J. Phys. C: Solid State Phys. 21 (1988) 3881-3900. Printed in the UK

Interaction between kinks in coupled chains of adatoms

O M Braunt, Yu S Kivshart and A M Kosevicht

1 Institute of Physics, Ukranian Academy of Sciences, 46 Science Avenue, Kiev 252028,
USSR

$ Institute for Low Temperature Physics and Engineering, Ukranian SSR Academy of
Sciences, 47 Lenin Avenue, Kharkov 310164, USSR

Received 15 December 1987

Abstract. A Frenkel-Kontorova type of model is proposed to describe the dynamics of
excess atoms (kinks) or vacancies (anti-kinks) in two parallel chains of atoms adsorbed on a
crystal surface. Various dynamic processes with kinks belonging to different adatomic chains
are considered within the framework of perturbation theory for non-linear waves, the local
coupling between chains being a small parameter. In particular, the interaction energy of
the kinks is calculated, and the collision of kinks in the presence of dissipation and a bc
driving force is considered. It is demonstrated that two slow kinks can form a bound state
due to dissipative energy losses, and the threshold value of the external force for this process
is obtained. Different ways of exciting the internal oscillations of the bound state are
discussed. Some radiative effects accompanying collision of two kinks belonging to different
chains are investigated as well.

1. Introduction

Investigation of non-linear phenomena in two-dimensional structures of atoms adsorbed
on a crystal surface (adatoms) is very important from theoretical as well as practical
viewpoints (see e.g. [1-5]). In some cases an adsorbed layer of atoms can be considered
as a quasi-one-dimensional system. The first example is adsorption on a stepped semi-
conductor surface [2, 3]. The substrate atoms located on the step hgve unsaturated
chemical bonds and, therefore, the adatoms are predominantly adsorbed close to the
step where their coupling with the substrate atoms is stronger. The second example is
adsorption on a ‘furrowed’ crystal surface (e.g. on the (112) face of a BOC metal) when
the potential relief along the ‘furrow’ is much lower than that in the perpendicular
direction [1]. In this case the atoms adsorbed in the ‘furrow’ can be approximately
considered as a quasi-independent one-dimensional atomic chain.

To investigate the non-linear dynamics of adatoms in a one-dimensional system,
the Frenkel-Kontorova model has been successfully used (see e.g. [4, 5]). The model
describes a linear atomic chain in a periodic external potential (for systems of adatoms,
such a periodic potential plays the role of the substrate potential relief). It is known that
the long-wave excitations of the Frenkel-Kontorova model are described by the sine-
Gordon (sG) equation [6]. The sG equation is used to explain a large number of physical
phenomena such as motion of dislocations in crystals 7, 8], dynamics of planar domain
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walls in magnetic systems (e.g. [9]), non-linear properties of long Josephson junctions
[10], the charge-density waves in quasi-one-dimensional conductors [11] and so on.

For the sG system as well as for any non-linear system for which the potential energy
density has two or more equivalent vacuum states, there are solutions (the so-called
kinks) that ‘connect’ the nearest equivalent energetic states. For adsystems described
by the sG equation, the vacuum state corresponds to the commensurate structure, when
all adatoms lie in the minima of the substrate potential relief. The kink (anti-kink)
solution describes the dynamics of the excess atom (vacancy) in this commensurate
atomic structure (e.g. [4]). The motion of the kink corresponds to the motion of the
excessatomalong the chain; therefore, analysis of the motion of a kink plays animportant
role in the investigation of surface diffusion and drift of adatoms (see [12]).

In exactly integrable systems such as the sG, one of the kinks moves freely and
their collisions are elastic [6]. For real physical systems, the exact integrability of the
corresponding equations is usually destroyed by additional perturbation terms
describing, for example, dissipative processes, the forces between atomic chains and
external forces. But in many cases the additional terms may be analysed as small
perturbations of the corresponding integrable model and perturbation theory can be
applied.

In the present paper we consider two parallel adatomic chains with a small local
interaction between them. (The opposite case of strongly coupled adatomic chains was
considered by Lyuksyutov and Pokrovskii [13].) The proposed model for such a system
is described in § 2. In § 3 we investigate the motion of a kink in one chain of this atomic
system. The interaction between two kinks belonging to different chains is considered
in § 4. We calculate the interaction energy and analyse the stability of the bound state
of two kinks belonging to different chains. The forced motion of the kink and the
interaction of kinks in the presence of dissipative losses and an external driving force are
considered in § 5. The threshold value of the external force that permits the formation
of a bound state of two kinks is obtained for attraction as well as repulsion between
the interacting kinks. Some ways of exciting the bound-state internal oscillations are
presented in §6. In § 7 we calculate the radiative energy losses accompanying the
collision of two free kinks and show that the radiative losses are usually negligible in
comparison with the dissipative ones. The possibility of experimental observation of the
described non-linear effects, in particular a bound state of the kinks belonging to
different chains of adatoms, is discussed in § 8.

