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Low-temperature diffusion and transport properties of the generalized Frenkel-
Kontorova model are investigated analytically in the framework of a phenomenological
approach which treats a system of strongly interacting atoms as a system of weakly-
interacting quasiparticles (kinks). The model takes into account realistic (ankarmonic)
interaction of particles subjected into a periodic substrate potential, and such a general-
ization leads to a series of novel effects which we expect are related to the experimentally-
observed phenomena in several quasi-one-dimensional systems. Analysing the concen-
tration dependences in the framework of the kink phenomenology, we use the renor-
malization procedure when the atomic structure with a complex unit cell is treated as
(more simple) periodic structure of kinks. Using phenomenology of the ideal kink gas,
the low-temperature states of the chain are described as those consisting of “residual”
kinks supplemented by thermally-excited kinks. This approach allows us to describe the
ground states of the chain as a hierarchy of “melted” kink lattices. Dynamical and diffu-
sion properties of the system are then described in terms of the kink dynamics and kink
diffusion. The motion equation for a single kink is reduced to a Langevin-type equation
which is investigated with the help of the Kramers theory. Susceptibility, conductivity,
self-diffusion and chemical diffusion coefficients of the chain are calculated as functions
of the kink diffusion coefficient. In this way, we qualitatively analyze, for the first time
to our knowledge, dependence of the different diffusion coefficients on the concentration
of atoms in the chain. The results are applied to describe peculiarities in conductivity
and diffusion coefficients of quasi-one-dimensional systems, in particular, superionic con-
ductors and anisotropic layers of atoms adsorbed on crystal surfaces which were earlier
investigated experimentally.

1. Introduction

The study of mass and charge transport in systems with strong interatomic interac-
tions is an extremely difficult problem. At high temperatures transport coefficients
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can be found with the help of a perturbation technique starting from the case of non-
interacting atoms. However, at low temperatures the perturbation theory breaks
down and diffusional and transport characteristics may be found by computer sim-
ulations for a given choice of the system parameters. To explain results of such
simulations as well as to understand at least qualitatively the system behavior, it
is useful to elaborate a phenomenological approach in which a system of strongly
interacting atoms is approximately treated as a system of weakly-interacting quasi-
particles. In fact, in such a phenomenological approach the primary problem splits
into two particular problems. First, one should introduce appropriate quasiparti-
cles corresponding to the system of strongly interacting atoms and then calculate
the parameters of these quasiparticles. Second, one has to connect the parameters
which characterize the system dynamics with those of the quasiparticles.

In the present paper we use such a phenomenological approach to investigate the
low-temperature diffusion in a generalized (anharmonic) Frenkel-Kontorova (FK)
model. Firstly introduced to model the dynamics of one-dimensional dislocations in
crystals,! in a rather general context, an FK type model describes a one-dimensional
chain of interacting particles subjected into an effective substrate (on-site) potential.
This model may describe, for example, a closely-packed row of atoms in crystals,?
a chain of atoms adsorbed on stepped or furrowed crystal surfaces,® a chain of ions
in a “channel” of quasi-one-dimensional conductors,* hydrogen atoms in hydrogen-
bonded systems,’ etc. (see, e.g., the recent review paper® for other applications of
the FK model). In all the cases mentioned above the chain of interacting particles
is a part of the whole physical system under consideration, and the remainder is
modeled as an external periodic (substrate) potential and also as a thermal bath.

In the present paper we consider the generalized FK model which takes into
account realistic (anharmonic) interactions between atoms in the chain. The reason
for such a generalization is explained by the following. We try to describe the typical
physically important situation when the mean distance between the particles in the
chain varies from the value of order of the period of the substrate potential to
infinity. It is clear that in this case the standard harmonic approximation for the
interatomic potential looks not realistic, and one should use a realistic interaction
potential. The main objective of our study is to investigate diffusion and transport
characteristics of such a model as well as to analyze the dependence of the diffusion
coefficients on concentration of particles in the chain.

The paper is organized as follows. In Sec. 2 we briefly describe our model.
Section 3 introduces three diffusion coefficients which describe transport properties
of the FK chain. Section 4 presents the main ideas of the renormalization procedure
which, for certain cases, allows a rather complex structure of atoms at T = 0 to
be treated as a more simple system of weakly-interacting kinks. The case of T # 0
is analysed in Sec. 5 using the approach based on the theory of the ideal kink
gas. In Sec. 6 we describe diffusion of a single kink with the help of an effective
Langevin equation derived for the kink’s coordinate. The main purpose of this study
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is to find the kink diffusion coefficient. As we show in Sec. 7, the three diffusion
coefficients introduced in Sec. 3 may be found as functions of the kink diffusion
coefficient and the susceptibility of the chain. In Sec. 8 we discuss temperature and
concentration dependences of the diffusion coeflicients. At last, Sec. 9 concludes the
paper by discussing possible applications of the anharmonic FK model to describe
recent experimental results on the surface diffusion of atoms adsorbed on anisotropic
crystal surfaces.

2. Model

We consider a chain of particles (atoms) subjected into a periodic substrate (on-site)
potential which is taken in the simplest form

V(o) = g [1- con (22)] 8

8

where ¢, and a, are the height and period of the potential, respectively. Energy
exchange between the chain and substrate can be approximately described by in-
troducing a viscous friction force together with a random force which stands for
random fluctuations acting on each atom. We assume that such a fluctuation force
§Fy(t) is a local Gaussian random function,

(6F(t) =0, (ﬂFl(t)GFu(t')) = 2nm kT 6(t - t') , (2)

where 0 is the friction coefficient, m, is the atom’s mass, kp is the Boltzmann
constant, T is the substrate temperature, and the index [ stands for the atom’s
number in the chain. Thus, the motion equation of the Ilth atom may be written in
the form

o]
Mo + mangi + Vi(@1) + ) Vine(@1 — z1-1) = Vire(zigrr — 2)) = 6Fi(t) , (3)
I'=1

where z;(t) is the coordinate of the Ith atom, Vi, (z) is the energy of interaction
between two neighboring atoms, and also # = dz/dt and V'(z) = dV/dz. Note that
the relation (2) following from the fluctuation—dissipation theorem guarantees the
existence of a thermal equilibrium of a stationary state of the chain averaging over
which is denoted by (...).

In the present paper we consider the so-called “fixed density” FK chain con-
sisting of N atoms uniformly distributed on the length L = Ma, = Na, where
M is the number of minima of the substrate potential and a, is the average inter-
atomic distance. Thus, the system is characterized by concentration of atoms,
n = N/L = a;l, or by the dimensionless “coverage” parameter § defined as
0 = N/M = na, = a,/as. Throughout the paper we assume the limit when
N, M, and L — oo at n (or 9) fixed.
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In the standard FK model® the interaction potential Vi (z) is approximated by
a harmonic function,

Vis(2) = 3Gz = an)?, Ga = Wh(an) , @

and, moreover, only the interactions of the nearest neighbors are taken into account.
However, here we will be interested in a more realistic physical situation when the
coverage parameter # is an “external” parameter which changes within the inter-
val 0 € 8 < 1, so that the interatomic distance a, varies from a, to co. Note
that such a problem naturally corresponds to real physical objects as, for example,
adsorbed layers or one-dimensional conductors. In this case the harmonic approxi-
mation for the interatomic potential (4) is not realistic and we should describe the
interaction by a more realistic function which allows larger variations of the atomic
displacements. For simplicity, we take the exponential interparticle interaction

Vine(z) = Vo exp [—ﬂ (mi - l)] ' (5)
8

where Vp (Vo > 0) is the interaction energy of two atoms localed at the nearest
minima of the substrate potential, and 8 is the dimensionless anharmonicity pa-
rameter of this potential. As a natural way to generalize the potential (5), we may
add a linear attractive branch as it is for the standard Toda lattice (i.e. a chain of
exponentially interacting particles without a substrate potential), but for the “fixed
density” FK chain which we study here such a modification of the model is not
physically important.

For the case n = 0, T = 0, and 8 = 1/q, q being integer, and for strong-coupling
approximation when interatomic forces are much larger than the force V,,, (=)
produced by the on-site potential, the motion equation (3) with the harmonic inter-
actions (4) reduces to the well-known sine-Gordon (SG) equation. The SG equation
is exactly integrable and it admits solutions in the form of topological solitons or
kinks. In a general case, Eq. (3) is not integrable. Nevertheless, at least at low
temperatures we may describe the system dynamics in terms of kinks because the
kink excitations are responsible for the mass transport along the chain and such
solutions do exist as solutions of a generalized FK model. Below we use the kinks
as quasiparticles which play the basic role in the phenomenological approach de-

veloped here to describe diffusional dynamics and transport properties in the FK
chain.

