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Abstract. We study the diffusion of a particle in a two-dimensional exter-
nal potential. Simulation results show that, in the underdamped limit, the
average jump length ()\) scales with the damping coefficient 7 as (A) & 7~
with 1/2 < o < 2/3, so that the diffusion coefficient behaves as D o< ™7
with 0 < o < 1/3. We then introduce a realistic friction coefficient for the
phonon damping mechanism. The study of diffusion in this model shows
that long jumps play an essential role for diffusing atoms of small masses,
especially in two limiting cases: a large substrate Debye frequency, when
the rate of phonon damping is low, and a small Debye frequency, when
the one-phonon damping mechanism is ineffective. As an application, we
consider the diffusion of a dimer adsorbed on the crystal surface.

1. Introduction

A variety of phenomena in physics and other fields can be modeled as Brow-
nian motion in an external periodic potential [1, 2]. One particular example,
the surface diffusion of atoms or small clusters, is of great fundamental and
technological interest [3]. At low temperatures T, kgT < &, where kg is
the Boltzmann constant and ¢ is the height of the substrate potential, dif-
fusion proceeds by uncorrelated thermally activated jumps over the barrier
from one minimum of the external potential to another, and the diffusion
coefficient takes the Arrhenius form, D < A = exp (—¢/kgT). If the jump
rate is known, the D can be found with the help of a lattice-gas model for
any symmetry of the lattice [4]. Usually, it is assumed that atoms can jump
only to nearest neighboring minima of the substrate potential. In this case
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where d = 1 or 2 for surface diffusion, R is the total rate of escape from
a potential well, and the mean-square jump length ()\2) coincides with the
square of the lattice constant a2. To find the rate of atomic jumps, one
has to study the diffusional dynamics, either by molecular dynamics (MD)
methods, or with the help of a more simple approach based on the Langevin
equation

mi + mnr + dV (r) /dr = §F(t), (2)

where m is the atomic mass and V'(r) is the substrate potential. The energy
exchange between the diffusing atom and the substrate is modeled by a
viscous frictional force with the coefficient 7 and by the random force § F
which corresponds to Gaussian white noise,

(6F(t) SF())) = 2qmkgTé(t — t'). 3)

A rigorous expression for the diffusion coefficient is known only in the
overdamped limit, 7 3> wp [here wp = (V" /m)'/? is the frequency of atomic
vibration at the minimum of the substrate potential], when the Fokker-
Planck-Kramers (FPK) equation corresponding to Egs. (2-3) reduces to a
more simple Smoluchowski equation. An analytical solution is known for
the one-dimensional (1D) substrate potential [5] and for the quasi-two-
dimensional case of a channel with periodically varying width [6, 7]. An
approximate solution was found also for a two-dimensional (2D) substrate
potential [8, 9].

A typical situation in surface diffusion corresponds to the case of inter-
mediate or low damping. For intermediate friction, 7 ~ wp, the diffusion
can be adequately described by transition state theory (TST), where the
total escape rate is given by the Kramers expression [10] R =~ wgA/m which
does not depend on 7, and A = a. This case was studied in a number of
papers [11]. Molecular dynamics predicts that atomic jumps longer than a
unit lattice spacing ((\) > a) always exist, but the increase in the jump
length is approximately compensated by the decrease in the escape rate R
because of “backward” jumps, so that Eq. (1) still holds [11].

The present paper is devoted to the interesting case of low damping, n <
wo, when long jumps may play a dominant role. The problem of multiple
jumps, or flights, has been discussed in a number of papers [12, 13, 14]. The
escape rate at low damping is restricted by slow diffusion in energy space
[10], R o 7, but the probability of atomic jumps for many lattice constants
is highly increased [13, 15], (\) o 7. Thus, the diffusion coefficient scales
as D o ™! for low damping. Analytical results are known for the 1D case
in the 7 — 0 limit only [1].

Although experiments do demonstrate the existence of atomic jumps
for several lattice constants [16], a corresponding theory has not yet been
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developed. There are two factors that may significantly reduce the jump
length. Firstly, in two dimensions (2D), the path connecting adjoining sites
may not coincide with the direction of the easy crossing of the saddle point.
This has to reduce the probability of long jumps [17, 18], so one could expect
a dependence

(A) ox ™ (4)
with o) < 1. Since the escape rate in a multidimensional space should still
behave as R o 7 [19], we come to the dependence

Don™ ()

with 0 = 20, — 1 < 1. In particular, with the help of numerical simulation
for the 2D substrate potential Chen et al. [20] found that o = 0.5, which
gives o) = 0.75. Afterwards, Caratti et al [21] showed that o is not universal
but depends on the geometry of the substrate potential.

