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Abstract
Molecular dynamics based on the Langevin equations with the coordinate- and
velocity-dependent damping coefficients is used to investigate the friction properties of a
‘hard’ lubricant film confined between two solids, when the lubricant remains in the solid state
during sliding. The dependence of the friction force on the temperature and sliding velocity in
the smooth sliding regime is studied in detail for all three states of the lubricant: a lubricant
with a crystalline structure, when the system exhibits a very low friction (superlubricity), an
amorphous lubricant structure, which results in a high friction, and the liquid state of the
lubricant film at high temperatures or velocities. A phenomenological theory of the kinetic
friction is developed, which allows us to explain the simulation results and predict a variation
of the friction properties with model parameters analytically.

PACS numbers: 81.40.Pq, 46.55.+d

(Some figures in this article are in colour only in the electronic version.)

1. Introduction

The problem of friction is one of the oldest physical problems
and, despite its great practical importance, is still not fully
understood [1]. Molecular dynamics (MD) simulation of
confined driven systems, which allows us to calculate the
kinetic friction at huge sliding velocities (>1 m s−1), has
played an increasingly significant role in tribology in the
last decade [2, 3]. The first systematic MD study of sliding
for two substrates separated by a thin lubricant film, based
on the Langevin equations, was conducted by Thompson
and Robbins [4]. These authors considered a typical case
of a ‘soft’ lubricant, when the amplitude of the interatomic
interaction within the lubricant, Vll, is weaker than the
lubricant–substrate interaction, Vsl. It was shown that when
the top substrate is driven at a low velocity through an
attached spring, the system exhibits stick–slip motion due to
the melting/freezing mechanism: the lubricant film melts at
the onset of sliding and solidifies again at stick. These results
were later confirmed in a number of simulations and are in
agreement with many experimental studies (see e.g. [1–3] and
references therein).

Despite the great progress in MD simulation of friction
achieved in recent years, it still remains on an empirical level.
The MD simulation, being quite time consuming, provides the

value of friction only for a given set of model parameters
and may hardly lead to an understanding of the general
trends or laws, e.g. the dependence of friction on temperature,
sliding velocity, shape of lubricant molecules, parameters of
the interaction between the lubricant and substrates, etc. The
reason lies in the complexity of processes in these highly
nonequilibrium systems. The kinetic friction force Fk appears
due to energy flow from the sliding interface into the bulk
of substrates, which finally is to be converted to heat. The
energy losses emerge because of the creation of phonons
and, with a lower rate, the electron–hole pairs in the case
of metal substrates. The rate of phonon creation depends on
many factors, such as the density of phonon states, positions
and velocities of the lubricant atoms relative to the surfaces,
which in turn depend on the sliding velocity, the heating of the
interface due to sliding, etc.

In this work, we present the first attempt to describe this
problem analytically. We made a detailed MD simulation of
the sliding interface and then, extracting the necessary
parameters from the simulation, constructed a phenomeno-
logical theory of kinetic friction. In the result, we obtained
the dependence of the friction force on system characteristics,
which should allow us to find the value of kinetic friction
in the general case, i.e. to predict the value of Fk and its
variation with sliding conditions without making large-scale
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MD simulations. Here, we consider a simpler problem of
kinetic friction, when the sliding velocity is huge, and the
system is in the well-defined steady-state regime.

In this work, we consider the case of a ‘hard’ lubricant,
when the amplitude of interaction between the lubricant atoms
is larger than the lubricant–substrate interaction (Vsl < Vll)
and the lubricant remains in a solid state during sliding [5].
The use of solid lubricants is a very promising way to
decrease friction, especially in nano- and microdevices.
Well-known examples include layered materials such as
graphite, MoS2 and Ti3SiC2. The solid lubricants may provide
very low friction due to incommensurability of the crystalline
surfaces [2, 3, 6–8]. However, if the ideal crystalline structure
of the lubricant is destroyed, e.g. due to sliding, the lubricant
takes an amorphous structure characterized by quite high
friction. Therefore, understanding the processes that take
place in a thin solid film confined between two solid surfaces
in relative motion is of great importance in designing the best
lubricants.

There are only a few studies of the hard lubricant.
Thompson and Robbins [4] studied the hard lubricant system,
Vsl 6 0.4Vll, for a film thickness of >10 molecular diameters
at a relatively high temperature, kBT = 1.1Vll, which is 30%
higher than the bulk melting temperature of the lubricant. It
was shown that during slips the lubricant slides with respect
to the substrates, i.e. there is a nonzero jump, 1vx , of the
velocity between the z = 0 plane (the substrate’s surface)
and the z = zl plane which corresponds to the first lubricant
layer (x is the sliding direction and z is perpendicular to the
surfaces). The amplitude of the jump 1vx decreases when
the ratio Vsl/Vll increases, i.e. the jump would disappear for
the soft lubricant system. The case of an amorphous lubricant
has also been studied by Thompson et al [12]. It was observed
that when the lubricant is frozen in a glassy state, all the shear
occurs at the lubricant/substrate interface.