2. The model: linear excitations

Let us suppose that, for the atoms of the adsorbed chain, substrate atoms form the
periodic potential wg(u), where u is the displacement of an adatom from the minima of
the relief. We consider the commensurate structure of adatoms when each minimum of
the substrate potential relief wg(i) is occupied by one atom. The periodic function wg(u)
(a is the period of the potential in the direction of the anisotropy of the substrate) can
be expanded into a Fourier series in cosines. If we limit ourselves to the first terms of
this series, then the potential dependence on the displacement takes the form

ws(u) = tep[1 — cos(2nu/a)) 1)

where the height of the substrate relief ep is equal to the activation energy for the surface
diffusion of an isolated adatom. Thus, the behaviour of one adatomic chain can be
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adequately described in the continuum limit by the well known Frenkel-Kontorova
model [14], which corresponds to the Hamiltonian of the sG system:

dx (1 (fou\> 1 [ou\*> 1 27U
Hso = I a {2m (at) + 2w| (ax) + EGD [1 o8 (T)]} @
where m is the mass of the adatom and wj is a coefficient characterising the linear
interaction of adatoms in the chain.
For two parallel chains, it is necessary to take into account the energy of interaction
between them, which is caused by the anisotropicinteraction of adsorbed atoms [15, 16].
When the displacements of adatoms are not small, it is difficult to obtain the exact

expression for the interaction between adatoms of different chains. In the present work
we assume the following expression for the interaction energy:

Halir, ) = w® [ 2 [cos () 1] + wip [ F21 22 ©

a dx ox

where u; and u, are the displacements of adatoms in the first and second chains. The
model expression (3) takes into account three important circumstances:

(i) the correct behaviour of the energy density 7C,m for small relative displacements
in different chains (%, ~ (u, — u,)?; the first term in (3));

(ii) the constancy of the interaction energy for the displacement of all adatoms of
one chain by a value that is a multiple of the lattice constant a (i.e. u,(x) — u,(x) +
na);

(iii) the existence of an interaction between equivalent excitations of two chains,
when u; = u, (the second term in (3)).

The states u(x) = an (n = 1, 2, .. .) correspond to the commensurate structure.
Therefore, the deviation from these states is defined by the value

o) = - 222

aox
which is equal to the density of the excess (with respect to the commensurate structure)
adatoms. The total number of excess atoms is equal to

= Jm p(x) dx = — [u(+%) — u(—»))/a.

The parameters w(? in (2) and (3) correspond to the interaction of adatoms of
different chains, and the parameter wy characterises the interaction of adatoms along
the chain. Itisimportant to note that in our model the interaction along the chains should
be repulsive (i.e. wy > 0), but the interaction between the chains may be either repulsive
(w, > 0) or attractive (w, < 0). Let us introduce the new variables i = 2xtu/a, f = wyt
and £ = x/l,, where Iy = co/w,, wo = (27%p/a*m)"? being the frequency of oscillations
of one isolated adatom, and c, = (w}/m)"/2 being the velocity of sound in the chain. In
this notation the interaction energy for two coupled adatomic chains may be represented
as

H{u,, uy} = ¢ fdx[ (a::) +%(3_a':_1)2 + (1 —cosu,)

+ (1= 2) - a1 - cos(u, — uy)] + g 2213

ax ax )
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where
EpCo 1 9) WS?)

= =—(2 1/2 = — = —,

€o 2aw, 4Jr( £owy) « p wy
From (4) one can obtain the dynamic equations

%u; d%u
Tzl F 2' +sinu; = — asin(u, — (5a)
9%u, 9%u u
at22 " o 22 + sinu, = — a'sin(u, ! (5b)

which describe the dynamics of non-linear excitations in the coupled chains of adatoms.
From the linear approximation of (5) there follow two branches of the dispersion
relation:

o?=1+(1+p)k? (6a)

w? =1+ 2a+ (1 - B)k2. (6b)

At B = 0 equation (6a) is the dispersion relation for the sG system and corresponds to
co-phased vibrations of adatoms, and equation (6b) describes anti-phased vibrations of
adatoms.

We shall consider the realistic case when the signs of the parameters a and § are the
same. For such a case the dispersion relations (6) intersect themselves at the point
k = kg, where

= a/p = 4n*(l/a)(wD /wP) > 1.

