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The driven underdamped system of anharmonically interacting
atoms in the periodic 1D and 2D external potential is studied.
When the driving force increases, the system transfers from a
locked state to an ordered sliding state corresponding to a moving
crystal. It is shown that, before the transition to the sliding state,
the system passes through an inhomogeneous state, where it splits
into regions of immobile atoms (“traffic jams”) and regions of
running atoms. We propose a new model, where the particles have
a complex structure treated in a mean-field fashion: the collisions
of particles are inelastic, and each particle is considered as having
its own thermostat. When an external force is applied to atoms,
this model exhibits a hysteresis and a clustering of atoms (the
traffic-jam regime) for a much wider range of model parameters
than that in the classical elastic model, and both these effects
survive at high temperatures.

1. Introduction

Driven diffusive systems belong to the simplest models
of nonequilibrium statistical mechanics. These systems
are characterized by a locally conserved density, and a
uniform external field sets up a steady mass current. The
systems of this class have a wide application area in the
modeling of charge and mass transport in solids.
Traditionally, the diffusive systems are studied in
the framework of discrete lattice-gas models (e.g., see
[1] and references therein), while much less is known
about the behavior of continuous models. One of the
simplest continuous diffusive models is the generalized
Frenkel—Kontorova (FK) model [2]. In this model, a
one- or two-dimensional array of atoms is placed into
the external periodic potential, and the atomic current
in response to the dc driving force f is studied by
solving the Langevin motion equations. The mobility
and diffusivity of the FK-type models are determined by
kinks (topological excitations corresponding to the local
compression or extension of a commensurate structure)
[2—4]. The dynamics of an FK system was found to be
strongly affected by the damping coefficient 1 in the
Langevin equations [2]. For a small applied force f,
the total potential experienced by a particle possesses
an array of local minima. Hence, the particles are in
the locked state, and the system mobility B = (v)/f
vanishes at zero temperature and is exponentially small
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at low temperatures (here, v is the drift velocity and
m is the atomic mass). When f increases, the system
behaves in different ways depending on the value of
n. In the overdamped case, n 2 ws (here, ws is a
characteristic frequency of atomic oscillations at the
minimum of the substrate potential), the minima in
the total potential vanish at some critical force f,, and
the particle begins to slide over the corrugated total
potential with almost a maximum mobility of B = By =
(mn)~!, so that the system is in the sliding state. On
the contrary, in the underdamped case, n < wg, the
system may possess a sliding solution even before the
minima of the total potential vanish. In the latter case,
the function B(f) exhibits a hysteresis. In addition,
during the locked-to-sliding transition, the atoms have
a tendency to be organized in compact groups of two
different types. One consists only of slowly moving
atoms (which resemble “traffic jams”), and the other
one includes “running” atoms moving with the maximum
velocity [2]. The jamming effects have attracted a broad
interest in different areas of physics, in particular, in
plastic flows of a solid or in the physics of granular gases.
In addition, last years, the driven diffusive models are
used in tribology, where the driving force emerges owing
to the motion of one of two substrates separated by a
thin atomic layer. It was recognized that, in many cases,
namely the jamming is the main source of the static
friction [5]. In the present work, we study numerically
the jamming effects in continuous FK-type models. We
consider three variants of the model: the 1D FK model
with anharmonic interatomic interaction (Sec. 2), the
isotropic 2D FK model (Sec. 3), and the “soft” 1D FK
model, where interatomic collisions are inelastic (Sec.
4). All these models exhibit phase segregation for some
range of model parameters. In Sec. 5 we present a
qualitative explanation of simulation results. Finally,
Sec. 6 concludes the paper.

2. Anharmonic FK Model
As the first example, let us consider an anharmonic FK

model. Let a chain of IV atoms be subjected to the
sinusoidal external potential with the amplitude & = 2
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Fig. 1. The dependences nB(f) for the standard Frenkel—

Kontorova model with harmonic interaction (open diamonds) and
for the model with exponential interaction (2) with 8 = 1/7 (solid
diamonds). Solid curves correspond to an increasing force and
dotted curves to a decreasing force. The model parameters are
0=2/3, N=256,¢g=0.1,T =0.1, and p = 0.1

and the period a = 27, the atomic mass is m = 1 (this
defines our system of units). The equation of motion for
the atomic coordinate x; reads