In the present work, we present the results for a five-layer
lubricant film only (some results for other cases may be found
in [3, 5]; a detailed MD simulation of kinetic friction for
submonolayer lubricant films has been presented by He and
Robbins [10]). The paper consists of two parts: section 2 is
devoted to MD simulation, whereas section 3 describes the
phenomenological theory developed to explain the simulation
results analytically.

In the simulation, we used the method developed earlier
in [5]. It is based on Langevin equations with the coordinate-
and velocity-dependent damping coefficient (see section 2.1),
which mimics a realistic situation in the nonequilibrium
driven system. The results of simulation are presented
in section 2.2. Depending on the driving velocity and
temperature, the system exhibits three types of sliding: the
perfect sliding, the sliding with the ‘amorphous’ lubricant and
the liquid sliding (LS). The perfect sliding regime (also known
as ‘superlubricity’ or ‘structural lubricity’) is characterized
by very low friction. It is observed when the lubricant
has a crystalline structure, so that the sliding occurs at
the incommensurate lubricant/substrate interface. The second
(‘amorphous’) regime emerges when, after melting because
of sliding, the lubricant freezes at stick in a metastable
configuration. The friction coefficient in this case is high.
Finally, at a high driving velocity and/or temperature,
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Figure 1. The model used in the MD simulation of friction. Each
substrate consists of two layers: the rigid layer and the deformable
substrate layer which is in contact with the lubricant. The lubricant
atoms fill the space between the substrates. The atoms of the rigid
layer of the bottom substrate are fixed, whereas the rigid layer of the
top substrate can move due to applied forces.

the lubricant film is melted, and the LS regime with an
intermediate value of the friction coefficient takes place. For
all three regimes, we studied in detail the dependence of the
friction force on the driving velocity and temperature.

In section 3, we develop the phenomenological theory,
which allows us to explain the simulation results of section 2
as well as to predict the friction properties of similar systems
without (or before) making MD simulations. The theory is
based on energy balance arguments (see section 3.1): the
energy pumped into the system due to driving must be
dissipated within the system and finally taken away from it.
Therefore, the kinetic friction is determined first of all by the
rate of energy flux from lubricant atoms that move relative
the surfaces, to the substrates. However, one has to take into
account two more issues: firstly, the lubricant is always heated
due to driving (see section 3.3), and secondly, the lubricant
structure depends on the sliding steady state (section 3.2).
Thus, the kinetic friction force is determined by a rather
delicate balance of all these factors. The theory is then applied
to the simulation results of section 2: to the perfect sliding
regime (section 3.4), to the case of a solid lubricant with
an ‘amorphous’ structure (section 3.5) and to the LS regime
(section 3.6).

Finally, section 4 concludes the paper with a short
discussion of the results.

2. Simulation

2.1. Model

The model was described in the papers [3, 5] and therefore
we only briefly discuss here its main features. Using MD, we
study a few-atomic-layer film between two (top and bottom)
substrates (see figure 1). Each substrate is made of two
layers. One is fully rigid with the square symmetry, while the
dynamics of the atoms belonging to the layer in contact with
the lubricant is included in the study. The rigid part of the
bottom substrate is fixed at x = y = z = 0, whereas the rigid
layer of the top substrate is mobile in the three directions of
space x, y and z.

All the atoms interact with the Lennard–Jones potentials
V (r) = Vαα′ [(rαα′/r)12

− 2(rαα′/r)6], where α = s or l for the
substrate or lubricant atoms, respectively. The parameters
Vαα′ and rαα′ depend on the type of atoms and the usual
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truncation to r > r∗
= 1.49 rll is used. Between two substrate

atoms, we use Vss = 3 and the equilibrium distance rss = 3.
The interaction between the substrate and the lubricant is
much weaker with Vsl = 1/3. For the lubricant itself, we
consider the case of a hard lubricant with Vll = 1 (although the
lubricant is less rigid than the substrates) and the equilibrium
distance rll = 4.14, which is ‘incommensurate’ with the
equilibrium distance in the substrate. The parameter rsl

characterizing the interaction between the substrate and the
lubricant is rsl = 0.5(rss + rll). The atomic masses are m l =

ms = 1. The two substrates are pressed together by a loading
force fload per atom (typically we used the value fload = 0.1).
All the parameters are given in dimensionless (natural) units.