Secondly, long jumps may exist in the case of low damping only. Gen-
erally, there always exists the phonon damping mechanism due to excita-
tion of phonons in the substrate, with the rate proportional to the density
of phonon states in the substrate. Since the frequency associated with the
adatom motion may be of the same order of magnitude as the maximum fre-
quency of phonons in the substrate (the Debye frequency, wy, ), the phonon
damping coefficient 7p, may strongly depend on the atomic velocity. In
order to study this effect, we have to develop a corresponding technique,
since the standard approach based on Langevin or FPK equations is not
valid because it assumes that 7 is constant

The main goal of the present work is to find the conditions when long
jumps play an essential role in surface diffusion. Throughout this paper we
use a dimensionless system of units. The period of the substrate potential
is taken as a = 2, the energy barrier for activated diffusion is € = 2, and
the mass of the substrate atoms is m; = 1. The temperature is measured
in energy units (kg = 1). In simulations we typically used T = 1/3, which
corresponds to activated diffusion (¢/T = 6 so that A ~ 2.48 x 1073,
Rrst = woA/m =~ T7.89 x 104, and Dygt = %RTSTO,2 ~ 1.56 x 10_2),
but allows us to achieve a reasonable accuracy. The diffusion coefficient is
calculated as D = (z%(t))/2t by solving the Langevin equation (see details
in Ref. [7]).

2. Diffusion in a 2D External Potential

Firstly, we study the role of the two-dimensionality of the substrate poten-
tial, assuming that the damping coefficient 7 in Eqgs. (2-3) is constant. We
considered several variants of the 2D potential (all potentials are character-
ized by the lattice spacing a = 27 and the heigh € = 2): (a) The potential
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with a channel shape having a periodically varying width,
V(z,y) = (1 - cosz) + jwiy’ + 1 (3 — wi)(1 —cosz)y®,  (6)

where we put w; = wp = 1, so that atomic vibrations at the minimum
of the substrate potential are symmetric, and the parameter ¢ = w? —
w? controls the coupling of the z (along the diffusion path) and y (the
transverse direction) degrees of freedom; (b) A pure 2D substrate potential
of square symmetry,

V(z,y) = (1 — cosz) + (1 — cosy) + 3 (w3 — 1)(1 — cosz)(1 — cosy) . (7)

Along a diffusion path this potential is similar to the “channel” potential,
except that now both directions z and y are equivalent; (c) The “most
isotropic” 2D substrate potential, with the triangular symmetry,

V(x,y)=%[l—cosx cosy/\/§+%(l—cos2y/\/§)] ; (8)

(d) The substrate potential with hexagonal symmetry, constructed as a
product of two triangular potentials appropriately scaled and shifted with
respect to one another. Contrary to the potentials (a)—(c), in the honeycomb
lattice, the path connecting the next-nearest neighboring sites does not
coincide with a straight line. Thus, ballistic motion corresponding to long
jumps should be suppressed, and the average jump length may be strongly
reduced.

Some of the simulation results for the dependence D(n) for a wide inter-
val of n (1073 < 5 < 5) are presented in Fig. 1 [the diffusion coefficient D is
normalized to the exact value for the diffusion in the one-dimensional (1D)
sinusoidal potential in the overdamped limit, Dsmoip = Dyl 2 (e/2kpT),
where Dy = kgT/mn and Io is the modified Bessel function]. In the over-
damped limit the coupling between the modes produces the entropy bar-
riers [7]. In the case w) > ws, the diffusional “channel” is wider at the
saddle point than at the minimum, so that the entropy barrier is negative,
which works against the energy barrier €, and thus leads to an increase of
the diffusivity. This effect remains approximately the same for intermedi-
ate frictions down to n > 0.1. At lower damping, n < 0.1, the 2D effects
lead to a qualitatively different behavior. While the 1D diffusion coeffi-
cient slowly approaches the 7 — 0 limit Dg = wDsA/2 (see [1]), so that
D/Dgmo1p x 7D tends to a plateau, in the 2D case, the value nD contin-
ues to decrease with 7. In Ref. [7] we found that the activated diffusion in
the channel of varying width at small 7 can be fitted by the power law (5)
with o0 = 1/3 both for the case of wide barriers (g = 0.99) and the case
of narrow barriers (9 = —0.99). Figure 1 demonstrates that the same is
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Figure 1. (a) D(n) for the channel (open diamonds) and square (solid diamonds) sub-
strate potentials for wy = 1 and w2 = 0.1, and (b) the same for the triangular substrate

potential. The lines show the low-damping fit D o« /3. The dashed line in (b) describes
the fit D o< 7~*/2 of Chen et al. [20] for an interval of moderate damping.

true for square and triangular lattices. This leads to the scaling (4) of the
jump length with the exponent o) = 2/3. On the contrary, for the hexago-
nal lattice, the diffusion coefficient approaches a plateau, D o 7° at small
frictions, n < 1072.