3. Diffusion Coefficients of the FK Chain

For a uniform system in a thermodynamically equilibrium state one can introduce
three different diffusion coefficients: the self-diffusion (or “tracer”-diffusion) co-
efficient D,, the collective-diffusion (or “jump”-diffusion) coefficient D,, and the
chemical-diffusion coefficient D.. All these diffusion coefficients may be expressed
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through the Laplace transform of the velocity correlation function Q(I; t):

00
Q@) =/ dt exp(i@t)Q(l;t), Imw >0, (6)
0
to be
QU-1;t—t) = (ai(B)zn(t)) - ()
By definition, the self-diffusion coefficient D, is found as
D, = aligl}ﬂ‘ﬁ,(&) y D,(t)=Q(0;¢t) . 8)

The value D, describes the mean-square displacements of a given (“tagged”) atom
on long-time scales,

([zi(t) = z1(0)?) =2D,t , t—>o0. 9)

The function D,(&) describes, for example, incoherent scattering experiments for
some application of the FK model.
The collective-diffusion coefficient D, is introduced as

N
Dy=_ li&io'ﬁ"(o) , Dult) = Z; QU t) . (10)

Because D,(t) may be represented as

Dyu(t) = (Y(1)Y(0)) , (11)

where Y (t) is the center of mass introduced as

N
Y= =3 =), (12)
=1

the coefficient D, describes the long-time dynamics of the center of mass of the
atoms ([Y'(t) — Y (0)]2) = 2D,t, t — co. From the definitions (8) and (10) it follows
that

1 P

Du(t) = Di(t) + 5 D_(21(t)1(0)) . (13)

N 10
Thus, the function D,,(t) includes an effect of correlated motion of interacting atoms.
The coefficient D, is connected with the mobility coefficient M by the well-known
Einstein relation; namely, when the particles in the FK chain have an electric charge
e, the frequency-dependent conductivity o(w) is defined as

o) = neME) , M) = prDa(w+i0) (14)



2358 O. M. Braun, I. I. Zelenskaya & Yu. S. Kivshar

The chemical diffusion coefficient D, is determined through the relation

D.=Dy/x , (15)

where x is the dimensionless susceptibility of the system. As a matter of fact, the
coefficient D, describes the flux J(z, t) = Y, Zi(t)é(z — zi(t)) in a nonequilibrium
state when the atomic density p(z, t) = Y, 6(z — zi(t)) slightly deviates from its
equilibrium value; namely, according to the second Fick law, we may write

<€ J(z,t) ~ —D.— : L p(z, t) >, (16)

where € ... > stands for the averaging over the macroscopic distances z 3 ax.

For the system of noninteracting atoms all the diffusion coefficients are equal to
each other, ie. D, = D, = D. = D, and one may use any definition mentioned
above to calculate the only diffusion coefficient D. In particular, for the simplest
case of a gas of noninteracting Brownian particles, when Vup(z) = 0, we have
D = Dy = kT/m,n. When V,u,(2) is nonzero but ¢, < kpT, simple calculations
based on the perturbation theory yield (see, e.g., Refs. 7-9)

D=~ Dy, [1—%(,;‘,!,)2] : a7)

Otherwise, at low temperatures, kgT <€ ¢,, the coefficient D may be represented in
the Arrhenius form,

D=K), K=Koexp(—¢,/kpT), (18)

where K is the escape rate of an atom from a bottom of the potential relief, and A
is the mean length of the atomic jump. The preexponential factor Ko in Eq. (18)
may be calculated with the help of the Kramers theory (see, e.g., Refs. 10 and 11)
€,n/kpT , if n < m = woksT/27e, ,
Ko~ { wo/27, ifm<n<w,, (19)
wows /277 , ifp>w.,

where w3 = V' (0)/m, and w? = -V}, (a,/2)/m,. The value of A may be esti-
mated as!?

(20)

,\~{a.m/n, ifp<m,
a; , ifﬂ>m.

When interaction between atoms in the chain is taken into account, the diffusion
coefficients defined above become different, and, in particular, they become depen-
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dent on the coverage parameter 6. From the physical point of view, the role of the
interatomic interactions may be characterized by the following factors.

(a) The interaction produces an order in the atoms arrangement (in one-dimensional
systems such an order is short-range at T # 0). This fact results in x # 1 and,
therefore, D.(0) # D,(9) if 8 # 0;

(b) Each mobile atom “feels” a potential produced by other atoms and, therefore,
an effective potential for a given atom depends on positions of the neighboring
atoms;

(c) The motion of an atom in the chain gives rise to motion of the neighboring
atoms. Such a collective motion is an analog of the “polaronic effect” in the solid
state physics, and at low temperatures this collective motion may be described
as motion of quasiparticles;

(d) If the model is nonintegrable, the atomic motion is always accompanied by an
energy exchange between different modes of the chain leading to an intrinsic
chaotization of the system dynamics. Such an effect may be approximately
taken into account by assuming that the friction coefficient 5 includes not only a
contribution of the external friction 5.,; (Which is usually introduced to account
the influence of thermostat) but also a contribution of the “intrinsic” friction
fint, i.e. in fact, one should write 1) = fexe + Mint-

The factors (a) and (b) have a static nature, while the latter two factors (c)
and (d) are solely dynamical. A rigorous problem to take into account interatomic
interactions in the system dynamics is rather complicated even for the case when the
substrate potential is absent. At high temperatures the perturbation theory based
on the Mori technique is usually used. At low temperatures, the perturbation theory
does not work but, instead, we may use the phenomenological approach which we
develop in the present paper.

The first step of this approach we have is to calculate the kink parameters. For
the case of weakly-interacting atoms at an arbitrary value of the coverage parameter
0, as well as for the case of strongly interacting atoms but for the trivial ground
state (GS) with @ = 1/q (¢ being integer), the kink characteristics can be found
analytically. Otherwise, for a general case of § # 1/q when the GS at T = 0 has
a complex unit cell, the kink parameters may be found approximately using the
renormalization procedure when the complex atomic structure is treated as a more
simple structure of weakly-interacting kinks. These approaches are discussed in the
next section (see also Appendix A and Table 1).

4. The T = 0 Ground State and Kinks

First we should describe the ground state (GS) of the FK chain at zero temperature
when the atoms form a regular structure. Let us denote by GS[f] the minimum-
energy commensurate (C-) structure with the coverage parameter § = s/q, where
s and ¢ are positive integer numbers. The C-structure GS[f] has a period a = qa,,
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and the elementary cell consists of s atoms. For any C-structure we can define a
kink k (antikink k) with a topological charge 0 = +1 (¢ = —1) as a minimally
possible contraction (extension) of the structure when at infinity, i.e. for I — +oo,
the arrangement of atoms relative to the minima of the substrate potential coincides
with their arrangement in the GS. Kinks are elementary excitations of the GS[6]
which are spacially localized and topologically stable owing to boundary conditions.
The kink has the simplest structure for the trivial GS with § = 1, when one kink
(antikink) corresponds to one additional atom (vacancy) inserted into the chain, and
the neighboring atoms are allowed to relax. In a general case, the kink structure
is more complicated. In particular, for the GS[s/q] one additional atom (vacancy)
corresponds to ¢ kinks (antikinks).

The kink is a topologically stable quasiparticle with the following characteristics.
First of all, the kink structure is conventially characterized by the displacements
y=z- zfo), where z; are the atomic coordinates for the chain with a single kink
and zfo) are those for the GS. From the definition of the kink it follows that

s
j'EToo z_; (Usj4i = Usjr4i) = —0a, . (21)
j'=—00 =

Following Bergman et al.!3 the kink’s coordinate X may be defined as the coordi-
nate of the center of mass of particles

X=qEzz+C, (22)
1

where the constant C is chosen in the way that the maximum deviation from the C-
structure occurs at the atom with the number lp = int(X/a). The kink rest energy
E} is defined as the difference between the energy of the chain with the kink and
the energy of the GS with the same number of atoms. Because the configuration
{z}} = {z1-s + qa,} describes also the kink translated by a distance a = ga,, i.e. by
a unit cell of the C-structure), the kink. may move along the chain. The amplitude of
the Peierls—Nabarro (PN) barrier, epn, is defined as the lowest energy barrier which
must be passed for a translation {z;} — {z;}. It is necessary also to introduce the
adiabatic trajectory (AT) as the curve in the N—dimensional configuration space of
the system, which links two minimum-energy configurations {z;} and {z, }, passing
through the nearest saddle configuration with the lowest potential energy. Such a
trajectory satisfies the set of differential equations

dz(r) _ _OV
i P (23)

where V is the total potential energy of the system and 7 is a parameter varying
along the trajectory. Thus, the AT is the curve of the steepest descent. Physically,
the AT describes the kink motion in the limit » — oo, when it moves adiabatically.
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During the kink motion along the AT, the potential energy of the system oscil-
lates with the amplitude epn. These oscillations can be described by the function
VeN(X) which can be interpreted as kink’s potential energy. The potential Vpn(X)
may be approximately described by the function

Ven(X) = %(pN [l — cos (?-?)] . (24)

At the same time, the kinetic energy of the system moving along the AT can be
found as

K= %m,,jr’ . (25)

where the effective mass of the kink is introduced as the following

me=mg (%)2 : (26)

] £ EAT

In a general case, the kink mass m; depends on the kink’s coordinate X, but such
an effect will be neglected below because oscillations of the kink’s mass are usually
small (see, e.g., Ref. 6).