It is useful to couple the natural units with the Système
International (SI). The basic parameters that are unchanged
in the simulations are: the amplitude of interaction within
the substrates (Vss = 3), which sets the energy parameter, the
substrate lattice constant (as = 3) that sets the length scale,
and the mass of the lubricant atoms (m l = 1) as the mass
parameter. Let a real system be characterized by the amplitude
of interaction in the substrates Ṽss measured in eV, by the
substrate lattice constant ãs measured in angström, and by
the mass of lubricant atoms m̃ l measured in proton masses
mp. If we introduce the following coefficients: νe = Ṽss/Vss,
νr = ãs/as and νm = m̃ l/(100 m l), then νe ∼ νr ∼ νm ∼ 1 for
a typical system, and we have for the unit of length 1 m =

1010 ν−1
r n.u., for the unit of mass 1 kg = 6 × 1024 ν−1

m n.u.,
for the unit of energy 1 J = 6.25 × 1018 ν−1

e n.u., for the unit
of force 1 N = 6.25 × 108 (νr/νe) n.u., for the unit of pressure
1 Pa = 6.25 × 10−12 (ν3

r /νe) n.u., for the unit of time 1 s =

0.98 × 1013 (νe/νmν2
r )1/2 n.u. and for the unit of velocity

1 m s−1
= 1.02 × 10−3 (νm/νe)

1/2 n.u.
The main difference between our technique and other

simulations of confined systems [2, 4, 9, 10] lies in the
coupling with the heat bath, i.e. the part of the material that is
not explicitly included in the simulation. We use the Langevin
dynamics with a coordinate- and velocity-dependent damping
coefficient η(z, v), which has been designed to mimic a
realistic situation, and was presented in detail in [3, 5]. In
a driven system, the energy pumped into the system must
then be removed from it. However, the energy loss comes
from the degrees of freedom that are not included in the
calculation, i.e. the transfer of energy to the bulk of the
substrate. Therefore, the damping must depend on the distance
z between an atom and the substrate. Moreover, the efficiency
of the transfer should depend on the velocity v of the atom
because it affects the frequencies of the motions that it excites
within the substrates. In our model, the damping is written as
η(z, v) = η1(z) η2(v). The first factor

η1(z) = 1 − tanh[(z − z∗)/z∗] (1)

(with z∗
= 2.12 as the model parameter) describes the

exponential decrease of the damping rate when an atom is
shifted away from the substrate. The second factor η2(v)

describes the velocity-dependent excitation of phonons in the
substrate, which was taken in the form

η2(v) = ηmin + 16 ωm

[
ω(v)

ωm

]4
(

1 −

[
ω(v)

ωm

]2
)3/2

, (2)

where the minimal contribution ηmin comes from the
electron–hole and multi-phonon damping mechanisms (we
used ηmin = 0.01ωs in the simulation, where ωs ≈ 4.9 is the
characteristic substrate frequency), while the second term in
the rhs of (2) describes the one-phonon damping, ωm is the
cutoff (Debye) frequency (ωm = 15 in the simulation) and
ω(v) = 2πv/as is the ‘washboard’ frequency [3, 5]. A method
of solving the Langevin equations with the coordinate- and
velocity-dependent damping coefficient may be found in
[3, 11, 12].

The initial configuration of the lubricant was prepared
as a set of Nl = 5 closely packed atomic layers. Most
of the simulations have been performed with 80 or 160
atoms in each lubricant layer. The system was heated up
to a temperature lower than the melting temperature and
then relaxed during the adiabatic decrease of T . In this
way we obtained the ground-state (GS) configuration, which
corresponds to the minimum of the potential energy of
the system. Such a configuration has an ‘ideal’ crystalline
structure and provides the lowest friction as described below.
In another set of simulation runs, the initial configuration was
prepared with the help of annealing of the GS configuration,
i.e. by the adiabatic increase of the temperature to T ∼ 0.6
(which is above the melting temperature Tmelt) and then its
decrease back to zero. In these cases, the initial configuration
corresponds to a metastable (‘amorphous’) state.

In the model with periodic boundary conditions in the
x- and y-directions that we use here, the results may be
sensitive to the total number of lubricant atoms N . If N does
not match exactly the number of atoms in closely packed
layers, then extra atoms or vacancies will produce structural
defects, especially in small systems accessible in simulations.
To reduce uncertainties due to this difficulty, we also used a
geometry with a curved top substrate [13] (see figure 1), when
the z-coordinate of the rigid layer of the top substrate varies
along the x-direction by 1z = 0.5rsl(1 − cos 2πx/L), where
L is the x-size of the system. Such a geometry is also closer
to real situations, where the surfaces are often rough.

In simulations, we used two different algorithms. In
the constant-force algorithm, the driving force f is applied
directly to the rigid layer of the top substrate. The force
is increased adiabatically to find the static friction force fs

and investigate the system dynamics during sliding. Then f
decreases adiabatically until the sliding stops. In the algorithm
with an attached spring, a spring is attached to the rigid top
layer, and the spring’s end is driven with a constant velocity
vs. In this case, the spring constant ks models the elasticity of
the top substrate.