From the simulation results it follows that the earlier results of Chen
et al. [20] and Caratti et al. [21] do not correspond to the low-damping
asymptotic behavior but to a crossover region of intermediate frictions.
Calculating separately the escape rate R and the jump length )\, we found
that they can be fitted by power laws R(n) o 7R and (A(n)) < 7~
with the exponents or and o). The escape rate exponent og =~ 0.9 is close
to the exact 1D value og = 1. A small decrease of o from 1 can be
explained by the beginning of the crossover to the intermediate damping
regime, where og = 0. The results for the exponent o) are, unfortunately,
much less clear. The simulation leads to o) ~ 0.3 —0.55 for the 2D system,
which is definitely lower than the value o) = 2/3 ~ 0.67 predicted by the
D(n) « n~1/3 dependence.

In conclusion, the simulations predict that 0 < o < 1/3. The following
speculations lead to the conjecture o) = 1/2 for all 2D systems where the
z and y degrees of freedom are coupled. Indeed, if the 2D external poten-
tial V(z,y) is not separable, Newtonian motion in the conservative system
should be stochastic in a general case [22]. For some initial conditions the



36 O. M. BRAUN

atomic trajectory is regular (e.g., the atom either oscillates in the same
potential well, or it moves ballistically over the barriers), while for other
initial conditions the motion is chaotic and corresponds to anomalous dif-
fusion [22, 23], (r?) oc t“. For the atoms that cross the barriers and have
energies within a narrow “skin” layer close to € = 2, the atomic trajectories
are close to the separatrix trajectory in the (z, %) phase space, so one could
expect that these trajectories will be totally chaotic and the motion pure
diffusional, v ~ 1. If we now include the external damping, then in the
limit » — 0 the jumping atoms all belong to a thin “skin” layer of width
~ (nT)Y? (e.g., see Refs. [1, 15]), so their trajectories should be close to
the chaotic trajectories of the conservative system for times t < 1. Thus,
one can predict that oy = 1/2 and ¢ = 0 in the  — 0 limit.

3. Diffusion of a Dimer

We now study the diffusion of a dimer in a 1D sinusoidal potential. Let x;

and z2 be the coordinates of two atoms coupled by an elastic spring with

constant g and equilibrium distance ag = 27. Introducing the coordinates
=1 + =2 and y = £2 — 1 — ap, the Hamiltonian can be written as

H = }m (3% +3?) + §e [1 - cos (32) cos (3)] +393%  (9)

which describes the motion of one particle of mass m = %ma = -é— in the
z-periodic potential of height € = 2e, = 4 and period a = 2a, = 4.

The adiabatic trajectory for this system was studied in [24]. Its shape
depends on a value of the elastic constant g. The points (z,y) = (47n,0),
where n is an integer, always correspond to the absolute minimum of the
potential energy. Near the minimum, the potential energy has the expansion
Vn(z,y) ~ 3m(wgz? + wd,y?) with wo = 1 and woy = (29 + 1)/2. For a
strong spring, g > 1/2, there is only one saddle point at (zs,ys) = (2, 0)
between two adjacent minima. Near the saddle, the potential energy has
the expansion Vy(z,y) = €5+ 3m[—w?, (€ — ) +w?, (y—ys)?] with g, = 4,
wsz = 1 and wsy = (2g — 1)/2. Thus, dimer diffusion can be approximately
described as the motion of one atom in a corrugated periodic potential
with transverse frequencies w; 2 = (2¢ £ 1)!/2, i.e. it corresponds to the
case of “wide” barriers studied above. Therefore, although the shape of the
adiabatic trajectory does not depend on the elastic constant for g > 1/2,
the diffusion coefficient does depend on g: it increases when g — 1/2 due to
the decrease of the transverse curvature at the saddle point. The simulation
results show that close to the critical point g = 1/2, when anharmonicities
of transverse vibrations at the saddle point are large, the entropy factor
strongly depends on T', especially at low temperatures.
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Figure 2. (a) The activation energy ¢, and (b) the ratio of frequencies at the saddle and
minimum points as functions of the elastic constant g for dimer diffusion. (c) Dependence
of the diffusion coefficient D (times n) on the elastic constant g at T = 1 for different
values of the damping constant: » = 5 (dotted diamonds), = 0.5 (open diamonds),
1 = 0.05 (solid diamonds), and n = 0.005 (crossed diamonds). The dotted curve and
diamonds with plus signs show the simulation results for the “atom in channel” model
with 7 = 5 and other parameters adjusted to the dimer case.

