ME can often be solved analytically, thus allowing us to describe the dependence

of friction on temperature and velocity, the stick-slip motion and the transition to

smooth sliding.

Smooth sliding: friction force versus velocity. The steady-state solution of the ME

may be found analytically; it describes the dependence of the kinetic friction force

on the sliding velocity in the smooth-sliding regime [206]. According to the second

Amontons law (also known as the Coulomb law), the friction force does not depend

on the sliding speed; however, this is not true in a general case. The friction force

does depend on the speed — fk(v) increases with v at small velocities, reaches a

maximum and then decreases. At low driving velocities the kinetic friction force

increases linearly with speed — if the slider moves slowly, all contacts will break

sooner or later, purely due to thermal fluctuations. The slower the slider moves, the

longer time the contacts have to receive a fluctuation above the threshold, so the

smaller is the friction force. The linear fk(v) dependence sometimes is treated as a

(typically very high) “viscosity” of a thin lubricant film [197, 199]. At intermediate

speed, the role of thermal fluctuations becomes more and more marginal, and fric-

tion is dominated by the so-called aging effects: when a contact breaks, soon it re-

forms and grows in size. This leads to a weak (logarithmic) fk(v) dependence, which

is basically consistent with Amonton-Coulomb’s law: the actual fk(v) dependence

is hard to detect experimentally (however, see recent papers [42, 43]). Eventually at

high velocities the kinetic friction reaches a maximum and starts to decrease, when

sliding is so fast that no time is left for contact re-forming.

Stick-slip: elastic instability. The EQ approach also accounts for the stick-slip mo-

tion and the transition to smooth sliding [197, 199, 205]. Roughly speaking, it may

be explained as follows: when the slider begins to move, the contacts start to break

but they are formed again later. The main question is: do the re-formed contacts pro-

duce a force capable to compensate the externally applied driving force? If not, an
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elastic instability appears, and the slider will slide fast until the pulling spring force

decreases enough; then the process repeats itself. This is the stick-slip regime, typi-

cal e.g. of creaking doors and squeaking brakes. If, on the other hand, the reformed

contacts build up a force strong enough to compensate the driving one, the system

proceeds with smooth sliding. When the aging of contacts is taken into account,

such an approach explains the transition from stick-slip to smooth sliding with the

increase of driving velocity.

Interaction between the contacts. Above we considered the model with a rigid

slider where the contacts do not interact. In reality, elasticity of the sliders leads to

contact-contact interaction — when one of contacts breaks, the forces on surround-

ing contacts should increase by some δ f . Numerics [207] shows that δ f (r) decays

with the distance r from the broken contact as δ f (r) ∝ r−1 at short distances r ≪ λ ,

and as δ f (r) ∝ r−3 at long distances, where λ ∼ a2E/k is the elastic correlation

length [207,208] expressed in terms of the slider Young modulus E and the average

distance a between the contacts. The model may then be simplified by considering

the slider as rigid over distances r <∼ λ , and treating the contacts within each λ -

area as one effective λ -contact with the parameters determined by a corresponding

solution of the ME. Numerics also shows that most of the intercontact extra force

arises in front and behind the broken contact, which means that the interface may

be approximately considered as an effective 1D chain of λ -contacts.

Self-healing crack as a solitary wave. If the λ -contacts do not undergo elastic in-

stability, then a local perturbation spreads smoothly over the interface. Otherwise, if

it is subject to the elastic instability, i.e. if it breaks and slides at a certain threshold

stress, then the nearest neighboring λ -contacts have a good chance to break too, and

a sequence of breaks will propagate through the interface like in a domino effect. In

the latter case the dynamics of the chain of λ -contacts can be addressed with the help

of the FK model (see Sec. 3), where the sinusoidal substrate potential is replaced by

a sawtooth-like potential of periodically repeated inclined pieces [209]. With this

approach one can find analytically the maximum and minimum shear stress for

crack propagation (the latter corresponds to the Griffith threshold) as well as the

crack velocity as function of the applied stress. When the shear stress is uniform

and a λ -contact breaks somewhere along the chain, two self-healing cracks propa-

gate from the initial break point in opposite directions as solitary waves similarly to

the kink-antikink pair of Fig. 3 until they reach the boundary or meet with another

crack created somewhere else.

Onset of sliding. When an elastic slider is pushed from its trailing edge as in the

experiments by Fineberg et al. [210–212], the nonuniform shear stress is maximal

at the trailing edge and falls off with distance inside the block. As the pushing force

is increased, the most likely starting event is the breaking of the leftmost λ -contact.