3. Motion of a kink in one of the coupled chains

In the absence of an interaction between the atomic chains (i.e. at a = g = 0), the kink-
type solution of the SG equation is (see e.g. [6])

ug(x,t) =4tan! [exp ( (lx — ;;)tm)] ™

where v is the kink’s velocity and o = *1 is its polarity (topological charge). At o = +1
the solution (7) (so-called kink) describes an excess atom. The soliton solution (7)
characterises the excitation localised on length /, which moves with velocity v = V/c,
and has energy

Ex = Eo[1 = (V/co)*] ™2 = Ey + img V? E, = 8¢ ®)
where my is the effective mass of the kink:
mg = (2/n*)mafl, < m. 9)

The continuum limit used may be applied when the interaction of adatoms along the
chain sufficiently exceeds the height of the substrate potential relief (i.e. for wy > ¢p).
In this case the kink length is large with respect to the substrate period a (i.e. [y > a),
and the relative displacements of neighbouring atoms is small [14]:

dufax = (ujy1— uj)/a <1.
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Let us consider the motion of a kink in one (e.g. the first) chain of the system of two
coupled ones, when the inter-chain coupling is small, i.e. for &, § < 1. Substituting in
(5) the perturbation series

u1=uK+u§1)+... (lOa)
up=ud +... (10b)

where uy is defined by (7), and “9)2 ~ g, € = {a, B}, one can obtain to first order in o
and B the equation for the wave field of the second chain:
0%u, 9%u, 3%uy

—=—-——+u, =asinug + 11
a?  ax | MaT sk ﬁaxZ 11)

where u, = ugl). The steady-state solution of the linear equation (11) may be written as
uy(z) = — 20{a + B/(1 — v?)] sgn z[z cosh z —sinh z 1g(2 cosh z)]  (12)
where
z=(x - vt)/(1 - v?})2, (13)

The solution (12) describes the ‘response’ of the second chain to the non-linear
excitation (kink) in the first one. In the same approximation the kink shape is also
distorted. According to the perturbation theory for solitons, one can obtain (see [17])

u’ = 20 tanh z sech z + O(a?, B?) (14)
and therefore the effective mass of the distorted kink is
mg = mx(l + a/z) + O(az, ﬁz). (15)

It isimportant to note that in the continuum limit the steady-state motion of the kink
is not accompanied by emission of linear waves, i.e. the radiative losses are absent.

4. Interaction energy of kinks belonging to different chains

Let us consider another case when in the second chain of the coupled system there is a
kink with velocity v, (v, # v,). Each of the kinks creates its ‘response’ in the neigh-
bouring chain, and the collision of the kinks belonging to the different chains may be
considered as the interaction of the first kink with the ‘response’ of the second one and
vice versa. This interaction we shall analyse in the framework of perturbation theory
for solitons (e.g. [17-20]), i.e. under the conditions that the terms a sin(u; — u,),
Pa%u,/dx* and Bd%u,/dx* in equation (5) are small perturbations (small coupling
between the chains).

According to [17, 18], the perturbation-induced evolution of the kinks’ velocities
v, (n = 1, 2) and coordinates £, (for the unperturbed kink , = v,t + £,(0)) is described
by-the set of four adiabatic equations

vy = —501(1—0%)3/2] dz, Ry(zy, z;) sech z, (16a)

C‘l =0y — h’l”lﬂ‘”%)f dz, Ry(z,,2;)z, sech z, (16b)
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and two analogous equations for the second kink which follow from (16) by substituting
12 2. In equations (16) we introduce the notation

R, = — asin(u; — u,;) + Pou,/ox?

R, = — asin(u, — uy) + Bo2u,/ox?. 17
For the slow kinks, when v} , < 1, calculation of the integrals in (16) yields

b=o.  Gi=iGi-&) (134)
and similar equations for the second kink (1 £ 2):

bi=v: b= —M,(E - L) (186)

where o = 0,0, is the relative polarity of the kinks. The odd function I,(x) may be
represented as

() = = - U2

where
U,(x) = — aUP (x) + BUP (x)
= (8a/sinh? x)[2(x — tanh x)cosh x — o(2x — sinh 2x + x sinh? x)]
+ 8Box/sinh x (19)

and the parameter § = §, — {, is the relative distance between the kinks. As follows
from (18) and (19), the equations for the kink parameters correspond to the ‘two-
particle’ Hamiltonian

H = #(pt + p3) + Uo(81 — £2) (20)

where p, = 8v, and p, = 8v, are the momenta of the effective ‘particles’ and the last
term on the RHS of equation (20) is the potential energy of their interaction. Itisimportant
that this energy is determined by the parameters of the coupling between adatoms of
different chains and the relative polarity of the kinks (i.e. type of excitations).