2.2. Results

2.2.1. The perfect sliding. For the GS initial configuration at
T = 0, the situation corresponds to the ideal (perfect) sliding,
when the lubricant film slides as a whole with respect to the
substrates, and its behaviour may approximately be described
by the ‘universal’ dependence [3, 5]. The kinetic friction in
this case is due to excitation of phonons in the lubricant
and in the substrates. The effective friction is high when
the washboard frequency ωwash = 2πvlub/as lies inside the
substrate phonon spectrum. For the chosen model parameters,
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the phonon spectrum of the lubricant has a maximum at ω ≈

3. As a result, the phonon damping reaches its maximum at
vtop ∼ 1. At low velocities v � 1, the kinetic friction strongly
decreases with velocity, fk ∝ v4, because of the dependence
of the coefficient η2 on v (see (2)). The perfect-sliding regime
provides the minimal kinetic friction (superlubricity). The
lubricant is heated due to sliding, but its state does not
correspond to thermal equilibrium, Tz > Tx >Ty (lubricant
temperature is defined as the average kinetic energy; for
details see [5]). At low velocities, v � 1, the temperature is
not uniformly distributed over the lubricant film; the boundary
layers that are in moving contact with the substrates have
a slightly higher temperature than those in the middle of
the lubricant [5]. However, at higher velocities, vtop >1, the
lubricant temperature is approximately uniform across the
lubricant. The hysteresis of vtop( f ), when the dc force f
increases above fs and then decreases back to zero, exists
due to inertia effects. When the force f decreases below the
backward threshold f = fb � fs, the velocity drops from a
finite value v = vb ∼ 0.03–0.1 to zero, and the system comes
back to the crystalline configuration.

The simulation with the attached spring algorithm
demonstrates the following sequence of transitions with
the increasing of driving velocity: stick–slip motion at low
velocities → irregular (chaotic) motion at an intermediate
velocity → smooth motion corresponding to the perfect
sliding at high velocities [3]. In the stick–slip regime, the
spring force f grows linearly with time up to fs, at which
moment the top substrate begins to move with the velocity
v = vtop( fs) ∼ 0.1. After that, the spring contracts and f
drops down to the backward threshold value fb when the
motion stops; the whole cycle is then repeated. The lubricant
temperature increases during the slip but remains much lower
than the melting temperature, Tlub � Tmelt = 0.44 (see [14]).
The lubricant thickness also increases just at the onset of
sliding, but the variation is very small, <1%. The transition
from stick–slip to smooth sliding is smooth and takes
place in an interval of velocities around a ‘critical’ velocity
vc ∼ vb ∼ 0.03.

Note that the dependences of the friction force on the
spring velocity in the smooth-sliding regime agree with
the vtop( f ) dependences obtained with the help of the
constant-force algorithm. We emphasize that during smooth
sliding the kinetic frictional force is extremely small, fk ∼

10−4–10−3, and strongly increases with the driving velocity.
In addition, we did not observe any hysteresis in system
behaviour when vs increases above vc and then decreases
back to smaller values. Moreover, the static friction force in
the stick–slip regime is approximately constant and does not
depend on the driving velocity, i.e. we have not observed
any ‘aging’ of the lubricant film (contrary to the soft
lubricant system [3]). Thus, we conclude that the transition
from stick–slip to smooth sliding is governed by the inertia
mechanism.

2.2.2. ‘Amorphous’ lubricant. When the temperature
increases above Tmelt and then decreases back to zero, the
lubricant film freezes in a metastable state and takes a
configuration of Nl + 1 layers with defects (dislocations) [5].
We call such a configuration ‘amorphous’ to distinguish it
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Figure 2. The velocity of the top substrate (a) and the lubricant
temperature (b) as a function of the applied dc force for the
‘amorphous’ lubricant with flat surfaces.

from the previous case of crystalline lubricant structure. The
static friction force is not uniquely defined in the ‘amorphous’
lubricant case, because fs depends on the structure of the
given metastable configuration. If one uses the constant-force
algorithm in this case, the system has typically no steady state
for f > fs, because the velocity at the onset of sliding grows
fast, and the system cannot dissipate the energy pumped into
it due to driving. The lubricant’s thickness and temperature
increase with time, whereas the external damping coefficient
decreases according to (1) and (2), and finally, the system
becomes unstable, vtop → ∞. However, if one decreases the
dc force, the solid-sliding regime is again observed, when the
lubricant film slides as a whole. A typical example is shown
in figure 2. The dependence vtop( f ) is not uniquely defined
as well, because it depends on the particular metastable
configuration. Moreover, during sliding the lubricant may
reorder, which results in the increase of vtop (i.e. the decrease
of kinetic friction). At low driving velocities, the sliding is
typically asymmetric, the lubricant film sticks to either the
bottom or the top substrate and the sliding takes place at
a single lubricant/substrate interface only. The lubricant is
heated due to sliding (now Tx ≈ Ty ≈ Tz), but its temperature
remains below the melting temperature, so that the lubricant
keeps the six-layer configuration with defects. Note that the
mobility of the frozen lubricant is much smaller than that of
the ideal lubricant film for the same interval of forces.