. L 0
Ty +nrp +sinx; + o [V(:ﬂl_H —x)+
l

+ V(x —x1-1)] = f + 0F (1), (1)

where 1 <[ < N, and the periodic boundary conditions
are assumed. The substrate potential has M wells on
the chain length, so that the dimensionless atomic
concentration is # = N/M, and the average distance
between the atoms is ay = a/f. The coefficient 5
corresponds to the external viscous damping due to the
energy exchange between the chain and the substrate.
For the interaction of nearest neighboring atoms, we
took the exponential potential

V(Z’) = Voeiﬁz, (2)

so that the characteristic radius of interaction is r =
B~1. The dimensionless elastic constant, which is the
main parameter of the classical FK model, is defined
as [2]

g=a’V"(as)/2m%. (3)

For potential (2), g is equal to g = Vp3% exp(—Baa). To
all atoms we applied a dc force f and also the Gaussian
random force o0F(t), (0F;(t) 0Fy (t')y = 20T oy o(t — t'),
which models a thermal bath with a temperature T'. In
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simulations, we calculated the average system velocity
and then the mobility B defined as B = (v)/f, where
(...) stands for the averaging over the system and time.
If the substrate potential is absent, for any f > 0
after a time ¢t ~ n~! the system reaches a steady state
characterized by the maximum mobility By. In addition,
we calculated the velocity correlation function

K, = (@141 — @1)%) (4)

which will be used to distinguish a homogeneous steady
state from inhomogeneous ones.

The simulation results are presented in Fig. 1.

Comparing the hysteretic curves of Fig. 1 for
the standard FK model (open diamonds) with
those calculated for the exponential interaction (solid
diamonds), one can see the following essential difference
between them. For the harmonic interaction, the system
goes directly from the low-mobility (locked) state to the
high-mobility (running, or sliding) state. Although the
system may be found in steady states with intermediate
values of B, these states always correspond to a
homogeneous state on a spacial scale larger than
the lattice constant a. On the other hand, for an
anharmonic interaction between the atoms, the system
passes through intermediate states which are spatially
inhomogeneous. In this type of steady states, the system
splits into two qualitatively different regions which differ
by the atomic concentration and velocities. A typical
picture of atomic trajectories is presented in Fig. 2.

One can clearly distinguish “running” regions,
where atoms move with almost maximum velocities,
and “traffic-jam” regions, where atoms are almost
immobile. The regions characterized by a larger
atomic concentration and smaller (almost zero) atomic
velocities are called by jams in what follows. Figure 2
also demonstrates the dynamics of a single jam. The
jam grows from its left-hand side due to incoming atoms
which stop after collisions with the jam and then join
the jam. From the right-hand side, the jam shortens,
emitting atoms to the right-hand-side running region.
In addition, one can see also a detailed scenario of the
jam’s dynamics: when an incoming atom collides with
the jam, it creates a kink (local compression) in the jam.
This kink then runs to the right-hand side of the jam
and stimulates there the emission of the atom into the
right-hand-side running domain.

Thus, the simulations show that the traffic-jam
state may correspond to a steady state of the system.
A detailed numerical analysis [6] combined with the
investigation of the corresponding Fokker—Planck
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Fig. 2. Atomic trajectories for the 1D FK model with exponential
interaction with 8 = 1/7 at the fixed force f = 0.33. The model
parameters are § = 2/3, N = 256, g = 0.1, T = 0.1, and n = 0.1

equation confirmed that the 7' = 0 state with traffic jams
corresponds to the strange attractor of the system and,
moreover, the traffic-jam state remains stable at nonzero
temperatures, at least for small enough temperatures.
The existence of jams could be expected only for
the underdamped system, because the system must have
two different states for atoms, the running state and
the locked state, and this is possible only when 1 <
ne ~ w2e/? [4am*/? ~ 0.56. To study a role of damping,
we varied the coefficient 1 keeping the constant driving
force f = 0.5 and calculating the velocity correlation
function (4). When 7 decreases, the system passes from
the low-mobility locked state (LS) to the high-mobility
running state (RS). For the FK model with harmonic
interaction, this transition occurs in one step, and the
correlation functions exhibit a peak just at the transition
point. For the exponential interaction, the transition
may proceed in two steps: First, the system passes
to an intermediate state characterized by a plateau
with 0 < B < By, and only then, with a further
decrease of 7, the running state with B ~ By is finally
reached. This intermediate state always corresponds to
the steady state with jams. At the same time, the
function K, (n) exhibits two peaks, one at the transition
to the inhomogeneous traffic-jam state (JS), and the
second at the transition to the running state. One can
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Fig. 3. Phase diagram on the (n, 8)-plane. LS is the locked state,
JS is the steady state with jams, and RS is the running state.
Diamonds correspond to maxima of the correlation function Ky (n),
and the dashed curve corresponds to the B(n) = 0.9 By threshold.
The diagram was constructed by varying n for different values of
the exponent § at a fixed value of the elastic constant ¢ = 0.1 and
the driving force f = 0.5. Other model parameters are § = 2/3,
N =256, and T = 0.1