In the case of strongly overlapping kinks, i.e. for < 1, the interaction energy U,({)
may be represented as -

Us(§)=A+ B (21a)
A = 8[}a(2 + 0) + Bo] (21b)
B = §[—ta(8 + 70) — Bo]. (21¢)

From equations (21) it follows that the first term on the RHs of (3) does not depend
on the relative polarity of the kinks, but the second one is proportional to the effective
parameter fo. For large {, when the relative distance between the kinks tends to infinity,
the character of their interaction is sufficiently determined by the relative polarity, i.e.

U,(£) = 160(8 — )| | exp(—|Z]) 11> 1. (22)

It is easy to prove that the energy UP () is described for £ > 0 by a monotonic
function. The dependence of U () on the relative distance is more complicated, and
is shown in figures 1(a) at 0 = —1 and 1(b) at 0 = +1. It is interesting to note that in the
simpler model when a # 0 the energy of kink interaction is a sufficiently non-monotonic
function.
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Figure 1. The dependence of energy U{({) on relative distance between kinks belonging
to different chains for { > 0: (@) 0 = —1; (b) 0 = +1. UP (L) is an even function; £, ~ 2.39
and {,, ~ 3.44.

We present a more detailed analysis of kink interaction at sgn a = sgn g, i.e. for
af > 0. According to (21) kinks of equal polarities (o = +1) in the case of inter-chain
attraction (o <0, g < 0) may form a stable bound state at { = 0 with bound energy
8¢, (a + B). The bound state of the kinks belonging to different chains is similar to the
well known breather of the sG equation [6], but unlike the breather this bound state may
be a static one. The slightly excited bound state of the kinks is characterised by the
frequency of small internal oscillations

wy = 2wo[—(B/3 + a)]'2. (23)

In the case of the inter-chain repulsion (i.e. @ > 0, 8 > 0), the interaction of the kinks
is more complicated. For small relative distances, the kinks are repelled from one
another. However, for & > B the interaction energy U, (&) has a small minimum at
&> &, =3.44 and the kinks may form a bound state, as for the case of inter-chain
attraction. The { dependence of the effective energy U, (§) for the interaction of kinks
of equal polarities at a > 0, # > 0 is depicted in figures 2(a) (o < B) and 2(b) (a > B).

The interaction of kinks of opposite polarities (0 = —1) is determined by the ratio of
the parameters a and . For 0 < & < 38 the strongly overlapping kinks attract them-
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Figure 2. The effective interaction energy of kinks of the same polarities for « > 0 and 8 > 0:
(@) @ < B; (b) @ > B. The even function U({) is shown for £ > 0 only.

selves and form a bound state with bound energy 8¢o| — a/3 + |, the frequency of the
excited internal oscillations being w, = 2w, (8/3 — @/15)"2. Analogously, the kink and
anti-kink may form a stable bound state for |a| > 5|8|if & < 0, 8 < 0. The { dependence
of the interaction energy of the opposite-polarity kinks on the relative distance between
them is depicted on in figures 3(a) (a < B), 3(b) (B < @ <3B), 3(c) (38 < &« < 5B) and
3(d) (a > 5B8) fora > 0, B > 0. So, the shape of the interaction energy varies appreciably
with the correlation of the parameters & and g of the inter-chain coupling.

Itis interesting to note that the set of equations (5) has exact solutions for any values

of the parameters a and § that correspond to bound states of kinks belonging to the
different chains. Indeed, substituting

U; = ou, o==*1 (24)

one can obtain the equation for one wave field, e.g. for the function u,: either the sG
equation in the case 0 = +1 (i.e. u; = u,), or the so-called double sG equation in the
case 0 = —1 (i.e. u; = —u,). One-soliton solutions of these equations are well known,
but in our problem it is necessary to investigate the stability of the solutions in the
framework of the general system (5). Let us consider, for example, static kinks of equal
polarities (0 = +1) at @ # 0 and B = 0. For stability analysis one can represent the
solution of equations (5) as

Uy =ug + Y, U =ug + vy, Y12 <1 (25)

where uy is the one-soliton solution (7) at v = 0, which describes the quiescent kink.
Substituting (25) into (5), to first order in & and B (y;, ¥, = O(a, B)) one can obtain
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the set of linear equations
32 -
—W+L¥=0 W= ("") (26)
at Y,
where
A Lo +a —-a 32 2
—(—-a Lo"‘a') Lo__m-”'—coshzx' 27)

The operator L, has been investigated in the theory of the perturbed sG equation and
its properties are well known (see e.g. [21]). The eigenfunction of the discrete spectrum
is

fo@) = (1/V2) sechx (28)

which corresponds to the zero eigenvalue, i.e. Lyf, = 0. The eigenfunctions of the
continuous spectrum are