Finally, when the chain contains two kinks (with the topological charges o,
and o3) separated by the distance R = |X; — X3|, the kinks interact with the
energy vint(R). Usually, a kink and antikink attract each other while two kinks as
well as two antikinks repel each other. We would like to note that there are two
mechanisms of the kink interaction. First of all, interaction between kinks arises
due to the interaction of excess atoms which effectively correspond to the kinks.1®
Besides, there always exists an interaction between kinks due to overlapping of the
kinks’ tails because the presence of another kink nearby perturbs the kink’s shape
leading to a change of the kink’s energy.!* In the chain with a small density of kinks
the total interaction energy may be assumed to be pairwise.!4

Below we restrict ourselves mainly by the case § < 1 because this situation
corresponds to the physical objects mentioned in the Introduction. The kink’s
characteristics can be simply found in the case of a weak interatomic interaction,
Vint(aa) € €,, when in the GS all atoms are situated at the corresponding minima
of the substrate potential. Namely, for the GS[f] when the reference structure is
characterized by the coverage parameter § = s/q lying within the interval

(l+p)t<b<p?, (27)

where p is integer, in the lowest approximation using a simple geometrical consid-
eration we can find for the kinks and antikinks (including the case of a kink on the
background with the coverage parameter 6 = (1 4+ p)~! and that of an antikink on
the background structure with § = p=?!) the following results!%:15:

mp & mafq’, (28)



2362 O. M. Braun, I. I. Zelenskaya & Yu. S. Kivshar

Epo = V;nt(a -0 aa) - Vint(a) ’ (29)

1
€PN N € + 2Vipe (Pac + Ea:) - Vint(Pao)

1
- Vint(Paa + aa) ~ 5’50(2 - "20))) ’ (30)
where
a? 1
gp = F;?‘- i:’l't ( s + Ea.) . (31)

Because in the “fixed-density” FK chain kinks can be created only as kink-antikink
pairs, we should also calculate the creation energy of the kk pair which coincides
with the energy of a kink and antikink separated by an infinite distance

€pair = E + E; ~ ‘,ing(a + a,) + Vint(a - a.)
~ 2Vine(a) = 211’26.94(1 -2g.) , (32)

where

2
a
9a = Q;;T.Vi::t(a) . (33)

It is important to note that for a given structure GS[#] parameters of the kink
and antikink are different provided the potential Vi, (z) is anharmonic function
as it is given by Eq. (5). Indeed, effective interaction forces for the kink (in the
region of a local contraction of a chain) exceed those for the antikink (in the region
of a local extension of an atomic chain). As a result, at the same values of the
parameters Vp and § a kink, in comparison with an antikink, is characterized by a
larger value of the rest energy and by lower values of the effective mass and the PN
potential barrier. The fact of the symmetry breaking between the kink and antikink
parameters due to anharmonic interatomic interactions was firstly mentioned by
Milchev and Markov.!7 In particular, the difference in the values of the PN barrier
for the kink and antikink is equal to

= = 1
Sepn = ey —epRt! & [2Vint (a + 50.) = Vine(a) = Vine(a + a.)]

- [2Vint (a - %a.) ~ Vin(a —a,) - Vam(a)] ~ %R’f.ﬁga o (39)

where

ﬁ = —a,V(a)/ Vi::t(a) . (35)
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Note that for the exponential interatomic potential (5) the dimensionless elastic
constant g, and the anharmonicity parameter 3 are equal to

o= 5oz (L) Pexpi-pa- 1], F=5. (36)

The another important point is that for a given GS[0] the energies epair and Sepn
depend not on interaction of neighboring atoms situated on the distance z ~ a,, but
on interaction between elementary unit cells of the reference C-structure, i.e. they
are determined by interatomic interactions on the distances z ~ a = ga,. Therefore,
the more complicated is the reference C-structure, the lower is the corresponding
values of €pair and Sepn. For example, if we consider two commensurate structures
with the nearest values of the coverage parameter 0, e.g. §; = 1 and 0, = 12-8%,
from Eq. (36) we obtain the ratio g,(02)/94(01) = exp(—1998) and according to
Eqgs. (32) and (34), the values ¢pair and epn for the GS[f;] will be lower than those
for the GS[0,] in exp(1993) times.

The interaction between kinks for the FK chain with a weak coupling is expo-
nentially small. In particular, for the GS[0] with the coverage 6 close to 8y = 1
the potential energy of the chain can be reduced to the Ising-like form with 8o = 1
antikinks instead of atoms.!® In this case two antikinks separated by a distance R
repel each other according to the law

Vint (R) = 2725090 exP("fR/ d) ’ (37)

where
€ z —mlngl ) d = a. g’ ) g. — G,V,::t(a.)/2ﬂ’ C. .

The opposite case of a strong interaction between atoms, i.e. when Viy¢(aa) P ¢,,
is more complicated. This case can be described analytically only for the trivial
GS[0]) with @ = 1/q. Namely, in the strong-coupling limit we can use the continuum
limit approximation, ! — z = la, wi(t) — u(z, t), 3; — [(dz/a), which for the
exponential law (5) leads to the local SG-type equation!®

where the indices stand for the corresponding partial derivatives. In Eq. (38) we

have introduced the dimensionless variables, @(Z,{) = (27/a,)u(z, t), I = wot,
zZ=1z/d, and

d= a\/y? , Q‘ :3',‘3 (39)
to = Viie) = Lt o) (40)

(1-s)3’

s = exp(—-fq) , (41)
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and

wm () @

Note that continuum approximation is valid only if the effective elastic constant
is large, g 3 1, and the anharmonicity parameter is small, o < 1.
The kink solution of Eq. (38) is

ur(z, t) = u3S(z, t) + Sui(z, t) , (43)

where uC stands for the well-known shape of the SG kink,

’

u$C(z, t) = 2—:—'— tan~! exp {—o[z — X (t)]/d} , (44)

and X (t) describes the motion of the kink’s center in the case when the “relativistic”
narrowing of the kink’s width is neglected. The anharmonicity-induced correction

Su; to the SG kink shape was found in Ref. 16. This effect leads to a change of the
effective kink’s width,

d—d% =d+0oAd, (45)

on the value Ad defined as
Ad = %ad . (46)

Knowing the perturbed kink’s shape (43), we can find other characteristics of the
kink, for example, the effective kink’s mass,

Mie X Msg (l - %aa) , (47)

where mgg = 2m,/%2¢%,/gerr is the SG kink mass, the kink’s rest energy,

1
Eyxo = —0a, Vi (a) + 46,\/9ert (l + ﬁca) ) (48)

80 that €pair =~ 8¢,1/gerr, and the amplitude of the PN relief which can be estimated
as

SG atgc
€pN = €pN(9ert) + 0 Ag-—a—yu

) (49)

I=Gett

where Ag = (27/3)agen, and 655 is the barrier of the PN relief for the standard

FK model,
5(0) e.gexp(-w’m . (50)

™
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Finally, the interaction energy of two kinks is equal to (see, e.g., Ref. 14)
vint(R) ~ 160102¢,/ger exp(—R/d) . (51)

Unfortunately, a general case of the GS[s/q] with s # 1 in the strong coupling
limit cannot be treated analytically because the continuum approximation leads to
a system of s coupled differential equations. However, this case may be investigated
with the help of renormalization procedure. For example, let us consider the ref-

erence GS ["—1] with ¢ 3 1. For definiteness, we call kinks for the trivial GS[1]

as the trivial kinks (t-kinks) while kinks for GS [’—] as superklnks (s—kinks).
According to Egs. (39) to (51), the t-antikinks are characterized by the parameters

2 - g
ma N Mg 2 (1 - 60:) ) (52)
pur ~ 85091/2 ’ (53)
d
e~ $8(g) - atgt 39 ) ) (54)
9=91
where
ﬁ’ 1+4¢P)
%= 9 ( ) (T=ePy (55)
and
- /2
& (1-eP)°]
"= [2Vo [ +c"’)3 ‘ (56)

The t-antikinks may be considered as quasiparticles with the mass m; defined by
Eq. (52), interacting via the exponential law

o(AX) & 16¢, /5 exp(—~AX/a,/7) , (7)

and subjected into the external periodic potential

B~ selh [1 — cos (2"" )] - (58)

a,

Then, let us treat the GS [’;—1] as a regular lattice of the t-antikinks with the
period R = ga,. This lattice can be interpreted as a new (“secondary”) FK model
with t-antikinks instead of atoms and the coverage parameter § = 1/q. According
to Egs. (33) and (35), the dimensionless coupling constant g, and the anharmonicity
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parameter 3, of the secondary FK models are equal to

9, = 2x2¢ ‘} dxz lnt(x) R

(Ca/ fPN) exp( 99; 1/2) (59)

~ 3n8g; 3/3 exp[(*%g¢ — 9)//31)

and

By g2, (60)

4

respectively. However, it is easy to see that a kink excitation of the secondary FK
model consisting of t-antikinks ezactly coincides with a kink (s-kink) excitation of
the primary FK chain with @ = (¢ — 1)/q. Thus, in this way we can approximately
calculate parameters of the s-kinks and s-antikinks. In particular, for ¢ > 72g; the
secondary FK chain has a weak coupling, i.e. g, < 1, and Eqgs. (28), (30), (32), and
(34) give

M = mfk/qz ’ (61)
eptic  2m7efng, (1 - 29,) (62)
sk,o 1
€PN §€PN(2 x2g,) - -" bephy (63)
1 -
5€pN ~ Eﬂ’zfi}Nﬂ.g. . (64)

Otherwise, for ¢ < x2g; when g, » 1, from Egs. (47) to (50) we obtain

M & 2m,7,/1rzq2\/g_, , (65)
and
eptic % BePNVT; - (66)

Analogously, we can consider kinks for a more general case of the GS[0), if a
more simple structure with 8, may be found provided 6y is close to 6 and kink’s
parameters for the reference GS[fo] are known. The corresponding results of the
renormalization procedure are described in Appendix A and Table 1.