For the curved top substrate, the T = 0 annealed
configuration has five layers in the narrow region and
six layers in the wide region as shown in figure 3. The
dependences obtained with the constant-force algorithm for
this case are shown in figure 4. The lubricant moves as a whole
together with the top (curved) substrate for forces f < 0.03,
while at higher forces the lubricant is melted.

2.2.3. Role of the temperature. The simulation results
obtained with the constant-force algorithm at different
temperatures of the substrate are summarized in figure 5.
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Figure 3. The configuration of the lubricant film with the curved
top substrate at f = 0.02 (the figure was produced with RasTop
software [15]).
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Figure 4. The velocity of the top substrate (a) and the lubricant
temperature (b) as a function of the dc force for the curved
geometry.

When the applied force is below the static friction force,
f < fs, the velocity is zero in the T = 0 case. If now one
increases the temperature, the velocity vtop will increase with
T due to thermally activated (creep) motion. However, if
the system is already in the perfect-sliding regime (even if
f < fs but f > fb), then vtop decreases when T grows up
to the melting temperature. The substrate temperature has
almost no effect until it is lower than Teff (the heating of the
lubricant due to sliding), so that at high driving velocities the
role of T is negligible. With the further increase of T , when
the lubricant melts, vtop increases, but it remains lower than
that of the T = 0 perfect-sliding steady state. In the molten
state, the distribution of atomic velocities across the lubricant,
vx (z), exhibits an approximately constant gradient as shown
in figure 6.

If the lubricant film is annealed, then it freezes
in a metastable configuration [14]. The force–velocity
characteristics for the ‘amorphous’ lubricant at different
temperatures are presented in figure 7, where T was increased
starting from the frozen state. One can see that the mobility
of the frozen lubricant is much lower than that of the perfect
solid lubricant. Again, the velocity decreases when T grows
until the lubricant melts; after that vtop increases with T .

Finally, the role of temperature for the case of the curved
top substrate is qualitatively similar to that of the flat system.
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Figure 5. (a) vtop versus the dc force f for the flat system at
different temperatures when one starts from the perfect-sliding
regime. The inset shows the lubricant temperature versus f (the
dashed horizontal line corresponds to the melting temperature).
(b) Dependence ztop( f ) at different temperatures.
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Figure 6. Distribution of x-velocity across the lubricant film for the
flat system in the solid (T = 0.4, perfect sliding) and liquid
(T = 0.5, LS) states at the force f = 0.01.

2.2.4. Driving through the attached spring. When the
driving velocity increases, the T = 0 perfect-sliding system
demonstrates the following sequence of transitions: stick–slip
→ chaotic (irregular) motion → smooth sliding. This scenario
remains approximately the same for nonzero temperatures,
although the perfect-sliding regime is disturbed due to thermal
fluctuations. For example, from figure 8 one can see that
the T = 0 perfect sliding at the low driving velocity vs =

0.1 changes to thermally activated motion at T = 0.3; at
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Figure 7. vtop versus f for the flat ‘amorphous’ system at different
temperatures as indicated in the legend.
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Figure 8. Friction force as a function of time for the flat system
obtained with the attached spring algorithm at zero temperature (top
row) and at T = 0.3 (bottom row).

higher driving velocities the kinetic friction increases with
temperature as well. Note also that the kinetic friction force
increases with the driving velocity.

If one uses the algorithm with the attached spring for
the ‘amorphous’ lubricant, we again observe the transition
from stick–slip to smooth sliding, where the lubricant film
does not melt during slips. However, as the static friction
fs is much larger for the ‘amorphous’ lubricant than that
for the perfect system, the velocity vc of the transition from
stick–slip to smooth sliding should also be larger, provided the
relaxation time remains approximately the same. Indeed, in
the simulations we observed that vc < 0.3 for the ‘amorphous’
system as compared with vc ∼ 0.03 for the perfect lubricant
structure. A typical scenario of the transition is shown in
figure 9.