Due to interaction between the contacts, this will result in the increase of the stress

on the second λ -contact which will break too, and so on until the self-consistent

stress will occur below the threshold. Thus, the self-healing crack created at the

trailing edge, propagates through the interface over some distance Λ (which can be
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found analytically [213]), removing the stress at its tail but creating an extra stress in

the region ahead. With a further increase of the pushing force, a second crack is cre-

ated at the trailing edge. This second crack triggers the previously formed stressed

state and propagates further to some distance, and so on until the cracks will reach

the leading edge of the system. Besides, when the crack stops, the stress on the con-

tact at crack’s tip is close to the threshold value. When the trailing edge moves, the

increasing stress is transferred through the interface and affects the contacts ahead

of the arrested crack to break one by one. Therefore, between the propagation of

fast cracks, the system exhibits a slow dynamics — a creep-like crack motion which

may correspond to the slow crack mode observed experimentally [213]. The most

important issue here is that, when the cracks propagate through the interface, the

whole slider undergoes slight slips, the so-called precursors, which may be detected

and used to predict the large earthquake [198,213]. Recent fully 3D analysis of this

class of experiments suggests that precursory activity is an intrinsically quasi-static

physical process [214].

Real earthquakes. The EQ-like model described above has been invented initially

by Burridge and Knopoff [215] (the famous BK spring-and-block model) to ex-

plain real earthquakes, not friction. The physics of these two problems — friction

and earthquakes — is essentially similar and differs mainly by the spatio-temporal

scale: nanometers and seconds to hours in tribology in comparison to kilometers

and years to centuries in geology. Real earthquakes are characterized by two laws

— the Gutenberg-Richter (GR) law [216,217] and the Omori law [218]. Both these

laws are empirical, found through long-term statistical observations, and there are

no more or less articulate explanations of these laws yet. EQ-like models discussed

above may be one of the approaches which would allow to explain both laws. In

particular, the GR law may be explained as emerging due to contact aging [219],

while the Omori law may be associated with a finite distance of crack propagation

— after a large earthquake, not all the stress is released, but a part of it is stored at a

distance Λ from the main shock. The eventual goal of these studies is to be able to

predict earthquakes, but this has not been achieved yet.

6 Conclusions

Among provisional conclusions of this chapter we mention:

(i) All levels of modeling and simulation can be highly informative and predic-

tive, provided that specific limitations are kept clear.

(ii) The simple PT and FK models are extremely useful in understanding several

aspects of nanofriction, including superlubricity.

(iii) MD simulations are powerful and informative for qualitative and even quan-

titative descriptions of atomic stick-slip and high-speed smooth sliding. An advan-

tage of MD is also that it can address extreme or otherwise unusual frictional situ-

ations, still unexplored experimentally [134, 220–222]. The main open problem in
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MD is the size and time limitations, in particular the complete omission of slow,

logarithmic relaxations and ageing.

(iv) Earthquakelike (multi-contact) models are instrumental in describing meso-

scopic friction and fracture, especially in bridging the gap between nano- and

macro-scale friction [223].

Among open problems we mention prospective mechanisms for the control of

friction. One approach involves using natural or artificially-induced oscillations

obtained by small normal or lateral mechanical vibrations which may, when ap-

plied at suitable frequency and amplitude ranges, help dislodge a contact, increas-

ing surface mobility and diffusion and thus reducing friction and wear. Flexibil-

ity and accessibility are the main relevant features of this approach, since fric-

tional properties can be tuned continuously by the frequency and the amplitude

of the applied vibrations. This effect has been demonstrated experimentally with

AFM [30, 50, 51, 224] and in sheared confined system [225–227] as well as nu-

merically with MM [48,49,228,229] approaches and with atomistic MD [230,231].

Despite these promising numerical and experimental contributions, a realistic multi-

contact analysis accounting for the friction dependence on vibrations is still to some

extent lacking.

Another idea to control friction is to employ a substrate undergoing a phase tran-

sition. While it is obvious that friction will change in the presence of a phase tran-

sition, it is more subtle to qualify and quantify precisely the effect. Surprisingly

perhaps for such a basic concept, there are essentially no experimental data avail-

able — and no theory either. A PT-like MD nanofrictional simulation based on a

point slider over a 2D model substrate with a built-in structural displacive transi-

tion recently predicted that stick-slip friction should actually peak near the substrate

critical temperature [232].

Another interesting and practically important topic is AFM manipulation of

surface-deposited clusters, which can serve as a useful method to measure the in-

terfacial friction of structurally well-defined contacts of arbitrary size and mate-

rial combinations. Indeed, one of the remarkable experimental observations of the

last decade concerns the unexpected ability of relatively large metal clusters to

execute friction-free motions and even long skids with size and shape conserva-

tion [233–237]. Gold clusters, comprising typically hundreds of atoms, have been

repeatedly observed to diffuse on highly oriented pyrolytic graphite (HOPG) sur-

faces with surprisingly large thermally activated diffusion coefficients already at

room temperature; a similar behavior was reported also for larger antimony clusters.

Here, MD simulations are extremely useful in understanding depinning, diffusion,

and frictional mechanisms of clusters on surfaces. MD simulations of the diffusive

regime have shown the possible coexistence of sticking periods and of long jumps,

reminiscent of so-called Levy flights [134, 238–240]. The sticking lasts so long as

the cluster-substrate surfaces are orientationally aligned, and the long sliding jumps

occur when a thermal fluctuation rotates the cluster destroying the alignment [134].