Now we may describe the dependence of the kink parameters on the coverage
parameter § when the parameters Vj and S of the interatomic interaction potential
(5) are fixed. Clearly, the functions my(0), émy(6), €paic(6), epn(0), and Sepn(f)
are defined only on a countable set of rational numbers 8. Besides, the functions
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my(0) and epn(0) take two values at each rational 6, the left-side value, epn(6—0) =

ean(6), and the right-side value, epn(d + 0) = "’"’1(0) The functions ¢?m;(0)
and epn(6) monotonically decrease from m,(0) = m, and epn(0) = ¢,, to zero
as @ varies from 6 = 0 to # = oo, undergoing a series of jumps down at each
rational value of 0, so that the corresponding dependence looks like an inverse
Devil’s staircase. These two functions may be defined also for irrational values of
0 if we represent the irrational 6 as a limit of certain rational coverages with the
periods increasing to infinity. As has been explained above, the amplitude of the
jump at @ = s/q is determined by anharmonicity of the potential Vi,(z) on the
distances z ~ a = ga,. Therefore, for two C-structures with close values of the
coverage parameter 0 such as, for example, 6; = 1 and 0; = -;g—;’, the phase with
a higher-order structure exhibits a lower jump, &pu(og) <« Sepn(0;). Besides, the
largest jumps are expected to occur near that coverage §, where the dimensionless
parameter ga, which is defined as

ga =a, th(“A)/ 2nr’e, , (67)

is close to one. Thus, “on average” the function epn(0) has a maximum at 6 = 0,.
The function €pair(0) increases “on average” exhibiting also an irregular structure,
because for two closely taken values #, and 0, of the coverage parameter @ the value
€pair 18 lower for a higher-order structure, e.g., €pair(92) € €pair(f1).

5. The T#0 Ground State and Susceptibility

As is well known, for the one-dimensional FK model the T' = 0 “crystalline” struc-
ture of the GS is disordered and the long-range order is destroyed at any temperature
T # 0.1° However, at low temperatures this disorder is “small”, so that the short-
range order still exists allowing the existence of kinks. This is the basis for the
ideal kink gas phenomenology?®?! when the low-temperature ground state of the
system is considered as a regular lattice with a small number of thermally-excited
phonons and kinks. Note that namely thermally-excited kink—antikink pairs destroy
the long-range order of the “crystalline” structure.

Let us suppose that at low temperatures the equilibrium state of the chain
contains N; kinks and Nj antikinks. Because kinks and antikinks can be created
only as kk pairs, this process may be considered as a “chemical reaction”: phonons
— k+ k vice versa.?? Therefore, average numbers of kinks and antikinks are equal

to
(Ni) = (Ng) = (Npair) (68)
where
(Npair) = CL exp(—ex /kpT) (69)
and )
€k = —€pair - (70)

2
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To calculate the preexponential factor C for Eq. (69) in a rigorous way, we should
take into account kink-phonon interactions. Assuming that one kink takes away
from the phonon spectrum a single degree of freedom (transforming it into the PN
mode which is an analog of the Goldstone mode of a SG kink in the continuum
approximation) and repeating the calculations which were done by Currie et al?
for the SG model, we obtain

C ~ (2mwi/xkpT)"/? , (71)

where
my = /mymg . , (72)

Now let us consider the dimensionless susceptibility x of the FK chain. This
value is determined by the expression

=820 (73)

where N is the number of atoms on a fixed length L (L 3 aa but L <« L) and
AN stands for fluctuations around N. Recall that x characterizes an “order” in the
system because x = 0 for an ordered state (at T = 0) and x = 1 for a completely
disordered state (for T — oo or Vipe — 0).

The susceptibility x can be easily found with the help of the ideal kink gas
approach.?® Namely, let us assume that on the length L there are N atoms, N
kinks, and N, ¢ antikinks with N , ﬁk, N, £ > 1. At low temperatures, when the con-
centration of kinks is small and they may be considered as noninteracting quasipar-
ticles, the corresponding probability distributions should be Poissonian-like giving
the following relations,

(N?) = (Ne)? = (Vi)

(V) — (Ng)? = (N3) , (74)
(N Ng) = (Ne)(Ng) . (75)

Recalling that each kink corresponds to 1/g excess atoms, and each antikink, to the
same quantity of vacancies, we can write the number of atoms on the length L as

e - 1.~ -
N=No+ ;(Nk -Ng), (76)

where No = nL is the number of atoms at T = 0. Substituting Eq. (76) into
Eq. (73) and using Eq. (75), we obtain the result

_ {Neot)
X=FNy

(77
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where (Niot) = (Ni) + (Nz), and all the tildes are finally omitted. Thus, at low
temperatures the susceptibility behaves as the following:

2wo [ 2my 73 pair
~on (wkgT) ex"( 21:.;7‘) (78)
The results obtained above are valid provided kpT < €i, when the concentration
of thermally-excited kinks is small so that they can be considered as noninteracting
quasiparticles.

For kT > € the concentration of thermally-excited kk pairs becomes so large
that they “melt” the reference C-structure and the approach based on the ideal
kink gas breaks down. However, if 6 # 1/g, i.e. the T = 0 GS[6), is nontrivial, the
approach using the kink gas theory remains useful up to temperatures kT < €.
For example, let us consider again the case 8 = (¢ — 1)/q with ¢ 3 1 when the
T = 0 GS[f] may be treated as a regular structure of t-antikinks with the number
N, (these t-antikinks are known as the “residual” t-antikinks). Analogously to
Eq. (70) we can introduce the energies ¢,; = jeps;, and ey = jeps;,. Comparing
Eq. (62) or (66) with Eq. (53), we see that ¢, < €, provided ¢ > ,/g;. Thus, there
may exist wider temperature interval,

€k < kT < €4 (79)

where the trivial # = 1 structure of atoms still exists while the original ¢ = (¢—1)/g
atomic superstructure is disordered. Thus, in the temperature interval (79) the
lattice of t-antikinks is “melted” and, therefore, the t-antikinks can be considered
as a gas of weakly-interacting quasiparticles. Now, repeating the calculations similar
to those we have done above, we obtain for the interval (79) the expression

(Nm)

where now N, is the total number of trivial kinks and antikinks. As was shown
by Currie et al.,2? the average number of N is given by the formula

(Neot) = [(Nu)? + @Noui)?])? (81)

where (Ny,) = Ny, is the number of residual t-antikinks and (Npair) is the average
number of thermally-created trivial kk pairs determined by Eqgs. (69), (71) with e
instead of €; and 7y = /Mgy instead of /. From Egs. (81), (69), and (71)
it follows that on the left-hand-side of the interval (79) the function x(T") has a
plateau x & w = N /N (the value w is known as the “window number”), and on
the right-hand side, x(T') increases exponentially due to thermal excitation of the
kk pairs which join those already present from the “melted” t-antikink lattice.
With the help of the renormalization arguments presented in the previous sec-
tion, we may describe in the similar way the temperature dependence of x(T) for
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more complicated structures with 6 = s/q where s # 1 and s # (¢—1). Considering
the system as an hierarchy of the consequently melted superkink lattices, we can di-
vide the whole temperature interval 0 < kgT' < €4 into subintervals, at each of them
more complex superkink structure is already melted, but more simple structure still
exists and it allows strong definition of the corresponding s-kinks and s-antikinks
which are approximately noninteracting in this temperature subinterval. Within
each subinterval the susceptibility is defined by Eq. (77), (81), (69) to (72), where
the parameters ¢ and N,, characterize a more simple structure, and ¢€p,;r and m;,
mg correspond to kinks defined on the basis of this reference structure. Thus, the
function x(T') has to display a series of plateaus at low-temperature sides of these
subintervals, and it changes exponentially between the plateaus. We would like to
note that computer simulations of Gillan and Halloway?* are in a good agreement
with the results of our phenomenological approach.

With futher increasing of temperature, kT > ¢, the function x(T') for the
standard FK model tends to its asymptotic value x(T) — kT/Gaa%. However,
in the limit T/GA — oo this asymptotic dependence gives the unphysical result
x — oo instead of the correct one, x — 1. The reason of that can be explained
by the fact that for kgT' > Gaa% mutual displacements of atoms are not small,
and the harmonic approximation (4) for Vi,:(z) becomes not valid anymore. As is
shown in Appendix A, the accurate accounting of anharmonicity effects of Vine(z)
restores the correct limit y — 1 for T' — oo.

At last, here we will estimate also the “melting” temperatures of the hierarchy
of superkink lattices. Let us consider a regular lattice of interacting quasiparticles
(atoms, trivial kinks, superkinks, etc.; below we will call them “atoms”) interpreted
as the reference structure which is characterized by an effective value of the cover-
age parameter 6 = 5/§ and by an effective external potential with the period &,.
We assume that the system has a small quantity of approximately noninteracting
topological excitations (trivial kinks, superkinks, super-superkinks, etc., below we
will call them as “kinks”) which are characterized by the width d and the mean rest
energy & . Note that the “kinks”may be both residual as well as thermally-excited.
According to the definition of the susceptibility x, this value describes the mean
square fluctuations of the relative atomic displacements zy4; — 20,2

A= 5 Y (ewst = 20) = (e — 2 = xadl (82)
'l

Thus, mutual positions of two “atoms” separated by the distance z, z = la,,
fluctuate with the amplitude §(z) = vA; = \/X@az. In order to construct “kinks”
for the reference structure with § = 3/, mutual fluctuations must be assumed
small, §(z) < &,/5, at least on distances of order of the “kink” width, Z > d. In this
way we obtain the upper limit when a given reference structure may be considered
as a regular one; the corresponding equation is 6(3') = &,/§, or

x(T)apds® = a3 . (83)
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A solution of Eq. (83) defines the temperature Timeit, above which the short-range
order in the given reference structure is completely destroyed by thermal fluctua-
tions. Using the expression (77) for x(T'), we can see that at T = T the average
distance R between “kinks” is equal to J, so that at T > Tmu the total concentra-
tion of such “kinks” becomes so large that they begin to overlap.