1 e*(k +itanhx)

fox) = (21[)1/2 1+ k2)1/2 (29)
/N
14 14
({3 71 4] (d)
u
14 14

Figure 3. The effective interaction energy of kinks of opposite polarities for @ > 0and § > 0:
(@) @ < B; (b) B < a<3B; (c) 36 < @ <5B; (d) @ > 5B. The even function U({) is shown
for ¢ > O only.
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which correspond to the eigenvalues w} = 1 + k2, where k is the wavenumber (|k| < ).
Using the properties of L, one can obtain the eigenvalues of the operator L (27): its
discrete spectrum is
@ _ @ _
and its continuous spectrum is
AV =w}=1+k?
A =w}+2a=1+2a+k>

(€)Y

The discrete spectrum corresponds to the displacement of the coupled kink pair as a
whole (A{Y = 0) and to the internal oscillations of kinks in the pair (A = 2a). It is
evident that, at & > 0, the static bound state of the kinks is unstable and it decays into a
pair of free kinks belonging to the different chains. For & < 0,vhen A{) < A{V, the kink
bound state is stable. This result corresponds to that obtained within the framework of
perturbation theory (see the first part of this section) for small &. Analogously, one can
investigate the stability of exact solutions of equation (5) in the more general case when
B # 0; the corresponding results coincide with the results of the perturbation theory for
solitons.

5. Dynamics of kinks in damped pc-driven coupled chains
5.1. General equations

In real physical systems the motion of an adatom is damped by the dissipative force

ou,
at

F,=—-nm

where 1) is a dissipative coefficient [16]. To compensate for these dissipative losses, one
can apply to an adatomic chain the external driving force F = e*¥, where e* is the
effective charge of an adatom and € is the electric field along the crystal surface. Then
the sG equation for adatom displacement is modified to

o%u *u ou

W—E+s1nu——y§+f (32)
where y = n/woandf = Fa/nep, are the dimensionless dissipative coefficient and driving
force, respectively. The stationary solution of (32) is known to describe the steady-state
motion of a kink, i.e. the drift of a kink with velocity [18, 21)

vy = inooffy (33)
where 0, is the kink polarity. The mobility of the kink is
p#x = (veco)/F = 1/nmy. (34)

To study the dynamics of kinks in a pair of dissipative chains, one must take into
account the dissipative and driving forces in equations (5). According to (32), the
adiabatic equations for the kink parameters may be represented as

X = tnf(o, + 0;) - ¥X (35a)
p = daf(o, — 02) — vp + 4,(2p) (35b)
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where the following handy notation is introduced: the coordinate of the kinks’ centre of
mass is

X=%& +¢&) (36)
and the relative distance between the kinks is
p=1t =& - o). (37)

According to (35), kinks of equal polarities interact with one another very simply.
Indeed, in the case 0, = 0, = ao, we obtain from (35a) the equation

X = info, - vX (38)

which describes for ¢ > y~! the steady-state motion of the kinks’ centre of mass with
velocity (cf (33)) -
°

X = v;. (39)

The effective equation (35b) describes the dissipative motion of the effective particle
in the potential

p=—vp+4,(22p) (40)

i.e. the external force does not affect the relative motion of the kinks belonging to
different chains. So, the dynamics of kinks of equal polarities under dissipative losses is
determined by the shape of the effective potential. Moving in the dissipative chains, the
kinks either repel one another and the relative distance between them tends to infinity,
or attract one another and form bound states that correspond to the minima of
the effective potential U,(2p). For example, at § =0 such minima exist for o <0
(Pmin = 0) aswell asfor a > 0 (ppin = £ po, Where py = 1.72) (see figure 1). In the former
case the kinks strongly overlap, while in the latter they are situated at a distance
2po = 3.44. Itisimportant to note that, in real discrete systems at a distance of order Rp,
kinks should be pinned by the Peierls relief, which satisfies the condition |U,(Rp)| = &p,
€p being the Peierls energy.

5.2. Kinks of opposite polarities: repulsion

Let us consider the more interesting case when kinks belonging to different chains have
opposite polarities (i.e. the kink—-anti-kink interaction): o, = — 0, = 0. In this case the
external force pulls the kink and anti-kink in opposite directions, and the kinks’ centre
of mass is at rest, since X ~ exp(— y?). To study the kinks’ dynamics, it is convenient to
rewrite (35b) as a set of two equations

p=v -
v = y(ve — v) + §_(2p)

and to analyse it on the phase plane of the parameters p and g. The set of equations (41)
has singular points (0, p,), where p, are the roots of the equation

yos +3_(20)=0 (42)
which exist for any signs of a and B, if

(1)

1 fue = 5 1-@o0) @)
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Po being determined by the equation
d2U_(2p)/dp? =0

In the cases @ < $ <0 and a > 58 > 0 the set of equations (41) has two singular
points (0, p,) and (0, p,); the former is the focus while the latter is the saddle. The phase
curves are depicted in figure 4(a). The larger root | p,| (focus) corresponds to the stable
bound state of two kinks, the distance between the kinks being

p, = max{|p,|, |p,|}

where p, , are real roots of (42). At y = 0 the frequency of the slightly excited internal
oscillations of the bound state of the kinks is

o, =2 {[= 1(2p)]p_p.}m- : 44)

It is obvious that the existence of a breather-like bound state of kinks in the case of their
repulsion is stipulated by the compensation of the kinks’ repulsion force and the external
driving force.