For intermediate values of the elastic constant, 1/7 < g < 1/2, the adia-
batic trajectory still has only one saddle point (27, y,) between the adjacent
minima, which is characterized by the energy e,(g) = 3¢ (1 + cos(ys/2)] +
%gyf, so that 2 + 7/2 < €, < 4. Finally, for weak coupling between the
atoms, g < 1/, there are two saddle points between the adjacent minima,
with a local minimum of the potential energy between these saddle points.
The saddle points are characterized by the energy €,(g) = %(5 + gn?), so
that 2 < €5 < 2+7/2. The dependence €4(g) is shown in Fig. 2(a). The acti-
vation energy monotonically increases from the single-atom value €; = 2 at
g = 0 to the rigid-dimer value €; = 4 at g = 1/2 and then remains constant.
Thus, one could expect that the diffusion coefficient should monotonically
decrease with increasing G. However, the simulation results show that often
this is not true. The peculiarity in the transverse frequencies at the point
g = 1/2, where the saddle transverse frequency reaches zero, leads to a
maximum of the function D(g) close to this point, if the damping is small,
n < 0.5, and the temperature is not too low, T' > 1 (recall that ¢ = 4).
Thus, multi-dimensional effects may strongly affect dimer diffusivity.
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4. Diffusion with Realistic Damping

The energy exchange between a moving atom and a substrate is caused
by electromagnetic and electron-hole (e-h) mechanisms, which are approx-
imately independent of the atomic velocity, and by phonon mechanisms,
which strongly depend on this velocity. For small-amplitude vibrations of
the atom at the bottom of the potential well, the damping mechanisms
have been studied in detail theoretically as well as experimentally [25, 26].
The decay rate of the energy of an atom vibrating with a frequency w due
to one-phonon damping is

Ton () = 5 7=w%p(w). (10)

The local density of phonon states p(w) at the surface of a semi-infinite
crystal can be approximated by [26] p(w) = 3 w;Sw?(w2, — w?)¥/2, which
has the correct behavior in the limits w — 0 and w — wy,. The one-phonon
damping mechanism operates for frequencies lower than the maximum (De-
bye) frequency wy, only, and its rate is small at small frequencies w < wp,,
where 7ph(w) < w*. At w > wy, the phonon damping is due to multi-phonon
mechanisms and is characterized by a value [25, 26] 7pn < 10~ 2wyp.

Although Eq. (10) describes the rate of phonon damping for harmonic
oscillations, one may expect that it will lead also to a reasonable accuracy
for Brownian motion of atoms, if we use w ~ wyp for the atoms vibrating
close to the bottom of the potential well, and w ~ wyash = (27/a)(v) for the
atoms moving over the barriers with an average velocity (v) when the veloc-
ity oscillates with the washboard frequency wyash- In the Langevin equation,
however, we prefer to use a damping coefficient that depends on the instan-
taneous velocity of the atom [in a rigorous approach, based on the n(w)
dependence, the diffusion will be non-Markovian and the Langevin equa-
tion has to be replaced by a more complicated integro-differential stochastic
equation, see [2] and references therein]. To couple the atomic velocity with
the frequency in Eq. (10), we will use the relation w = (27 /a)v, so that the
damping coefficient takes the form

7(v) = Nmin + Tlph (2mv/a), (11)

where 7nmin describes the velocity-independent contribution to the external
damping (the total action of the electromagnetic, e-h and multi-phonon
damping mechanisms; in the simulation we used 7min = 0.01), and 7ph(w)
is given by Eq. (10).