When the reference structure has no residual “kinks” (i.e., for the lowest tem-
perature interval in the kink-lattice hierarchy), Eq. (83) leads to the result

kBT.'melt N6 (84)

However, when the quantity of residual “kinks” is nonzero, it follows that kpTimere <
& because the residual “kinks” supplement thermally-excited “kink-antikink” pairs
and, therefore, the criterion R = d will be achieved at lower temperatures.

Thus, the more complex (higher-order) is the reference structure, the lower is

the energy & of its topological excitations and, therefore, the lower is its “melting”
temperature Tineie.

6. Kink Diffusion

In this section we study the system dynamics when the FK chain contains a single
kink only. Namely, we impose the periodic boundary conditions, uy4+; = u; — oa,,
and suppose that temperature is low enough, i.e. kgT < ¢;, so that the probability
of thermal creation of kk pairs is negligible.

Using a phenomenological approach we may consider a kink as a quasiparticle
of the mass m; which is characterized by the coordinate X;(t) and has the kinetic
energy %m;,)'(,f moving in the potential relief Vpn(X)). Thus, it is reasonable to
suppose that the kink’s coordinate X (t) satisfies the Langevin-type equation

m Xy + mem Xi + Von(X3) = 6Fe(t) . (85)

It is clear that Eq. (85) is an approximate equation and, therefore, it can not be
rigorously derived from the primary motion equation (3). However, in order to find
the kink friction coefficient n; and the fluctuation force §Fi(t), below we briefly
outline a way how to reduce Eq. (3) to the form given by Eq. (85).

In Sec. 2 we have introduced the adiabatic trajectory z;(7) as a solution of the
system of equations (23). When the FK chain contains a single kink only, we can
uniquely put into correspondence the value X (7) from Eq. (22) to each point of the
AT. Thus, we can introduce the functions u}"*(X}) according to the equation

u}‘i“k(Xk) = zi(1) - zfo) . (86)
X(r)=X»

The functions u}i"*(X;) describe atomic displacements in the FK chain with a single
(adiabatically-slowly moving) kink. Then, let us suppose that the system can move
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strictly along the AT only, looking for a solution of the motion equation (3) in the
form

u(t) = uf™ [ X (1)] - (87)
Suppose now that during a short time interval At, the fluctuation forces § Fi(t) and
§Fy(t) are constant, while the atoms and the kink are shifted on small distances

Az and A X}, respectively. From Eq. (86) it follows that Az; and A X, are coupled
by the relation

du}‘i"k(x )
Az; - TAX} . (88)
The work done by the fluctuation forces can be written as
§FiAXy = Y 6FiAz . ' (89)
1

Substituting Eq. (88) into Eq. (89), we obtain

6F(t) = %@M’}(t) . (90)
1

Now, using Eq. (2) for §F;(t) and taking into account the definition (26) for the
kink’s mass, we find correlation functions for the kink fluctuation force,

(6Fe(t)) =0, (6Fk(t)5Fg(t'» = 2mempkpT6(t — t') , (91)

where n = 1.
To find the friction force acting on the kink, let us take the sum over ! for the
first two terms in the motion equation (3),

(gma/ma) 2("'«5: +mang;) = mp Xy + minXy , (92)
1

where we have used Eq. (22) to introduce X = X;. Comparing Egs. (85) and (92),
we see that the friction coefficient n; in Eq. (85) exactly coincides with the atomic
friction coefficient 7.

It should be emphasized that the parameters myg, n, and the function Vpn(X)
in Egs. (85), (91) coincide with those calculated for the kink only if the atoms move
strictly along the AT. As a matter of fact, a real trajectory deviates from the AT.
For example, even at T' = 0 a moving kink radiates phonons, and this leads to an
additional damping of the kink’s velocity. Besides, at T # 0 the system contains
a certain number of thermally-excited phonons. Thus, more rigorously we should
look for a solution of Eq. (3) in the form w;(t) = uP"(t) + ukink[X,(t)], where uP"(t)
describes a contribution of phonons to the atomic displacements. It is convenient to
consider X; and P, = mi X as two canonical variables. In this case we must impose
two Dirac’s constrains on the variables ufh in order to keep the dimensionability
of the phase space unchanged (see details in Ref. 25). The motion equation of
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the type (85) is then obtained after averaging over the phonon coordinates uPh(2).
Collisions of a kink with thermally-excited phonons lead to energy and momentum
exchange between them, the rate of this exchange may be approximately described
by introducing an additional “intrinsic” viscous friction fn.. Of course, 7. cannot
be calculated exactly, but it can be estimated by the perturbation technique. At
low temperatures the perturbation approach gives the result (see, e.g., Refs. 26-31)

Thnt = Cowo(kpT/ex)? , (93)

where the dimensionless factor C, depends on the type of the model under con-
sideration. Note that for the exactly integrable SG model i, = 0.263! But any
deviation from the pure SG model, such as nonsinusoidal substrate potential, anhar-
monic interatomic interaction, discreteness effects (especially, for a nontrivial GS[6]
with 6 # 1/q) which destroy exact integrability of the model, will lead to 9ine # 0.
Besides, kink-phonon interactions may increase the effective kink mass (due to a
phonon “dressing”) and decrease the height of the effective PN barrier (analogously
to the so-called Debay—Waller effect). Thus, the parameters my, 9 = 1 + %ine, and
epn used in Egs. (85), (91) are effective parameters which in a general case depend
on T. However, these effects can be neglected when the kink—phonon interaction is
small in comparison with interaction with the substrate, i.e. if 7y € fext- In real
physical objects, when the FK chain is only a part of the whole three-dimensional
system, the latter inequality is usually fulfilled.

Note that for the trivial GS[] with 6 = 1 the Langevin equation (85) was
introduced earlier (see Refs. 32-35) where, however, instead of the AT-kink shape
it was taken the SG kink profile, the latter being rigorous only for the FK chain
with a strong interparticle coupling.36:37

When the parameters of Eq. (85) are known, the kink diffusion coefficient can
be found as

Dy = lim Di(@)= /o°° dt € (X (t) X1(0)) - (94)

According to Egs. (18) to (20), at low temperatures, i.e. when kT < epn, the kink
diffusion coefficient should have the Arrhenius form,

Dy = Do exp(—epn/ksT) , (95)
where
a’wpn/27 , if e < n<wpy
Dkoz{ . O (96)
a’wpNwpn/27me , i 9> why -

Here WPN = \/ lﬁ'NiOka, “’l"N = \/-—V{’Niahi;mk, and e = wpnkBT/2ﬂ’€pn.

The activated kink diffusion for the trivial GS was predicted by Pietronero and
Strissler®® (see also Refs. 34 and 35) and observed in molecular-dynamics simulation
by Combs and Yip.38
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In the FK chain with a strong coupling, for a GS[6] with a simple elementary
cell the inequality epN < € may be easily fulfilled. According to Eq. (17), in the
temperature interval epny < kT <€ € the kink diffusion coefficient may be found
in the form (see, e.g., Refs. 32, 13 and 37)

L BT [ _1(en)’
Dy = v [1 -3 (ET) ] . (97)

When GS[0] of the system is nontrivial, i.e. § # 1/q, the phenomenological approach
is useful not only to be applied for the lowest temperature subinterval in the hier-
archy of the kink lattices, but also at the left-hand side of any of these subintervals.
For example, for § = (¢ — 1)/q with ¢ 3> 1 for temperature ¢, < kpT < € the
GS may be considered as a system consisting of N,, weakly-interacting residual ¢-
antikinks. If collisions of these kinks are approximately elastic (as they do in the
standard SG model), the kink collective diffusion coefficient

o 3 Ne
Dy = dt — Xi(t) X (0
we = | NWE;( 1(8) X (0))
coincides with the diffusion coefficient of a single kink for the same reference struc-
ture (namely, with the diffusion coefficient of a single t-antikink). On the other
hand, the chemical diffusion coefficient of the kink is equal to

D = Dy [x (98)

where x: is the dimensionless susceptibility of the t-antikink system. When the
PN barrier for the t-antikinks may be neglected, that is valid for c{;"N <« kpT, the
susceptibility x; is calculated with the help of the perturbation theory3® and the
result is given by the integral,

Ny

o~ [1 e /_ : dx v;,,,(X)] o (99)

where n,, = N, /L is the concentration of the residual t-antikinks. Otherwise, for
kgT € e{}N the system Hamiltonian reduces to that for an effective lattice gas, and
xk is found as

Xex1-0,, (100)

where 0,, = N, /M corresponds to the concentration of t-antikinks.

7. Calculation of the Diffusion Coefficients Ds, D,, and D¢

In order to find the system diffusion coefficients in the framework of the phenomeno-
logical approach, let us suppose that at low temperatures the GS of the FK chain
contains a certain number of phonon modes, kinks, and antikinks, neglecting mu-
tual influence of one excitation on others. In this case the atomic displacements can
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be represented as the sum

Niot
w(®) = ")+ Y w0}, X;(1)] (101)

j=1

where uXi™% (g, X) stands for the shape of a slowly moving kink with the coordinate
X and the topological charge o, and uP* describes phonons adjusted to the kinks.
From Eq. (101) we obtain for the atomic velocities the expression

Nyot
w(t) =6 (0) + Y X5 (wlos, X;(2)] (102)
j=1

where w(o, X) = Hui"™*(0, X).
Substituting Eq. (102) into Eq. (10) for D,(t), we obtain three types of terms.