During smooth sliding the lubricant is heated; also during
stick–slip, the lubricant temperature jump-like increases when
the system slips. If these jumps of T are lower than Tmelt, then
the lubricant remains in the initial metastable state. However,
if T during a slip approaches Tmelt or exceeds it, the lubricant
may reorder and take the (almost) ideal configuration. After
that, the system will behave as it was described above for the
crystalline lubricant film (e.g. we observed either the perfect
sliding or almost that, with the kinetic friction 2–3 times
larger than the perfect-sliding value). Such a sliding-induced

N=5:  v=0.03 N=5:  v=0.1

Time

F
or

ce

N=5:  v=0.3

Figure 9. Friction force versus time for three values of the driving
velocity (indicated in the legend) for the flat system with
‘amorphous’ lubricant.

ordering (accompanied by squeezing) was observed for all
systems (i.e. for Nl = 2, 3 and 5) and is described in [3, 16].

Finally, we present the simulation results obtained with
the spring algorithm for the case of the curved top substrate.
At stick in the stick–slip regime, the lubricant always takes a
structure with five layers in the narrow region and six layers
in the wide region (figure 3). The lubricant is always ordered
due to sliding and moves as a whole together with the top
(curved) substrate in the smooth-sliding regime as well as
during slips in the stick–slip regime. The values fs and vc

may differ in different runs but are always relatively low,
fs ∼ 0.02 and vc < 0.3. The lubricant keeps the crystalline
structure during slip as well as at smooth sliding. Thus, for
the curved geometry we again observe the (almost) perfect
sliding, but now only at the single interface, between the flat
substrate and the lubricant.

3. Phenomenology

3.1. The energy balance approach

It is evident that kinetic friction emerges due to energy
loss because of the motion of lubricant atoms with respect
to the substrates. The kinetic energy of this motion is
transferred into the substrates (through excitation of phonons
and electron–hole pairs) and finally is dissipated in the
substrates being transformed into heat. Therefore, the most
natural way to calculate the kinetic friction is through energy
balance arguments. Namely, the energy dEin/dt = Fvtop =

Nsub f vtop pumped into the system per time unit due to
external driving must be equal to the energy dEdiss/dt
dissipated in the substrates. We have already used such an
approach for the perfect sliding regime at zero temperature
and have obtained the ‘universal’ dependence discussed in
[3, 5]. This dependence agrees with simulation data for low
velocities vtop � 1; at higher velocities, we had to take into
account resonant excitation of phonons in the lubricant film
with a number of fitting parameters. In the present work, we
extend this approach to nonzero temperatures. However, to
avoid the introduction of poorly defined parameters, now we
will ignore the resonant excitation of phonons in the lubricant.

The only way of energy dissipation in our model is
through the viscous damping term m lη(z, v)v in the equations
of motion. Recall that the damping coefficient η(z, v) depends
on the distance z from the corresponding substrate and on
the relative velocity v with respect to it, according to the
expression η(z, v) = η1(z) η2(v).

When the lubricant has an effective temperature Tlub

due to heating by the substrate as well as by the
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external driving, then its atoms move with a thermal
velocity 〈vth〉 = (kBTlub/m l)

1/2
∼ 0.3–0.7 at temperatures

Tlub ∼ 0.1–0.5 (because the variation of temperature across
the lubricant is small according to simulation results, in what
follows we assume that all lubricant atoms have the same
temperature Tlub). When a lubricant atom is near a substrate
at a distance zl from the nearest surface and moves with an
average velocity vl with respect to it, then it loses per time
unit the energy

ε(vl; Tlub) = m lη1(zl)

∫ +∞

−∞

dv η2(v) v2 P(v − vl; Tlub), (3)

where P(v; T ) = (m l/2πkBT )1/2 exp(−m lv
2/2kBT ) is the

Maxwell distribution. In the thermodynamic equilibrium
state, vl = 0 and Tlub = Tsub, this loss must be compensated
for by ‘energy gain’ due to the stochastic force in the Langevin
equation, which acts on the mobile atoms from the substrate
thermostat.

Let N ′
at be the number of atoms in the lubricant layer

just adjoined to the substrate surface, and vlx the average
x-velocity of atoms in this (closest to the substrate surface)
layer relative the substrate, while vly = vlz = 0 for the motion
along y and z. The total energy loss due to friction can be
estimated as

dEdiss

dt
≈ s N ′

at E1(vlx ), (4)

where

E1(vlx ) = ε(vlx ; Tlub) + 2ε(0; Tlub) − 3ε(0; Tsub). (5)

The first contribution in E1 comes from the x-motion, and
the second one, from the motion along y and z. The last term
in (5) describes the energy gain coming from the thermostat
to mobile atoms due to the action of the stochastic force; this
contribution has to be subtracted from the frictional losses.
In the thermodynamic equilibrium state, the energy gain must
be equal to the energy loss due to the thermostat, ε(0; Tsub).
We assume that this contribution (from the stochastic force
that emerged due to the thermostat) remains the same in the
nonequilibrium driven state. The factor s = 2 in front of the
rhs of (4) appears in the case of symmetric sliding, where
there are two sliding lubricant/substrate interfaces. In the
asymmetric case, when there is only one sliding interface, one
has to put s = 1 and

dEdiss

dt
≈ N ′

at [E1(vlx ) + E1(0)] , (6)

where the first contribution comes from the sliding interface
and the second one, from the stick lubricant/substrate
interface.