One can show [27] that the random force § F(t) in Eq. (2) in the case of a
velocity-dependent friction coefficient has a correlator not given by Eq. (3),
but by (§F(t) F(t')) = 2nr(v)mkpTd(t — t'), where the coefficient ng(v)
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Figure 3. Diffusion coefficient D (times the atomic mass m) as a function of m for the
1D sinusoidal substrate potential with different Debye frequencies: w, = oo (small open
circles and dot curve), wm = 10 (solid diamonds and dash curve), and wm = 1 (open
diamonds and solid curve).

is defined by the equation

2kgT
m

{o o]
W) = ["deen @), PO=vt+T2oe (12
Calculations show that the deviation of ng(w) from 7(w) is more important
at small frequencies and becomes relevant for T > 102 mw?2, (a/27)2.

The rate of phonon damping depends on the Debye frequency wy, which
is a characteristic of the substrate. To study the role of 7,,, we made sim-
ulations for two values of wp,, for a realistic (in our dimensionless units)
value wy, = 10, and also for a quite small value wy,, = 1 which may corre-
spond to a soft substrate with low-frequency phonon spectrum, when the
phonon damping could be very important. Because we fixed the mass of
the substrate atoms in our dimensionless units (ms = 1), now we will vary
the mass of the diffusing atom in a wide range m = 10~2 — 102, so that the
frequency wg = m~1/2 changes from 10 to 0.1.

The dependences of the diffusion coefficient D on the mass m are pre-
sented in Fig. 3, where the functions D(m) for wy, = 1 and wy, = 10 are
compared to the case of no phonon damping. Due to phonon damping the
total friction coefficient increases. This leads to an increase of the escape
rate R, but the average jump length (\) decreases, and the common action
of both effects results in a decrease of the diffusion coefficient.
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Let us first consider the case wy, = 10 (solid diamonds in Fig. 3). When
the atom goes over the barrier, its energy is %mv2 ~ g = 2, s0 that v ~
2/+/m. Thus, for the lowest mass plotted in the figure (m = 1072), the
characteristic atomic frequency, w ~ 20, is higher than the Debye frequency,
wm = 10, one-phonon damping is inoperative, the average jump length is
large, (\) > 104, and the diffusivity is high. Then, when the mass increases
to 1072 < m < 1071, the velocity v ~ 20 — 6, so that the washboard
frequency penetrates into the phonon zone, the one-phonon mechanism
becomes operative, the damping sharply increases, goes through the largest
value n ~ 1.47 mw,, ~ 1 corresponding to the overdamped case, and then
decreases to the intermediate friction regime. The jump length decreases to
(M) ~ a, while the escape rate grows. Then, with the further increase of the
mass to 10~! < m < 102, the total damping corresponds to the intermediate
friction regime, so that the jump length remains small, (\) ~ a, and the
escape rate and diffusion coefficient decrease, D o R o wp & m~1/2. Note
that, for large masses, m > 10, the phonon damping coefficient decreases
to the small friction regime, since npp v* o« m~2, but long jumps are
still suppressed due to the large mass of the atom. The “soft” substrate
with wy, = 1 (open diamonds in Fig. 3) exhibits similar behavior. Now, the
one-phonon damping mechanism comes into play at m ~ w;;! = 1. It is
interesting that, around this point, 0.3 < m < 3, the diffusion coefficient
remains as high as for 7, = 0. Although the jump length decreases to
(\) ~ a, the escape rate grows sharply and compensates this decrease.

Simulations for the 2D lattices lead to similar results. Thus, long jumps
must exist for a diffusing atom with a small mass, m < w,;l, when the
atom goes over the barriers so fast that the washboard frequency exceeds
the maximum phonon frequency of the substrate, v > awy,/2m, and one-
phonon damping does not operate.

5. Conclusion

In the present work we have studied the role of long atomic jumps in acti-
vated surface diffusion. Firstly, simulation results predict that, in the un-
derdamped limit, the diffusion coefficient behaves as D o< ™7, where 7 is
the coefficient of the viscous frictional force and 0 < ¢ < 1/3. This allowed
us to make the conjecture that the dependence D o 7° should be universal
in the 7 — 0 limit for -all nonseparable 2D substrate potentials.

Secondly, we proposed a realistic friction coefficient for the phonon
damping mechanism that describes the energy exchange between the dif-
fusing atom and the substrate. The simulation of diffusion in this model
showed that long jumps (2-3 lattice spacings) do exist in the case of adatoms
with small masses, m < mg.
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Finally, we would like to mention an interesting case of diffusion of ad-
sorbed dimers [for example, the motion of Si dimers on the Si(100) surface].
In this case the energy exchange between the vibrational, rotational and
translational degrees of freedom may strongly affect the dimer diffusivity.
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