A contribution from the phonon correlation function (uP(t)uP"(0)) is
Aﬁph w)=D — _iam ,
u @) / zs: [i@n + &2 — w3y (x)]

(103)

where « stands for the phonon modes with the frequencies wpn(x). Because the
phonon spectrum of the FK chain is optical, the contribution (103) tends to zero in
the limit & — 0. The mixed correlation functions (uP"(t)X;(0)) describe kink-
phonon interactions. However, a rigorous calculation of these functions is too
complicated. But in the phenomenological approach we may assume that these
interactions are already taken into account if the kink concentration and the kink
friction coefficient 7, are calculated in a way which includes the kink-phonon inter-
actions. Finally, in order to find the last contribution, let us assume that the kink
concentration is small, n,,; € n, so that kinks can be considered as independent
quasiparticles. This assumption yields

[ a0%,:0) = 65 Dugy (104

where Dy g, is the diffusion coefficient for a single kink (antikink). Then, substi-
tuting Eq. (102) into Eq. (10), and using Eq. (104) and the equality

d o d (X) 1
S0 = g Sot "(X)-ﬁ(z) -1 (105)

which follows from Eq. (22), we obtain the approximate expression for the collective
diffusion coefficient D,,,

Dy~ q,LN ((Ne)Dx + (Ng)Ds) . (106)
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Thus, the conductivity of the FK chain is directly proportional to the total kink
concentration (see also Refs. 33, 32 and 40).

The result (106) can be also directly obtained from Eq. (11) if we rewrite the
expression (12) for Y(¢) in the form

Niot
Y (t) ~ Const + 2 X;(t) . (107)

J:l

For the standard FK model with the trivial GS at # = 1, in the limit when
the SG equation is valid, we can take Dy = Di = kpT/m:n, so that (Ni) =

(Nz) = Na,wo\/2mi/xkpT exp(—ex /kT), mp = 2my/7%\/ga, apd & = 4¢,/Ga,
thus obtaining from Eq. (106) the following expression

DS,SG) ~ Dy (rmawia?/e,)?(ex/knT)"? exp(—ex/kpT) . (108)

This result was firstly obtained by Biittiker and Landauer?! with the help of the
generalized rate theory (see also Ref. 18).

While the collective-diffusion coefficient is known, the chemical diffusion coef-
ficient can be obtained as D, = D,/x. Using Eq. (77) for x, we can find from
Eq. (106) that
(Ne)De + (Ng)Dg

(Ni) + (Ng)

We should note that by kinks (antikinks) in Eqs. (106) and (109) we must un-
derstand those “kinks” (trivial kinks, superkinks, super-superkinks, etc) which are
well defined as quasiparticles at a given temperature interval for a given coverage
parameter 0.

For the lowest temperature interval of the kink-lattice hierarchy, Eq. (109) leads

D, =~

(109)

to
1
D, ~ -é-(Dk +Dg) . (110)

When the GS[6] is nontrivial, i.e. 8 # 1/q, Eq. (109) allows us to find the
chemical diffusion coefficient at the left-hand side of each temperature subinterval
of the hierarchy. Indeed, in this case the number of residual kinks (or antikinks)
exceeds the number of thermally-excited kink-antikink pairs, (Ny) 3 (Npair), and,
therefore, using the condition (Ni) > (Ng) (or (Ni) <« (Ng)) in Eq. (109), we
obtain

D, ~ Dy (or Dg) . (111)
For example, let us consider the coverage defined by 04 = (¢ £+ 1)/g with ¢ » 1,

which are close to the trivial coverage o = 1. According to Eq. (111), we should
have D.(04) ~ Dy and D.(0-) = Dg at the temperature interval ¢,; < kT < €.
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The result (111) has a simple physical meaning. Indeed, for kT < €; the mass
transport along the chain is carried out by kinks. Because the concentration of
kinks is proportional to the concentration of atoms, the ratio of the flux of kinks
to the gradient of the kink concentration (which determines the coefficient D) is
exactly equal to the ratio of the atomic flux to the atomic gradient (which defines
the coefficient D, according to Fick’s law (16)). Moreover, this explanation shows
that in order to take into account kink—kink interactions, we should use, instead of
Eq. (111), the equation

D, ~ Dck(or DcE) ’ (112)

where D,; is the chemical diffusion coefficient for kinks determined by Egs. (98) to
(100). '

At last, to find the self-diffusion coefficient D, with the help of the phenomeno-
logical approach developed here, we substitute the atomic velocities (102) into
Eq. (8), thus obtaining a value D; # 0. For example, for the standard FK model
in the SG limit we obtain in this way the result

D; ~(a/d)D, . (113)

However, the coefficient D} describes diffusion of a tagged atom provided the time
scales are not too large, t € t*, because we have ignored completely kink—kink
interactions. To estimate the value of t*, let us again consider the T # 0 GS of the
FK chain as a system of quasiparticles (kinks) separated by an average distance Ry
and interacting via a potential vine(R). Expanding vin:(R) into the Taylor series,
vine(R) = ... + impw?(R — Ro)?, we can interpret the kink system as a harmonic
chain of Brownian quasiparticles studied earlier (see, e.g., Refs. 42 and 43). In this
way, we obtain t* = ni /w2, or

t* =~ mine/vin(Ro) - (114)

The long-time-scale behavior of the kink chain depends on the interatomic po-
tential which may be bounded or unbounded. In the former case, when Vjp¢(z) — oo
for |z| — +00, the rigorous sequence of atoms in the chain can not be violated. As
a result, it follows that D, = 0 because the long-time-scale behavior of a given atom
is subdiffusional, 47

(aa(t) - 2i(OP) m Vi, t> 1. (115)

The coefficient a, in Eq. (115) was found in several works (see, e.g., Refs. 43,
48, 49 and 23, and it is defined as

a, = 2apx\/D./7 = 2aM/xD,./1r =2a,D,/\/7D. , (116)

where x, D., and D, were calculated above.
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For realistic physical models it is reasonable to assume that the potential Vj,¢(z)
depends on the modulus of the interatomic distance, Vipe(z) = Vine(l2]), and Vine(|z])
— 0 as |z| — oo. If the potential Vine(z) is bounded, i.e. if €* < oo, where
€* = Vine(0)— Vine(aa ), the ordered sequence of atoms in the chain may be destroyed
because any two atoms may exchange their sites. The rate K.x. of “site-exchange”
events for two given nearest-neighbor atoms can be estimated for kgT < ¢* as

Koo 2o (“’m.x/2”) exP(—e./kBT) ’ if n < Wmax »
T @hax/2mm) exp(—€* /kaT) , i 0> wmax ,
where the frequency wmay corresponds to the out-of-pahse vibrations of these two

atoms, i.e. Wmax i8 the maximum (cut-off) frequency of phonons in the model under
consideration.

Because during ¢t ~ texc = KL a given atom passes a mean distance leyc which
can be estimated from Egs. (113) or (115) as

Iz 2D:tex¢ y if texc < t‘ 9

exe an/zexc ’ if texe > t*,

the self-diffusion coefficient D, for the FK model with the bounded interatomic
potential can be estimated as

(117)

(118)

D, % Kexel?,. . (119)

Thus, to find the diffusion coefficients of the FK chain, first we have to determine
the parameters of kinks which are well-defined and slowly interacting at a given value
of the coverage parameter § and temperature T, then to calculate the susceptibility
x and the kink diffusion coefficient D (or D.;) and, finally, to obtain D. and then
D, as D, = xD..

8. Discussions

Now we can qualitatively describe dependences of the diffusion coefficients D. and
D, on temperature T and the atomic concentration n. Let us begin from the
temperature dependence. For definiteness, we consider a physically important case
when 6 < 1, namely § = (¢—1)/q with ¢ > 1. Recall that the T = 0 GS of the chain
is the commensurate structure with the period a = ga,, and topologically stable ex-
citations are s-kinks (s-antikinks) which are characterized by the effective mass m,;
and the half-pair creation energy ¢,;. The adiabatically slow motion of the s-kinks is
carried out in the PN periodic relief described by V, pn(X) & ¢, pn[1—cos(27X/a)]
with the height ¢, pn, and small vibrations of the kink at a bottom of the PN po-
tential are characterized by the PN frequency w, pn & /€, pN72q7m,p,. An effective
friction for a moving s-kink we denote by n,;. According to the renormalization
arguments of Sec. 2, the described T = 0 GS can be treated as a regular lattice of
trivial (¢ = 1) antikinks.
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When the temperature increases to be above the “melting” temperature T,; =
6,1/ kB, this lattice becomes disordered due to thermal creation of a large quantity
of sk—sk pairs. According to the kink-lattice-hierarchy ideology of Sec. 3, within
the temperature interval ¢,; < kT < € the equilibrium state of the FK chain
can be considered as a commensurate structure with the period a, where, however,
there exists N,, = N/q residual ¢-antikinks and Np,ir thermally-created tk-tk pairs.
Let € denotes the half-pair creation energy of the # = 1 kinks, m,; denotes their
effective mass, V;pn(X) = Lepn[l — cos(27X/a,)] denotes the shape of the PN
relief, so that w;pn =~ \/ﬁpn72m“ is the PN frequency, and 5 stands for the
corresponding friction coefficient. The parameters of s-kinks and t-kinks satisfy
two inequalities, ¢, pN < €:pN < €, and €, < €. For deﬁniteness,’ let us assume
also that ¢,; is the lowest energetic parameter of the system (that is always true at
least for ¢ » 1), and that anharmonicity of the potential Vip¢(z) is small so that
the energy €,,5 introduced in Appendix A is the largest energetic parameter. Now
we can describe the functions D(T') and D,(T') for various temperature intervals.