see from (4) that the value of K, should be proportional
to the number of jams in the system because the
velocities of nearest-neighboring atoms may differ
essentially only at the boundaries separating the running
and jam domains. Therefore, we can use the fact of the
existence of two peaks on the dependence K,(n) as an
indication of the jam state, while the positions of these
peaks show the parameter range for the JS existence. In
addition, to study also a role of the anharmonicity of the
interaction, we made a series of runs for different values
of the parameter [, keeping, at the same time, the value
of the elastic constant ¢ fixed, so that the limit § — 0
corresponds to the harmonic interaction (the standard
FK model), while the limit § — oo describes a hard-core
gas. The simulation results are shown in Fig. 3, where we
plot the phase diagram on the (7, 8)-plane by extracting
the positions of maxima of K,(n) for every value of 3.
We come to the conclusion that the traffic-jam state
emerges for a short-range interatomic interaction only,
when the radius of interaction is smaller than the period

755



O.M. BRAUN

of the external periodic potential [i.e., for 3 > a~! for
the exponential interaction (2)], and only for a narrow
interval of damping coefficients around n ~ 0.2.

3. A Two-dimensional FK Model

Next, let us consider the two-dimensional Frenkel—
Kontorova model. Let a two-dimensional array of
atoms with position vector u = (u,,u,) be subjected
to a periodic substrate potential with the triangular
symmetry, which is a generic example of isotropic 2D
systems. The substrate potential is chosen in a simple
form

Vaub(z,y) = %5 {1 — cos (2mz/a,) cos (my/a,) +

3 1— cos /a1 Q

where a; = a = 27 and a;, = a\/§/2 are the
lattice constants. Function (5) is characterized by the
isotropic minima organized into the triangular lattice
and separated by isotropic energy barriers of height ¢ =
2. The frequencies of atomic vibrations at the minima are
isotropic, w, = w, = ws = (¢/2m)'/?(27/a) = 1. Flat
maxima of potential (5) are organized into a honeycomb
lattice.

As above in Sec. 2, we consider the case of
an exponential interaction between atoms, V(r) =
Vo exp(—pr), where 37! is the radius of interaction
(in the simulation, we chose 8 = a!). Then the
main parameter of the FK model is the effective elastic
constant g = a?V"(rg)/2n%e, where 7y is the average
interatomic distance [2]. This single dimensionless
number gives an indication of the strength of the elastic
constant of the atomic layer relative to the strength of
the substrate potential. A value of ¢ much smaller than
1 indicates a weakly coupled layer. This situation may
correspond, for example, to a monolayer adsorbed on a
crystal surface. A value g 2 1 describes a stiff atomic
layer compared with the substrate depth. For example,
the case of dry friction between two blocks of material
corresponds to this limit.

The equation of motion for the displacement vector
w, (1 <1< N)is given by the Langevin equation

> V(lw —up|) + Ve | =
v )

="+ Franas (6)

. . d
w; +nw; + —
dw
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where w = wu, or uy. The force f* = f* or f¥ is
the externally applied force, while F% ; is the Gaussian
random force required to equilibrate the damped system
to a given temperature 7. In the present work, we
modeled the atomic layer by NV = 768 atoms placed onto
the triangular substrate of size M = M, M, = 32 x 32 =
1024, so that the dimensionless concentration is § = 3/4,
and we consider a driving force acting in the x direction
only, so that f* = f and f¥ = 0.

With increase in the driving force for the
underdamped system, we always observed a transition
from a locked state to an ordered sliding state of a
moving crystal. However, the scenario of the locked-to-
sliding transition and the intermediate phases through
which the system passes during the transition, are
strongly determined by the values of g, n and 7. In
most cases, the system passes through the plastic phase,
where different portions of the lattice are moving with
different velocities, or some are moving, while others
remain pinned. The plastic phase can be in the form
of channels that we call the plastic channel phase (this
phase is observed both in underdamped and overdamped
systems), or in the form of immobile regions in the sea of
running atoms that we call the traffic-jam (TJ) plastic
phase. In the plastic channel phase only one part of
particles is mobile while others remain pinned for the
extremely long time. In the simulation one can observe
the channels of crystalline or disorder flow separated by
the channel of immobile particles [7]. In the TJ plastic
phase, all particles are mobile but, at any moment, a
subset of particles spends some short time to be pinned
and then continues to move again. These pinned regions
look as entities that migrate in the direction opposite to
the driving force.