From the equality dEin/dt = dEdiss/dt , we finally obtain
for the kinetic friction force

fk ≈ m l G η1(zl)F(vtop), (7)

where G ≡ s N ′

at/Nsub and η1(zl) are ‘geometrical’ factors
which only indirectly depend on the velocity and temperature
through a change of the lubricant structure due to sliding
(typically G < 1.2 and η1 ∼ 0.1 in our model). The last factor
in (7) is the main one that determines the dependence of the

kinetic friction on the driving velocity and temperature, and is
defined (for the symmetric sliding, s = 2) as

F(vtop) = v−1
top

∫ +∞

−∞

dv η2(v) v2 [P(v − vlx ; Tlub)

+2P(v; Tlub) − 3P(v; Tsub)] . (8)

If we take into account only the minimal contribution ηmin in
(2), then the factor F becomes equal to

Fmin(vtop) = ηmin

[
v2

lx +
3kB

m l
(Tlub − Tsub)

]/
vtop, (9)

which grows linearly with the velocity (at Tlub = Tsub) as well
as with the lubricant temperature (at fixed vtop and Tsub).

In the general case, the factor F also grows with the
driving velocity and temperature. Its value is determined
by the velocity vlx and the lubricant temperature Tlub. It
is easy to find vlx in the case of a solid lubricant: vlx =

vtop/2 for symmetric sliding, while vlx = vtop for asymmetric
sliding. In the case of a liquid lubricant (the LS regime),
one has 0 < vlx < vtop/2, as will be discussed in section 3.6.
As for the lubricant temperature, its value depends on the
sliding velocity due to sliding-induced heating; this question
is considered in section 3.3.

3.2. The geometrical factor

While the factor F in expression (7) increases with the driving
velocity and temperature, the geometrical factors G and η1

decrease, thus compensating the growth. Firstly, the lubricant
thickness d increases with the lubricant temperature due to
thermal expansion. If one neglects the interaction between
the lubricant atoms, then from the ideal-gas equation of state
pV = NkBT , substituting p = fload/a2

s for the pressure, V =

Ad = Nsuba2
s d for the volume (A = Nsuba2

s is the surface area)
and N = Nl Nat for the total number of lubricant atoms, we
obtain d = d0 + βz0Tlub with βz0 = Nl Nat/(Nsub fload), or βz0 =

30.3 for the parameters used in the simulations. Let zs be
the coordinate of the surface layer of the substrate (zs ≈ 2.09
in the simulation; due to the high hardness of the substrate,
we will neglect its thermal expansion in what follows) and
d̃ the distance between the surface layers of the top and
bottom substrates (see figure 10). Then we have ztop = d̃ + 2zs.
Figure 11 demonstrates that the dependence ztop(Tlub) for the
liquid lubricant can be described by the linear dependence

ztop ≈ ztop,0 + βz Tlub, (10)

if we put βz = (6/5)βz0 ≈ 36.4, i.e. d̃ = d(Nl + 1)/Nl for the
Nl = 5 case. For the solid state of the lubricant, however, the
coefficient βz is much smaller.

Secondly, the geometrical factor G is directly
proportional to N ′

at, i.e. to the number of atoms in the
lubricant layer just adjoined to the substrate surface (due
to exponential decrease of the factor η1 with the distance
from the substrate, we can neglect contributions from the
second and more removed layers). If N ′

l is the effective
number of layers in a given configuration, then N ′

at can be
found from the conservation of the total number of atoms,
N ′

at N
′

l = Nat Nl. Evidently, for the perfect crystalline structure

7



Phys. Scr. 78 (2008) 015802 O M Braun

Figure 10. Distribution of atomic concentration across the lubricant
in the LS regime (schematically).

Figure 11. Dependence of the z-position of the top substrate on the
temperature of the lubricant film in the LS regime. Symbols show
simulation data, whereas the line describes the linear fit (10).

of the lubricant, we have N ′
at = Nat. From the simulation

results, it follows that in the case of a hard lubricant with
‘amorphous’ structure, Nl < N ′

l 6 Nl + 1 so that N ′
at < Nat.