At very low temperature,

0<kpT < € , (120)

mass transport along the chain is carried out by s-kinks, and the chemical diffusion
coefficient is equal to

D, = K,i(qa,)? exp(—¢, pn/kpT) , (121)
where
w 2% , if <w ,
Kur { ; PN/ . Mok < Wy PN (122)
wypN/270 if 9, > wspN

while the collective-diffusion coefficient is determined by the expression

D, ~ Dcﬂ'-’:mﬂ o exp[—(s by + €24)/knT] . (123)

Notice that both D. and D, have the Arrhenius form but they are determined by
different activation energies. When temperature increases, kgT — ¢,;, the number
of thermally-excited sk-sk pairs also increases, and their mutual attraction should
decrease the values of D. and D,, in comparison with those given by Egs. (121) to
(123).

At low temperatures,

&k < kBT < min(e;pN, €1) , (124)
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superkinks are likely destroyed by thermal fluctuations, but the trivial kinks still
exist, and this time they are responsible for the mass transport. Neglecting inter-
actions of ¢t-kinks, we obtain

D. = Kia? exp(—e pn/ksT) , (125)
wipN/27 , if 7 < wipn,
Ka % { \ , (126)
wipn/2%me ,  if na > wepN
De (|, 4'muwia] ., et
D%~ (1 + . (127)

The mutual repulsion of the residual ¢-antikinks increases the values of D. and D,
in comparison with those defined by Eqgs. (125) to (127).

Analogously, we may describe the case of the GS[s/q] with 2 < s < ¢ — 2, when
the kink-lattice hierarchy consists of more than two temperature intervals.

The limits of the intermediate temperature interval depend on the model pa-
rameter g,. Namely, when g, > 1, there exists the temperature interval

&pPN < kBT < € (128)

within which ¢-kinks still exist, but their motion is not thermally activated. In this
case we have

_ kT 1 (epn)?
Do B [1 - (kBT) ] (129)
and

D, =~ D, (<“’;) o exp(—¢€/kpT) . (130)

The described analytical predictions are in a good agreement with molecular dynam-
ics simulations of Holloway and Gillan®%24 carried out for the standard undamped
FK chain, if we put in Eq. (129) n = 7ine = 0.028w,.

If g, € 1, the intermediate temperature interval is determined as

€&k < kpT < €4pN . (131)

Within this interval the diffusion coefficient can be found only numerically. It may
be expected, however, that D, and D,, will have the Arrhenius behavior with the
activation energy €5 where e;pn < € < ¢,.5!
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At high temperatures,
max(e,, €i) < kBT < €anh , (132)

a perturbation theory approach may be used and it leads to the result

1[  (e/ksT)sinh(kaT/ega) 17\
Dy = Dy {l *3 [cosh(kBT?/e.gA) - :os(‘hra.:/a.) } ’ (133)

and the analogous expression for D, with the factor GAazA/man instead of D;.

Finally, at very high temperatures, kT > €anh, contributions of both Vup(z)
and Viy¢(z) become negligible, and the diffusion coefficients D, ‘and D, are close to
the value Dy = kgT/man.

Let us describe now the behavior of the diffusion coefficients as functions of the
coverage parameter § = a,/aa. As can be seen from Eq. (133), at high temperature
within the interval (132) the collective diffusion coefficient D,(6) shows oscillations
as a function of 8, achieving minima for the trivial ground states when 8 = 1/g,
where the atoms are situated at the bottom of the substrate potential wells. On
the other hand, maxima of D,(#) occur at § = 2/(2q — 1) where the atoms in the
GS are displaced from the bottoms that are closer to the potential tops. Maxima
and minima of D, (#) become more pronounced with increasing of the interatomic
interaction and decreasing of temperature. Because for the exponential interaction
(5) the parameter ga (see Eq. (67)) defined as

=5 G’g) B¢ exp(~/0) (134)
increases with 6, the amplitude of the oscillations of the diffusion coefficient D, (6)
will also increase with 6. Thus, the dc conductivity of the FK chain as a function
of 8, o0(8) < 6D,(0), is expected to have the absolute maximum within the interval
0 < 0 <1 at the concentration value 6 between 0.75 and 0.80 (cf. Ref. 52). On the
other hand, the chemical diffusion coefficient D.(6) is determined by an expression
which is analogous to Eq. (133) but with the factor

Gadi/man = (Vo/man)B?e’ 07 exp(—p/6) (135)

instead of Dy in front of the figure brackets. The function (135) has a maximum at
0 = /2. However, we should remember that the limits of the temperature interval
(132) depend on the parameter go and, therefore, on the coverage parameter 4.
At low temperatures, the phenomenological approach developed above leads to
the similar behavior of the function D,(0). Indeed, let us consider the FK chain
within the temperature interval (124) for the coverage parameter  which is close
to the value 8y = 1, ie. |0 — 6y| € 1, when interaction between the residual
t-kinks is small enough so that they do not form a kink lattice. In this case the
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chemical diffusion coefficient D, is equal to Dy for 8 > 6 and Dy, for 8 < 8, and
it is approximately independent on 6. (This latter statement is in agreement with
numerical simulations of Gillan and Holloway.?* However, the function D.(#) may
slowly increase with increasing of | — 69| due to a kink-kink repulsion of residual
kinks). Because the quantity of thermally-excited kinks (Npair) is approximately
independent on @ while the quantity of the residual kinks |N,| linearly increases
with |0 — 69|, the susceptibility x = (Nio:)/N as a function of 6 should have a local
minimum at @ = 6y. Therefore, the function D,(#) will have a local minimum at
60 = 0 too. Analogously, the function D,(0) will have local minima at each of
those commensurate coverages 6, whose “melting” temperature Tpe1c(6o) is larger
than T. (It is clear that between the neighboring local minima the function D, (6)
has local maxima.) At high temperatures this criterion is fulfilled only for the
trivial coverages 6o = 1/¢g. But with decreasing of T, additional local minima of
the function D, (@) will appear and they correspond to higher-order commensurate
structures, and in the limit T — 0 the function D, (6) should have minima at each
rational value of the coverage parameter 8. It is clear that the values of D,(0) at
those minima will tend to zero according to the Arrhenius law provided T — 0.
Otherwise, loval maxima of D,(0) at irrational 6 will tend to infinity when T — 0
provided the dimensionless elastic constant ga(f) of the model is larger than the
Aubry threshold gaubry(9) where the T = 0 GS exhibits the existence of the “sliding
mode”. In the opposite case, i.e. when ga(6) < gaubry(#), the value of D,(0) at
local minima will tend to zero for T — 0 according to the Arrhenius law too.

The behavior of the function D.(f) becomes clear if we recall that the mass
transport along the chain is carried out by kinks at § = 6y + 6 and by antikinks
at 6 = 0y — 6 (where § — 0), provided temperature T of the system is lower than
“melting” temperature Tinet(fo) for the structure with a given value 8 = 6. For
anharmonic interatomic interactions such as the exponential law (5), the PN barrier
for the kinks (local contractions of the chain) are lower than those for antikinks (local
extensions of the chain). Thus, when the coverage parameter # increases passing
through the value 0p, the activation energy for the chemical diffusion decreases
jumplikely. Therefore, the dependence given by D.(6) should have jumps similar to
the inverse Devil’s staircase: the value of D, should rise sharply each time whenever
the coverage parameter 0 exceeds the value 0y that characterizes the structure which
commensurates with the substrate and has the “melting” temperature larger than
T. It may be predicted also that both the diffusion activation energy and (owing to
decrease of the free path length of kinks) the preexponential factor in the formula
for D.(0) decrease simultaneously with increasing 6 (the so-called compensation
effect). It is clear that the jump in D.(0) at a given § = 6y, as well as a local
minimum for D,(0), exists only if T < Time(60); when temperature increases to
be above Tineit(fo), the jump disappears. Thus, the structure of the inverse Devil’s
staircase for D.(0) (and an irregular structure for D,(#)) will he smoothed with
increasing temperature since only those peculiarities which correspond to the simple
commensurate structures (o = 1, 1, etc.) will “survive”.
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9. Conclusions

In conclusion, using the phenomenological approach based on the approximation of
the ideal kink gas and hierarchy of the “melted” kink lattices, we have analysed
the diffusion coefficients of the anharmonic FK chain as functions of the coverage
parameter 6 and temperature T. In particular, we have shown that the chemical
diffusion coefficient D.(0) as a function of § has a form similar to the inverse Devil’s
staircase, i.e. we have demonstrated that the function D.(@) should exhibit jumps
at those rational values of the coverage parameter 6 where, at a given value of T,
the corresponding commensurate structure has a short-range order that allows the
system dynamics to be described in terms of the well-defined kink excitations. In
the same time, the chain conductivity o(6) o< 6 D,(0) should display local minima
at the same rational values of the coverage parameter §. The quantity of such
singularities, i.e. the quantity of the jumps for D.(6) and the minima for D,(0),
should increase with decreasing of T'.