The TJ phase may emerge in the underdamped
system only [8]. Figure 4 demonstrates a typical example
of the dependence of the mobility B on the driving force
f for the stiff layer with g = 0.857 for the low damping
n=0.1.

An intermediate phase appears at f =~ 0.12 when
the system goes from the pinned state to the disordered
steady state with low mobility B =~ 0.1. At this
phase, the atoms move chaotically around their pinning
sites. Looking on atomic trajectories (Fig. 5), we see
that this state corresponds to the TJ plastic regime
with immobile islands surrounded by regions of slowly
running atoms [7].

The TJ steady state survives until the driving force
f =~ 0.34. Then the mobility increases and the system
transfers to the ordered phase of a moving crystal,
passing through the plastic-channel regime.
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Fig. 4. The normalized mobility B/Bs as a function of driving

force for the 2D FK model with § = 3/4, ¢ = 0.857, 8 = 1/2m,
and 7 = 0.1 at T = 0.001

For a larger damping n = 0.3, we also observed the
plastic TJ flow for 0.23 < f < 0.54 when B = 0.25, but
now the atomic motion is essentially one-dimensional
along channels in the driving direction [7]. The moving
atoms strongly oscillate in the transverse direction but
remain within their rows. The motion inside each row
is similar to the 1D TJ motion in the anharmonic 1D
FK model described above in Sec. 2: inside a row, the
system splits into closely packed immobile 1D islands
(traffic jams) and less dense running domains.

4. An Inelastic FK Model

As a third example, let us consider a problem of modeling
of a system consisting of “complex” particles which have
their own structure with internal degrees of freedom.
The internal modes may be excited due to interparticle
collisions and take away the kinetic energy of the
translational motion, so that the collisions are inelastic.
This is a typical situation in soft-matter physics, for
example, in the physics of granular gases [9, 10]. A
model of such type have been studied recently in [11],
where the simplest case of two “atoms” in the double-
well external potential was considered, when the atomic
hard-core collisions are inelastic. The model exhibits the
effect of atoms’ “clustering”, when both atoms prefer to
stay in the same well of the substrate potential and
hop simultaneously over the barrier. The model [11] is,
however, physically artificial in the sense that it violates
the energy conservation principle: the energy which is
lost in collisions disappears then forever. As a result, the
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Fig. 5. Snapshot configurations of the TJ plastic phase of the 2D
FK model for ¢ = 0.857, 8 = 1/2mw, n = 0.1, and T = 0.001 at
f = 0.165 (top panel) and f = 0.33 (bottom panel). Solid curves

show atomic trajectories

energy losses due to collisions lead to the effective cooling
of the system.

In a more realistic physical model, the kinetic energy
of atomic translational motion that is lost at a collision,
is stored as the energy of excitation of internal degrees
of freedom and may be released later, being transformed
back into the kinetic energy. In a simple case, when
the number of internal degrees of freedom is “large” and
their coupling is nonlinear, the energy lost at collisions is
transformed into “heating” of particles. In what follows,
we introduce a new type of stochastic models, the

757



O.M. BRAUN

model with multiple thermostats, where, additionally to
the standard “substrate” thermostat, each particle is
considered as having its own “thermostat”.

As an example, let us again consider the 1D
FK-type model with nearest-neighbors (NN) inelastic
interaction. Namely, let the chain of N atoms be
subjected into M minima of the sinusoidal substrate
potential with periodic boundary conditions, so that the
motion equation for the [th particle has the form

mi; +mnd; +sine; = = fiy, + fi,i-1 +F () + f, (7)

where the dot (prime) stands for the time (spatial)
derivative. To each atom, we apply the dc force f
and the viscous damping force with the coefficient n
which describes the energy exchange with the substrate.
The substrate thermostat is modeled by the Gaussian
stochastic force 0F;(t).