A bound state of the kinks should be formed during the collision of the free kink and
anti-kink when their relative velocity v is less than the threshold value. In the case of
repulsion, it is rather simple to obtain the binding threshold condition: one should
demand the height 4|a/3 — B| of the potential barrier (see e.g. figure 3(d)) to be larger
than the sum of the kinetic energies of the two free kinks prior to the collision: K; +
K, = 8v? =~ 8(xf/4y)? (cf an analogous condition for trapping the kink by a repulsive
impurity [18, 21-23]). So, the threshold inequality is

£ < fae = @y/7)(la/3 = ). 45)

Under the conditions (43) and (45) and for @ > 8 > 0 or a > 58 > 0, the colliding kink
and anti-kink bind themselves into a bound breather-like state and the latter is damped
due to dissipative losses. These dynamic processes are presented on the phase plane (see
figure 4(a), hatched area) by the curves ending at the focus. If at least one inequality
from (43) and (45) is not valid, the kinks do not form a bound state after their collision,
and their relative velocity tends to the constant value v;.

5.3. Kinks and opposite polarities: attraction

In the cases 0 < o < or 0 > a > 58, when the kinks attract themselves, the set of
equations (41) also has two singular points when (43) is valid. The stable bound state of
the kinks corresponds to the singular pomt with the smaller value | p|, so the distance
between the kink and anti-kink in this case is

Py = min{|py], |p2[}. (46)

Therefore, the external force moves the kinks aside, forming a bound state, and suf-
ficiently changes their bound energy.

The calculation of the threshold value of the external driving force for the binding of
the free kink and anti-kink is more difficult. To obtain the threshold condition for the
attraction of kinks, it is necessary to calculate the total dissipative energy losses AE
during the collision between the kinks; then the threshold condition may be written as

AE=K, + K, 47
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la) P I

- I

Figure 4. Phase plane for equation (41) in the case f > 0: (a) repulsion of kinks of opposite
polarities (for « < 8 <0 or @ > 58 > 0); (b) attraction of kinks of opposite polarities (for
0< a < por 56 < a <0). The hatched areas correspond to the capture of kinks and the
formation of their bound state.
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where K , are, as above, the kinetic energies of the two kinks prior to the collision. The
quantity AE can be calculated as (see [22, 23])

|AE| = yr X2(dt = yr X(X) dX. 8)

To calculate (48) we have used the law of relative kink motion (41).
Therefore, the threshold value of the external force is (cf an analogous condition for
trappimg of the kink by an attractive inhomogeneity [22, 23])

® 1/2
fur = /224y ([~ axllov®@) + pUO@IR) . @)
So, we obtain f,,. ~ y*20(a'/4, B'/4), i.e. in the latter case the threshold value of f is
sufficiently less than in the former one (cf (45)).

6. Excitation of internal oscillations of bound kinks

The internal oscillations of the bound state of kinks belonging to different chains may
be excited either by other kinks colliding with the bound ones or by the application of
external alternating forces. The former way is based on the inelastic interaction of kinks
in perturbed non-linear systems. Let us consider this problem without dissipative and
external forces when the system of two coupled chains contains a quiescent bound state
of kinks belonging to different chains. The law of relative motion for the bound kinks
may be obtained from (41) as

P1 0( ) ]

where U,(2p) is determined in (19) and E is the binding energy (0 < E < |Upl). It is
evident (see (50)) that the binding energy E of the kink is of the order of a and 8, while
the frequency of the internal oscillations is of the order of a2, /2,

The collision of a fast kink in the first chain with a bound kink belonging to the bound
state is described by equation (50) and may result in inelastic effects analogous to those
dealt with in [24, 25, 29]: kicking out the slow kink in the first chain from the bound
state. If the incident kink is not too slow, we may use the expression for the collision-
induced phase shift Ap of the slow (bound) kink, validin the absence of perturbations [6]:

1-(1-p? 1/2

( v;ast)l/z) (51)
1+ (1 -0 fast)
g Deing the fast kink velocity. The collision duration is of the order of vz}, which is
much smaller than the bound kink oscillation period 4x/EY? = O(a~12, $71/2). Hence
we may neglect the change of the bound kink’s velocity during the collision. Thus, the

collision does not change the slow kink’s kinetic energy, while according to (50) and (51)
its potential energy acquires a change

AU = U(Q2py + 24p) — U(2p0)

Po being the instantaneous value of the slow kink coordinate before the collision. For
example, in the case a # 0, 8 = 0, one can obtain

AU = fa(Ap)?.