The predicted behavior of the diffusion coefficients D. and D, are expected to
be observed in those physical objects which may be described with the help of the
anharmonic FK model, such as one-dimensional conductors and adsorbed layers.
For example, the experimentally measured dc conductivity of one-dimensional con-
ductors exhibits a local maximum between 6 = 0.75 and 6 = 0.80, i.e. D,(#) has
local minima at 8, = % and 0; = 1, and a local maximum between those values.
According to our predictions, at lower temperatures the function D,(0) will have,
additionally to the minima at ; and 83, a local minimum at 83 = % Then, with
futher decreasing of temperature, an additional minimum appears at 6, = %, and
80 on.

Referring to adsorbed layers, we should mention a sharp increase of the chem-
ical diffusion coefficient for Ag atoms adsorbed on a stepped (vicinal) Ge surface
when the concentration of atoms increases to above the value corresponding to the
commensurate (4 x 2) structure of adsorbed atoms. Unfortunately, we do not know
at the moment the detailed results of investigations for the surface diffusion on fur-
rowed surfaces, although preliminary experimental results of Vedula et al.%® are in
a good qualitative agreement with the predictions of the present analysis.

At last, we would like to mention briefly possible generalizations of the model.
First, in more realistic physical models the periodic substrate potential may have a
more complicated than sinusoidal shape. If the shape of the potential V,,,(z) allows
the existence of different types of kinks, the low-temperature activation energy which
determines the diffusion coefficients will be given by a contribution of the kinks
corresponding to the largest value of the PN barrier. Second, in real physical objects
we have not one single isolated chain but, instead, a system of weakly coupled
parallel FK chains. The interaction between the chains leads to interaction between
kinks in the chains and, therefore, to a modification of the diffusion coefficients.
Third, in the model we have investigated in the present work, atoms were allowed
to move along one-dimensional “channels” only. But with increasing of interatomic
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repulsion, for example, by means of increasing of @, compression forces in the atomic
chain may become so strong that the atoms may escape from a channel, and the
atoms will also move in the transversal direction. In such a case, we should use
the FK model with a transversal degree of freedom.5* Finally, it would be also
important to investigate two- (and three-) dimensional FK models as well as to
take into account a possible role of impurities in the effects described above.
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Appendix A
Renormalization procedure

In this Appendix we discuss how we can “map” a complex commensurate struc-
ture C for the “primary” FK model to a new (more simple) structure C; for the
“secondary” FK model.

Let us suppose that we know the parameters of a single kink such as its mass, my,
the PN barrier, epn, the kink interaction energy, vin¢, which are defined for a simple
commensurate structure Cp with the coverage parameter 6y = 89/qo. The structure
Co can be presented by N, atoms distributed on the length Lo, = Mja,, where Ny
and M, satisfy the condition Nogo = Mjso. Then, let us add (or substract) AN
atoms so that a new commensurate structure C has N = Ny + AN atoms on the
same length Lo, but the coverage parameter this time is changed to be 6§ = s/q with
the condition Ng = Mys. Each additional atom (for § > 6,) or vacancy (for 8 < 6)
corresponds to go kinks or antikinks. Thus, the structure C may be considered as
a regular lattice of kinks with the spatial period

_ Lo _ (7]
IN — Nolgo ~ |0 —6olgo

(136)

Considering now the kinks as effective quasiparticles (“atoms”) subjected into the
PN potential Vpn(X) = %epN[l — co8(2xX/ag)] with the period ay = goa, and
interacting via the potential vip¢(JX; — X3|), the structure C of the primary FK
chain can be treated as a new (“secondary”) FK chain of kinks instead of atoms
with the coverage parameter 8, = ag/Ro = ¢3|0 — 6y]. Then, it may be proved
that a kink of the primary structure C is equivalent to a kink of the secondary
structure Ci. Thus, choosing an appropriate simple reference structure Cp such
that |0 — 6o| < 0o, we may significantly simplify calculations of kink parameters for
the complex structure C. It is clear that such a renormalization procedure may be



Diffusion in the Frenkel-Kontorova Model ... 2385

repeated by a required number of times if necessary. The details of the procedure
are summarized in Table 9.

The renormalization procedure C — Cj was firstly proposed by Joos et al.% (see
also Ref. 16). Note, however, that shapes of the “substrate” potential Vpn(X) and
the “atomic” interaction law vj,(X) for the secondary FK model may deviate very
much from those defined for the primary FK model. Besides, the parameters m;,
€pn» and €, of the kink lattice do not exactly coincide with the analogous values
defined for an isolated kink because interaction between kinks leads to narrowing
of the kink’s width, d — d* = kd < d. The parameter k (k < 1) is known as
the modulus in the analytical periodic solution for the kink lattice; in particular,
in the limit when the SG equation is valid this parameter is determined by the
equation 2kK(k) = R/ao\/ga, where K(k) is the complete elliptic integral of the
first kind. The values mj, €py, etc. may be approximately calculated using the
same formulas as for an isolated kink with the renormalized interaction constant
g5 = k?g, instead of g,. Because gi < gs, we obtain naturally that m} > my,
€pN > €PN, and ‘;air < €pair-

Table 1. Comparison of the “primary” and “secondary” FK models when the reference struc-
ture Co is characterized by the coverage parameter 8y = so/go and the period ap = qoa(,o),
so that the dimensionless elastic constant and anharmonicity parameter are equal to g£°’ =
[a(,o)]"';:‘(ao)/mr’c(,o) and 3% = —a(,o)Vi:": (a0)/V." (a0), respectively.

parameter “primary” FK chain “secondary” FK chain
mass ms.o) =ma mg) =m;
coordinate a:fo) =z zsl) =X

interaction potential V.V = Vips(zig1 = 1) V) = vine(Xig1 - X0)

substrate potential V.(:g = Viub() V'(ulz = Vpn(X)
period a(,o) =a, a(.l) =ag = qoa(.o)
height c(.o) =€ c(.l) = epN
coverage 000 =9=3s/q 61 =0, = s /g
order 50 =, s(1) = s = go|sgo0 — s04|
period @@ =4 o) = qi = ¢(®
0¥ = a = ga, o) = ax = gao = gqoa,

mean distance a(Ao) =ap =afs a(Al) = Ro = ax /s
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Appendix B.
Susceptibility of the Toda chain

To determine the high-temperature behavior of the susceptibility x(T), we use the
fact that for kpT *» max(e,, €;), when we may neglect the substrate potential, the
anharmonic FK model with the exponential interaction (5) reduces to the exactly
integrable Toda lattice.% To calculate the value x(T') for the Toda chain, it is more
convenient to consider a “free-end” atomic chain at an external “pressure” II. It
is clear that the “free-end” atomic chain and the “fixed-density” atomic chain will
have the same value of x(T) provided both the chains are characterized by the same
density (n) = n of atoms in the chain. ,

To consider the “free-end” Toda chain, we add to Eq. (5) a linear attractive
branch and we rewrite Eq. (5) in the form,

Vint(2) = Gab?(e™" = 14r), r=(z—amin)/b. (137)

The parameters of the potential (137) are connected with those of Eq. (5) by the
relations b = a,/B and Gab? exp(amin/b) = Voexp(B). The parameter amin in
Eq. (137) is selected in such a way that the mean interatomic distance a5 (T) in the
“free-end” atomic chain coincides with that in the “fixed-density” atomic chain.

The Gibbs free energy of the “free-end” Toda chain is known to be

G(T, 1, N) = —kgTNIn [y\/mak_BT/W exp(~Tamin /kBT)] (138)

where
y(T, ) = bexp(B)I(B + blI/kpT) B~ (B+¥/keT) (139)
B= GAb’/kBT_‘ , (140)

and I'(z) is the Gamma function. The chain’s length at the pressure II is defined
by the equation

L(T,I,N) = (g%) = Na,(T, ), (141)
T,N
where
aa(T, 1) = amin + 6a(T, ) , (142)

8a(T, ) = bfln B — ¥(B + bIl/kgT)] (143)
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where ¥(z) = £ InT(z). Defining the dimensionless susceptibility x(T’) as

2
—ke TS (gnc:) ; (144)
we obtain from Egs. (141) to (144) that x(T) is equal to
N oL _ ¥'(B)
“kT 3 5m o (0 B—¥(B) + amin/0] (145)

To investigate Eq. (145), let us introduce an “anharmonicity” energy €ann defined
as

d

€anh = Gab? = Vg exp[—B(aa — a,)/a,] . (146)

For very high temperatures, kT >3 €anh, We have B € 1 and ¥(B) ~ —y9 — 1/B
(70 being the Euler constant), so that

X & [1+( "'"')B+B]n B] ~1- 2(::';,) (E'%ﬂ) . (147)

As may be seen from Eq. (147), this result exhibits the correct limit x(T) — 1 as
T — oo. Otherwise, for an intermediate temperature interval, kpT <€ €anh, Where
B» 1 and ¥(B) ~In B - 1/2B — 1/12B?, from Eq. (145) we obtain

_ [ ksT 1ksT
v () (+35) (49

i.e. the result which corresponds to a harmonic chain.

Note also that in the limit & — 0 the potential (137) reduces to a hard-core
potential Vip¢(z) = VoO(amin — z) with Vo — oo , O(z) being the Heaviside step
function which describes interaction of hard balls of the diameter am;n. In this latter
case Eq. (145) leads to the expression”

X = (1 - namin)? . (149)
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