The interaction is taken as exponentially decaying
with the interatomic distance, V (z) = Vo exp(—px). The
inelasticity of collisions is modeled by a viscous damping
force proportional to the relative velocity of two atoms,
so that the mutual interaction between the [-th and
(I — 1)-th particles is described by the force f; 1,

fri—1 = =V'(zi — z—1) — memy (& — &1-1) + 0fi(t), (8)

where the first term on the r.h.s. of Eq. (8) describes the
elastic interaction, V'(z) = dV (z)/dz, the second term
describes the inelasticity due to viscous damping with
a coefficient 7;, m,, = m/2 is the reduced mass of two
colliding atoms, and the last term is the stochastic force
that compensates the energy losses emerged due to the
inelasticity,

<6fl(t) 6fl/ (tl)> = QmmrT&”zé(t - t’). (9)

The mutual damping 7; was chosen to depend on the
distance between the NN atoms in the same way as the
potential, n; = n*exp[—8(z; — x;—1 — a4)], where n*
is a parameter which characterizes the inelasticity: the
interaction is elastic in the case of n* = 0, while the
collisions are totally damped in the limit n* — oo.

The set of Langevin equations (7)—(9) is equivalent
to the Fokker—Planck—Kramers equation for the
distribution function W ({z;}, {#:}; 1),

ow
-+

o+ X b G U= Vi e+

&rl

ow
+ V(@1 —x) = V(2 — 7-1))] a_a:,} =
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1 0 . 0
= 5;6_331 {(277+77l+1 +m) <5Ul +T8_j:l> -

. 0 . 0
—M1 (:L’l+1 + Taiﬁl_H) —m (1’[1 + Taiﬁl_l >:| W(].O)

It is easy to check that, in the nondriven case where
f = 0, the Maxwell-Boltzmann distribution is a
solution of Eq. (10), so that our model has the truly
thermodynamically equilibrium state.

In the driven case, f > 0, the equilibrium state is
destroyed, and the system exhibits a transition from
the locked state at low driving (with exponentially low
mobility at low temperatures) to the sliding (running)
stationary state at high driving, where all atoms move
with almost the same velocity f/mn. For the classical
FK model described in Sec. 2, when the interactions are
elastic, the average velocity of atoms as a function of
f exhibits a hysteresis at zero temperature. But, at any
T > 0, the hysteresis disappears for an adiabatically slow
change of the driving in the 1D model (in simulations,
where the force f changes with a finite rate, a small
hysteresis persists due to a delay in the formation of
the steady state). In addition, in the case of exponential
interactions, the steady state during the locked-to-
sliding transition for some range of model parameters
corresponds to the TJ state with a nonuniform spatial
distribution of atoms.

In what follows, we show that both these properties
of the transition change drastically for the inelastic
interaction. First, the system exhibits a hysteresis even
at very high temperatures. Second, the TJ regime is
observed for a much wider range of model parameters,
thus now it is a generic property of the system. Both
these effects appear because of the clustering of atoms:
in the case of the inelastic interaction, the energy losses
are minimal when the NN atoms move with the same
velocity and the mutual viscous forces are zero.

In the simulation, we chose N/M = 144/233 which
is close to the “golden-mean” atomic concentration. The
force was typically changed with the rate R = Af/At =
0.0025/(2-1000-27) =~ 2-10~7 which is low enough
to be considered as adiabatically slow. Typically, we
used the following parameters: 5 = 0.01 (recall that, for
the “elastic” FK model, Sec. 2, TJs are observed for a
window of frictions around n ~ 0.2, i.e. for much higher
values of the atom-substrate damping), 5 = 1/7 so that
the dimensionless anharmonicity parameter is Sas; = 2
(according to Sec. 2, TJs appear only for a large enough
anharmonicity of the interaction, Sas; > 1), g = 1 (recall
that in the classical FK model at T = 0, the Aubry
locked-to-sliding transition takes place with increase in
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Fig. 6. Dependence of the normalized mobility B/Bj on the force
f for three values of the intrinsic damping: n* = 0 (up triangles,
the elastic model), n* = e~%4 & 0.0393 (down triangles), and
n* = 10e7%4 = 0.393 (black diamonds) for the force increasing
(solid curves and symbols) and the force decreasing (dotted curves
and open symbols). Other parameters are the following: 8 = 1/,
g=1,1=0.01, and T = 1. Inset: B(f) for n* ~ 0.0393 for three
values of the rate of force changing: R ~ 1076 (up triangles),
R~ 2-10~7 (down triangles), and R ~ 4-10~8 (black diamonds)

g at g ~ 1), and T = 1 which is quite large as compared
with the barrier height ¢ = 2.