It is worth mentioning in closing that there remain fully open problems at the very

basic theoretical level: we still do not have a proper theory of friction, namely a the-

ory where the frictional work could be calculated quantitatively (not just simulated)



28 N. Manini, O.M. Braun, and A. Vanossi

in all cases — they are the majority — where linear-response theory is inapplicable.

There are also many more outstanding challenges left in nanofriction, such as:

• The ageing of surface contacts at the nano and macroscales.

• Role of wear and adhesion at the nanoscale.

• Role of ball-shaped molecules (C60) as additives to traditional lubricants [241–

243].

• Rolling nanofriction: besides the known case of nanotubes: does it exist, and how

to distinguish between rolling and sliding?

• Friction in dislocations and in granular systems.

• Water-based lubricants [244, 245].

• Friction in biological systems (motor proteins, cells membranes and pores, etc.).

Lively progress along these and newer lines is to be expected in the near future.
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18. Y. Sang, M. Dubé, and M. Grant, Phys. Rev. Lett. 87, 174301 (2001)

19. O. M. Dudko, A. E. Filippov, J. Klafter and M. Urbakh, Chem. Phys. Lett. 352, 499 (2002)

20. C. E. Maloney and D. J. Lacks, Phys. Rev. E 73, 061106 (2006)



Nanotribology: nonlinear mechanisms of friction 29

21. J. Kurkijarvi, Phys. Rev. B 6, 832 (1972)

22. A. Garg, Phys. Rev. B 51, 15592 (1995)

23. W. L. Johnson and K. A. Samwer, Phys. Rev. Lett. 95, 195501 (2005)

24. D. J. Lacks, J. Willis, and M. P. Robinson, J. Phys. Chem. B 114, 10821 (2010)

25. R. Berkovich, S. Garcia-Manyes, M. Urbakh, J. Klafter, and J. M. Fernandez, Biophys. J. 98,

2692 (2010)

26. J. S. Helman, W. Baltensperger, and J. A. Holyst, Phys. Rev. B 49, 3831 (1994)

27. R. Gilmore, Catastrophe Theory for Scientists and Engineers (Wiley, New York, 1981)

28. A. Socoliuc, R. Bennewitz, E. Gnecco, and E. Meyer, Phys. Rev. Lett. 92, 134301 (2004)

29. E. Gnecco, R. Bennewitz, T. Gyalog, Ch. Loppacher, M. Bammerlin, E. Meyer, and H.-J.

Güntherodt, Phys. Rev. Lett. 84, 1172 (2000)

30. E. Riedo, E. Gnecco, R. Bennewitz, E. Meyer, and H. Brune, Phys. Rev. Lett. 91, 084502

(2003)

31. P. Reimann and M. Evstigneev, Phys. Rev. Lett. 93, 230802 (2004)

32. S. Y. Krylov, K. B. Jinesh, H. Valk, M. Dienwiebel and J. W. M. Frenken, Phys. Rev. E 71,

65101 (2005)
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44. T. Gyalog, M. Bammerlin, R. Lüthi, E. Meyer and H. Thomas, Europhys. Lett. 31, 269 (1995)

45. R. Prioli, A. F. M. Rivas, F. L. Freire Jr., and A. O. Caride, Appl. Phys. A: Mater. Sci. Process.

76, 565 (2003)

46. C. Fusco and A. Fasolino, Appl. Phys. Lett. 84, 699 (2004)

47. C. Fusco and A. Fasolino, Phys. Rev. B 71, 045413 (2005)

48. M. G. Rozman, M. Urbakh, and J. Klafter, Phys. Rev. E 57, 7340 (1998)

49. V. Zaloj, M. Urbakh, and J. Klafter, Phys. Rev. Lett. 82, 4823 (1999)

50. A. Socoliuc, E. Gnecco, S. Maier, O. Pfeiffer, A. Baratoff, R. Bennewitz, and E. Meyer,

Science 313, 207 (2006)

51. M. A. Lantz, D. Wiesmann and B. Gotsmann, Nature Nanotech. 4, 586 (2009)

52. S. Y. Krylov, J. A. Dijksman, W. A. van Loo, and J. W. M. Frenken, Phys. Rev. Lett. 97,

166103 (2006)

53. Z. Tshiprut, A. E. Filippov, and M. Urbakh, J. Phys.: Condens. Matter 20, 354002 (2008)

54. O. M. Braun and Yu. S. Kivshar, The Frenkel-Kontorova Model: Concepts, Methods, and

Applications (Springer, Berlin, 2004)

55. U. Dehlinger, Ann. Phys. (Leipzig) 2, 749 (1929)

56. Ya. I Frenkel and T. A. Kontorova, Phys. Z. Sowietunion 13, 1 (1938)

57. T. A. Kontorova and Ya. I. Frenkel, Zh. Eksp. Teor. Fiz. 8, 89 (1938)

58. T. A. Kontorova and Ya. I. Frenkel, Zh. Eksp. Teor. Fiz. 8, 1340 (1938)

59. O. M. Braun, A. R. Bishop, and J. Röder, Phys. Rev. Lett. 79, 3692 (1997)
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