Ap=ilg(
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So, it is evident that the bound state of the kinks decays provided AU > E, and the
kinks remain bound in the opposite case. This consideration and the final results are
valid provided vg,, > a'/2, /2. In the presence of dissipative and Dc driving forces, the
fast kink’s velocity is fixed and given by (33), while the potential energy is changed as
follows:

U,(2p)— U,(2p) + 4yvep.

The above consideration is valid in this case too, if (i) the dissipative forces are not very
large, i.e. v;, ¥, < a'/2, B2, and (ii) when potential minima exist, i.e. for f < f,,, where
f« is determined from the condition yv; = 31,(20min)-

Another way to excite internal oscillations of bound kinks belonging to different
chains is to apply an external Ac force. This additional force may be taken into account
in (5) by the substitution:

= fo + fi cos(Q0) (52)

Q being the external frequency. Then the amplitude b of the forced internal oscillations
of the bound kinks is

b= infi[(@* ~ w})* + y2@2] 12

wy, being the kink’s eigenfrequency.

A system of adatoms in which a bound state of kinks belonging to different chains
has been excited absorbs the energy of the microwave field, and the dependence of the
average absorbed power on the external force frequency has resonant form for Q ~ w,,.
Thus, an absorbed structure in which bound states have been created should give a
response to an additional microwave pulse of frequency approximately equal to w,,.

7. Emission of radiation from colliding kinks

In § 4 we consider the so-called adiabatic approximation to describe the collision of
kinks. In the framework of this approximation, kinks collide elastically, i.e. without
energy losses. Indeed, if we calculate the total changes of the kinks’ velocities as

Al)l’z =I dtdvl'z/dt

we obtain Av, = Av, = 0. However, the collision of kinks belonging to different chains
stipulates the phase shifts of the kinks, caused by inter-chain interactions. For example,
at 8 = 0 one can obtain

_2a0,(1 -0} (1 - 02

_2aw,(1 - v} (1 - v})"?
oz = vy '

53
|02_01| (53)

On a level with the phase shifts the colliding kinks will emit radiation, i.e. dispersive
linear wavepackets. We shall calculate the total energy and its spectral density emitted
by colliding kinks belonging to different chains.

A general method for calculating the emitted energy radiated by colliding solitons
has been put forward in [24, 29]. In this problem the emitted energy can be found
explicitly for all values of the kink velocities v, and v, except for the case when their
relative velocity v = v, — v, is very small, i.e. for v2 < v}, as in this case the collision
may result in dissipative (or radiative) binding of the kinks into a bound state.

A, =

AL,
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In terms of the inverse scattering transform, a radiation component of the SG wave

field is described by the complex amplitude 4 (1) (the so-called Jost coefficient [6]) where
the real spectral parameter A is related to the radiation wavenumber k and frequency
w:k=A—1/4A, @ = A + 1/4A. The perturbation-induced evolution for £(A) is well
known (see e.g. [19, 30]). For our purpose, it can be conveniently written in the form

3B(A, £)/at = (i/4)a(A) f " dx Plul{{¥®" (x, 5 ) - [¥O"(x, 1 1))} (54)

where
B(A, 1) = 4(A, t) expliw(A)f]

P{u] stands for the perturbation on the RHS of the SG equation, a(A) is the second Jost
coefficient, |a(A)]> = 1, and ¥(!-2(x, t; 1) are components of the so-called Jost function.
For the one-soliton solution (7) of the sG equation, these functions have been given, for
example, in [30, 31]. Assuming the radiation is absent prior to the collision of kinks, i.e.
B(A, t = — ») = 0, we can calculate the final value B¢(A) of the radiation amplitude as

* aB(A,?) dr

at (55)

B() =BG, t=+) = [

The basic physical characteristic of the emitted radiation is the spectral density é(k) of
its total energy E.,, (see e.g. [17, 24, 28, 29])
dE,,

e(k) = %

- % |BdA = Hk + (1 + k)22, (56)

The distinctive feature of the present problem is that the colliding kinks generate
radiation in both chains, i.e. the radiation field is made up of the functions €,(k) and
8,(k) for the first and second chains, respectively. Straightforward calculations based
on (54)—(56) yield the following final expressions for the spectral energy densities of
radiation emitted by the colliding kinks:

100 = (Pa?/o)) (1 ~ 0?2yl =~ oL + k)] = (1 - 02)1(x} — D?

x sinh?[{x(x, + 0,0,K,)]/sinh?(nK,) sinh?(K,) (57)
and
€,(k) = 8,(—k) (58)
where v is the relative velocity of the kinks, and
1 — p2)2
Ky = 3—2‘;1— [(1 + k?)¥2 = k). (59)