The simulation results for the normalized mobility B
are presented in Fig. 6. One can see that while there is no
hysteresis of the B(f) dependence for the elastic model
(a narrow hysteresis is because of a finite step of force
changing), the hysteresis does exist for n* > 0 and its
width strongly increases with n*. Moreover, the width
of the hysteresis does not change essentially if the force
increasing/decreasing rate changes by 25 times as shown
in the inset in Fig. 6.

We emphasize that the hysteresis in Fig. 6 is for a
quite large temperature 7" = 1. Although the hysteretic
width decreases when T' grows, it still survives even at
T = 2 (when e5/kgT = 1!) and disappears at huge
temperatures only. For example, in the n* =~ 0.0393
case the dependence AF(T) = frorward (T') — foackward(T")
may be fitted by the exponential dependence AF(T') =
AFye~T/T" with AFy ~ 0.156 and T* ~ 0.76. Therefore,
the hysteresis disappears when AF(T) < Af = 0.0025
which gives T,,, 2> 3.15.
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Fig. 7. Atomic trajectories versus time in the traffic-jam regime
for f =0.095, n* ~0.0393, 8 =1/7,9g=1,7=0.01,and T =1

Qualitatively the existence of hysteresis may be
explained in the same way as in [6]: The system cannot
be transformed from the locked state to the running state
and vice versa as a whole; first, a small cluster of atoms
(a critical “nucleus”) should undergo the transition, and
then it will move the whole system into a new state. In
the “soft” model considered here, when a fluctuation of
the relative velocity of the NN atoms is suppressed, the
probability of the emerging of a nucleus with a maximum
velocity on the background of immobile atoms (as well
as the nucleus of locked atoms in the sea of running ones)
is much lower than that in the elastic model.

The hysteretic behavior described above clearly
indicates the clustering of atoms in the soft model. One
more indication of this effect is the plateau at B ~ 0.5 on
the B(f) dependence (Fig. 6) which corresponds to the
traffic-jam regime. The TJ state appears for the interval
of forces 0.09 < f < 0.0975 in the force-increasing
process and survives till f > 0.0725 if the force decreases
starting from the TJ state. The atomic trajectories in the
TJ state are shown in Fig. 7.

Note that now the TJ phase is observed for a
much wider range of model parameters and very high
temperatures.

To study the TJ state, we calculated the coordinate
and velocity correlation functions for the NN atoms,
K, = ((&1 — z1 — aa)?) and K, = ((@& —
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#;1)%). For a spatially homogeneous state, we should
have K, ~ K,0 = T/g and K, ~ K,0 = 2T,
while, for an inhomogeneous (TJ) state, much higher
values are expected. The calculated dependences clearly
demonstrate the destruction of the homogeneous state
in the TJ regime. However, the TJ state is a more
subtle effect of clustering than the hysteretic behavior of
the B(f) dependence. For example, for the parameters
used in Fig. 6, the TJ state disappears at low damping
(n* = 0) as well as at too high values of n* (e.g., for
n* =0.4).

5. Discussion

The TJ state may emerge in an underdamped system
only, when the substrate damping 7 is low enough, n <
0.56, and an atom exhibits bistability, i.e. both states,
the locked state and the running state, coexist (and are
dynamically stable) at the same driving f. Then the
locked-to-sliding transition should always pass through
the TJ state, and the only question emerges, is this TJ
state dynamically stable. To describe qualitatively the
steady state with coexistence of two phases in the 1D
model, i.e., the TJ phase consisting of locked atoms and
the running domain (RD), let us suppose that there is
only one jam in the chain, and let the jam contains N,
atoms on the length L, = M;as, while the running
domain contains N, = N — N, atoms on the length
M,as = (M — M;)as. According to Figs. 2 and 7, the
local concentration in the jam is 8 = Ng/M; =~ 1.
The atoms in the RD are characterized by a local
concentration 6, = N,/M, < 1, and all these atoms
move with a velocity v, ~ vy = f/mn. Then it is
easy to show [6, 12, 13] that the normalized mobility
is equal to B = N,v,/Nv; = b6,.(1—-6)/(1—6,)0, where

b=v,/v; = 1.
The TJ grows from its left-hand-side with the rate
R, = M, = wv./a,, where a, = a4/, so that

Ry = bb,.f/mnas; < bOfmnas. From its right-hand-
side, the TJ shortens with the rate a(f) due to the
“evaporation” of the most right atom of the TJ into
the RD. At a low temperature and driving force, when
e(f) = es — fas/2 < T, the “evaporation” of the most
right atom of the TJ is an activated process, and its
rate is a(f) ~ apexp[—e(f)/T], where ag is a pre-
exponential factor. Thus, the TJ decreases with the rate
R_ = a(f) = agexp(—es/T) exp (fas/2T). In the TJ
steady state the rates of these two processes must be
equal each other, Ry = R_, so that we obtain 6, =
mnasa(f)/ fb. It is easy to check that the function 6,.(f)
has a minimum 6} = 0,.(f,,) at f = fm, = 2T /as =T/,
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and the same is true for the B(f) dependence: the
normalized mobility first decreases and then increases
with f (note that the TJ state is stable with respect
to fluctuations of 6,.). Finally, the inequality 6,.(f) < 6
defines the range of model parameters and forces, where
the TJ steady state could be stable, i.e., it should be
n<n.~ fe ™7 2rape /T,

This simple approach allows us to explain
qualitatively the simulation results for the 1D FK-type
models. The TJ state is stable for forces within the
interval f < f < frorward, Where f{ > fhackward because
of 8, < 0. To have the TJ state, the external damping
n due to the energy exchange with the substrate must
be small, e.g., n < 0.5. In the elastic 1D FK model at
a so small damping, the critical size of the TJ is very
large: when an atom joins the TJ at its left-hand side, it
excites a kink (local compression) in the TJ. This kink
runs to the right-hand side of the TJ and stimulates the
evaporation of the most right atom of the TJ. In the
inelastic model, such an effect is absent (compare Figs. 2
and 7), the kink’s motion is damped due to the intrinsic
damping 7;. This explains a much wider range of model
parameters, where the TJ state is stable in the soft FK
model.

6. Conclusion

With the help of the numerical simulation, we have
shown that the driven one-dimensional and two-
dimensional FK models exhibit a hysteresis and the
existence of traffic-jam states. First, the hysteresis does
exist in the underdamped FK model for any finite rate of
force changing. Secondly, traffic jams do appear in the
underdamped FK model with anharmonic interaction.
Already the hard-core potential, when the atoms do
not interact at all except they cannot occupy the same
well of the substrate potential, is sufficient to produce
the traffic-jam behavior. Note that one might expect
no transition to the traffic-jam state for the harmonic
interatomic interaction. However, the situation is more
subtle: there is no transition to the traffic-jam state
for atoms in the standard 1D FK model, but the kinks
may still be organized in jams because, for any short-
ranged interatomic interaction, the interaction between
the kinks is always exponential.

For the 1D FK model, the appearance of the
inhomogeneous TJ state can be qualitatively explained
with simple arguments as described in Sec. 5.
Unfortunately, the behavior of the 2D FK model may be
explained in the framework of a more simplified model
only, e.g., such as the 2D two-state lattice-gas model [1].
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Also we have shown that the dynamics of the soft
model with inelastic interaction strongly differs from the
classical (elastic) one. First, now the system exhibits a
hysteresis even at high temperatures. The reason why
the 1D model exhibits a hysteresis is that the soft model
is effectively an infinite-dimensional one, the particles
have an infinite number of internal degrees of freedom
treated in a mean-field fashion. Secondly, the soft model
allows the coexistence of two phases (the TJ state) for
a much wider range of model parameters. Both these
effects are due to the clustering of atoms in the soft
model. The mechanism of clustering is analogous to that
described in et al [11], although our model is essentially
different: there is no artificial freezing in our model and,
therefore, the correlated motion emerges solely due to
the mutual damping of the NN atomic motion.

In the present work, we have shown the existence of
the TJ state even in the 1D FK models with repulsive
interaction, where the classical model cannot exhibit
phase transitions. In a 2D or 3D system, especially if
there is also an attractive branch of the interatomic
interaction, the changes due to inelasticity should be
even more dramatic. Of course, the damping mechanism
cannot change the phase diagram of the system. But it
certainly will change the kinetics of phase transitions as
well as possible metastable states in which the system
may be captured.