The dependence of the spectral density €,(k) of energy emitted by the kinks in the
first chain on the wavenumber k is shown in figures 5(a) and (b) for small relative velocity
(v? < 1) and figures 6(a) and (b) for large relative velocity (in the latter case the kinks
are ‘relativistic’,i.e. 1 — v? < 1). Itisimportant to note that the collision of the kink with
the anti-kink does not generate radiation in the long-wave part of the spectrum, since
€,,2(k = 0) = 0 (see figures 5(b) and 6(b)).
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&1k
(a)
0 k
(b) &,k
0 k

Figure 5. The spectral density of energy emitted by a slow kink in the first chain colliding
with a slow kink in the other chain: (@) 0 = +1, (b) 0 = —1.

The corresponding emitted energies E, and E, can be obtained as
Ea=| .00k (60)

The integral in (60) may be calculated in two limiting cases: when v? <1 and when
1 — v? < 1. In the former case the results for E, , are exponentially small in v~!:

E, = E, = n’a?278/2p =512 exp(—n/v) 0,0, = +1 (61a)
E, = E, = n*a?2 %0132 exp(—2n/v) 0,0, = —1. (61b)

In the latter case, when the spectral densities are described by non-symmetric functions
(see figure 6), i.e. the kinks emit radiation mostly with wavenumbers k = —k_,, where
ko = (1 — v?)72, the results do not depend on the kinks’ relative polarity:

E, = E, =3 x 2*7~*a?(1 — v?)*2. (62)

Analogous results can be obtained in the more general case, when o # 0, 8 # 0. In
particular, for the case @ = 0,  # 0, the spectral density €,(k) of the emitted energy has
a shape similar to that depicted in figures 5(a) and 6(a), respectively, and does not
depend on the relative polarity of the colliding kinks (see [32]).

Thus, for any values of the relative kink velocity the radiation losses are small, and
they can be negligible in comparison with the dissipative ones if y, , 3 a2, 2.

8. Summary and conclusions

In an isolated adatomic chain, which is described by the sine-Gordon equation, kinks
of equal polarities always repel one another, but a kink and anti-kink attract one another
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and may form a bound state—a breather. However, in a dissipative system, even if a
constant external force is present, the breather is unstable, and it either decays into a
kink-anti-kink pair ordamps, i.e. the kink and anti-kink bound in the breather annihilate
(see e.g. [18, 30, 33)).

&,(k) {a)

>
»

o
-
x

% (k) (b)

|
|
I J\
| !
e 0 k K

Figure 6. The spectral density of energy emitted by a fast kink in the first chain after its
collision with a fast kink in the other chain: (a) 0 = +1; (b) 0 = —1.

In a system of two coupled adatomic chains, which is described by the set of equations
(5), the interaction of kinks belonging to different chains is determined not only by the
kinks’ relative polarity but also by the inter-chain interaction, i.e. by the signs of the
parameters «, p and o. For example, for 0 < a < g kinks of equal polarities repel one
another as in an isolated chain; but for & < 8 < 0 these kinks attract one another. It is
very interesting that kinks belonging to different chains may form a breather-like bound
state. Unlike a breather, such a bound state is stable even if dissipative losses are present.
The slightly excited bound state of the kinks is characterised by the frequency of the
internal oscillations. In the presence of a constant external force, the distance between
the kinks forming the bound state increases, while the frequency of its internal oscil-
lations decreases. Free colliding kinks belonging to different chains can be bound into a
bound state if the external force is less than the threshold value. The threshold values of
the external force are calculated for different ratios of parameters a, § and 0.

It is important to note that the internal oscilations of the kinks’ bound state may be
excited by an external Ac force when the frequency of the force is of the order of the
internal frequency. The response of the coupled adatomic system to the AC pumping
may be observed experimentally, e.g. with the help of high-resolution spectroscopy [34].
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Addendum

The model equations (5) at 8 = 0 have also been applied to describe the long-wave
excitations of the B form of DNA [35, 36]. The functions u, and u, are mean angles of
rotation of the base pairs, which measure the deviation from the exact form of DNA.
Homma and Takeno [35, 36] have considered the discrete version of this model for the
special case u; = —u, only. In particular, they study various dynamic states of the
reduced (one-component) system, most interesting from it being stochastic.

Our results at § = 0 may be applied to investigate the Homma-Takeno model and
to describe its non-linear dynamics too. As was demonstrated in § 4, it is very important
that in some cases exact solutions of the reduced equation (e.g. the double sG equation
for u; = —u,) may be unstable in the framework of the general set (5) at 8 = 0. This fact
has not been taken into account by Homma and Takeno.
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