Finally, using the results of the present work, one
can give a simple solution to how to avoid traffic jams:
the particles (atoms in the FK model or cars in the one-
lane road) should interact harmonically, i.e., they should
try to keep an equidistant interval between themselves.
Although this solution is quite trivial and has been
well known empirically for a while, the simple models
considered in the present paper allow us to study this
question analytically.
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®A30BA CETPETAIIISA B HEJITHIMHNX PYXOMUX
MOJEJIAX

0.M. Bpayn
Pesmowme

BuBuaeTbcs cucTeMa aHrapMOHIMHO B3a€MOIIIOYNX ATOMIB B mepio-
IUYIHOMY OJHOBHMIDHOMY i ABOBHMIDHOMY 30BHIIIHBOMY IOTE€H-
miaJii, o pyXaeTbCd 3aBAgAKH 30BHImHINA cumi. Konu pymiiina cu-
J1a 3pOCTaE, CHCTEMa IEPEeXOJUTH BijJi HEPYXOMOrO CTAaHY [0 CTa-
HY KOB3aHHd, IO BigmoBimae pyxomomy Kpuctamnay. [lokazano, mo
mepej IepexofOM J0 CTaHy KOB3AHHSI CHCTEMA MIPOXOJUTHL Uepe3
HEOJHOPIgHUU CTaH, B SKOMY BOHA DO3MIEIIIOETHCA Ha 00JIACTi
Hepyxomux aromis (“3aropu”) i obmacti pyxommx aromis. Taxox
3aIPOIMOHOBAaHA HOBa MOJEJIb, € YaCTUHKH MalTh KOMIIJICKCHY
CTPYKTYDY, IO TPAKTYEThCA Y HAOJMAKEHHI CepeHbOTO IOoJd: 3i-
TKHEHHSI YaCTUHOK € HeeJIaCTHIHHUM, J0 TOr'O 2K BBAZXKAETHCA, IO
KO>KHA JaCTHHKA BOJOAi€ BiacHHM TepMmoctaTroM. Kosmnm Ha aroMu
ZIi€ 30BHINIHS CuJIa, I8 MOZEJb JEMOHCTPYE ricTepe3uc i CTaH 3a-
TOPIiB peasizyeTbcd Ajs HabaraTo MIMPIIOTO Jialma30Hy ITapaMeT-
piB mogeni, mixk y knacwuniil (emacrmuniit) momesi, i obmasa ni
pe3ynbpTaTi 306epiraloThCs MpU BHCOKHUX TEMIIEPATYPaX.

®A30BAS CETPETAIIMS B HEJTMHENHBIX
ABVKYIIIMXCST MOIEJISTX

O.M. Bpayn
Peswowme

N3y4aercs cucreMa aHTApMOHMYECKH B3aUMOZEHCTBYIONIUX aTO-
MOB B IEepPHOJUYIECKOM OJHOMEDHOM H JBYMEDHOM BHEIIHEM II0-
TeHI[aJIe, KOTOpas ABUXKETCs HOoJ aeficTBrueM BHemiHe#H cuibl. Ko-
Ia ABIDKYIIAs CHJIA BO3PACTaeT, CHCTEMA II€PEXOJUT OT HeIo-
ABUKHOT'O COCTOAHUA K COCTOAHUIO CKOJIBXKEHUA, COOTBETCTBYIO-
meMy JBMXKYIIEMyCs Kpuctasay. [lokazaHo, 4TO mepej Imepexo-
JIOM K COCTOSIHUIO CKOJBbXKEHHs CHCTeMa IIPOXOAUT Uepe3 HeOJ-
HOPOJIHOE COCTOSIHME, B KOTOPOM CHCTeMa PacCHIeIIsgercs Ha 00-
JIACTH HEMOABIXKHBIX aTOMOB (“aBTOMOGH/IbHBEIE IPOOKHK”) U 06sa-
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cru Gerymux aToMoB. TaksKe MpeJIoKeHa HOBAas MOJIENb, TJe 9a-
CTHIBL IMEIOT CIOXKHYIO CTPYKTYPY, PACCMATPUBAEMYIO B IPUOIH-
K€HHHU CPEJHEro IOJIA: CTOJIKHOBEHHS YACTHI, CIATAIOTCA HEdJIa-
CTUYHBIMH, & KaK/asl 9aCTUIA CIUTAETCs 00J1aatoimei cobcTBeH-
HBIM TepMocTaToM. Korja BHENIHSsI CHJIa MPHJIOXKEHA K aTOMaM,
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9Ta MOZENIb JAeMOHCTPUPYeT IHCTEPe3HC M PeKHM aBTOMOOHIIb-
HBIX OPOOOK /I HAMHOrO 00Jiee LIMPOKOrO [HAIA30HA IIapa-
METPOB MOJEJH, UeM KJacCHuecKas (yHmpyras) MOZAENIb, IpHYeM
o0b6a 3Tm pe3ysabrara HAOIIOJAIOTCS W OPH BBICOKHX TEMIIEDATY-
pax.
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