Thus, for the solid lubricant, we can put N ′
at = αN Nat,

where αN < 1.
The case of a liquid lubricant, when the lubricant

structure is changed with the driving velocity and temperature,
is more involved. Because of the conservation of the total
number of atoms, N ′

at N
′

l = Nat Nl, the number of atoms that
interact with the substrate, N ′

at, should decrease when the
film thickness grows. Indeed, let r be the average interatomic
distance between the lubricant atoms. Then, we have Nr3

∝

V = Ad ∝ d̃ , or r ∝ d̃1/3 and N ′
at ∝ A/r2

∝ d̃−2/3. Using
(10), we can put d̃ ≈ d̃0(1 + β ′

N Tlub), where β ′

N = βz/d̃0.
Thus, for Tlub >Tmelt, we come to the dependence

N ′

at = αN Nat/ [1 + βN (Tlub − Tmelt)]
2/3 , (11)

where Tmelt is the melting temperature and βN ≈ β ′

N . The
geometrical factor G, which is determined by N ′

at, may
strongly decrease with temperature and driving velocity,
especially in the LS regime.

To find the value of N ′
at from simulation data, we

calculated the distribution of atomic concentration P(z) as

a function of the coordinate z across the lubricant film, and
cut the whole distribution, leaving only the distribution P1(z)
around the peak corresponding to the first lubricant layer (see
figure 10). Then, the value N ′

at can be calculated as N ′
at =

C
∫

dz P1(z) with an appropriate normalization constant, C .
As a result of thermal expansion, the distance of the

lubricant atoms from the nearest surface should also increase
with temperature, e.g., as

zl ≈ zl0 + βzlTlub, (12)

where βzl ∼ β ′

N . The increase of zl will result in the decrease
of the coefficient η1 according to (1). In the case of the solid
lubricant, zl can be found as a position of the maximum of the
distribution P1(z). However, such a definition is not accurate,
especially for the liquid lubricant. Instead, we determined zl

by the integral

zl(eff) =

∫
dz z η1(z)P1(z)

/∫
dz η1(z)P1(z). (13)

3.3. The lubricant temperature

A very important issue in tribological systems is that the
lubricant temperature increases with the driving velocity. This
dependence may be described approximately by a power law,
e.g. Tlub ≈ Tv(vtop), where Tv(v) = βvv

ν with some exponent
ν. In macroscopic hydrodynamics, the temperature of a body
embedded into a liquid grows with the velocity as T ∝ v2,
which suggests ν = 2 (see in section V.55 [17]). However,
from the simulations, it follows that, at least in the case of
Tsub = 0 and high enough driving velocities, the lubricant
temperature changes approximately linearly with the velocity,
so that ν ≈ 1.

However, the linear dependence Tv ∝ vtop is wrong in
the limit vtop → 0. Indeed, if we put ν = 1, vlx = 0 and
Tsub = 0 in (10), we obtain Fmin = 3ηminkBTv/(m lvtop) →

3ηminkBβv/m l 6= 0, which is wrong. Thus, one has either to
involve some interpolation formula, which reduces to the
power law with ν >1 at low vtop and to linear dependence at
high driving velocities, or to find Tlub analytically. Besides, at
a nonzero substrate temperature, we should have Tlub >Tsub.
We found that the simulation data can be well fitted with the
help of the interpolation formula

Tlub = Tsub + Tv(vtop) exp
[
−κTsub/Tv(vtop)

]
, (14)

which has the correct behaviour Tlub ≈ Tsub in the limits
vtop → 0 or Tsub � Tv(vtop), and Tlub ≈ Tv(vtop) = βvv

ν
top in

the case of Tv(vtop) � Tsub. However, the fitting parameters
ν, βv and κ in (14) can hardly be found analytically.

On the other hand, the lubricant temperature can be
found analytically with the help of energy balance arguments
similarly to the approach used above: an energy R+ pumped
into the lubricant (per atom and per time unit) must be equal
to the dissipated energy R−. For a lubricant atom moving
with an average velocity vl, the rate of energy flux from
the atom to the substrate is defined by (3), Ras(vl, Tlub) ∝

ε(vl; Tlub). If vl = 0 and Tlub = Tsub so that the system is in
the thermodynamic equilibrium state, the flux Ras must be
equal to the opposite flux from the substrate to the lubricant,

8
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Rsa(Tsub) ∝ ε(0; Tsub), which emerges due to the stochastic
force in the Langevin equation. If the system state is out
of equilibrium, the net energy flux should be equal to the
difference between these two fluxes, R = Ras − Rsa. If we
write the flux as R ∝ ε(vl; Tlub) − ε(0; Tsub) = [ε(vl; Tlub) −

ε(0; Tlub)] + [ε(0; Tlub) − ε(0; Tsub)], then the total flux may
be split into two parts, R = Rv + R−, where the first
contribution Rv emerges due to nonzero average velocity of
the lubricant with respect to the substrate, whereas the second
contribution R− is mainly determined by the temperature
gradient. Thus, the energy flux from the lubricant to the
substrates, which emerges due to the difference in their
temperatures, may be defined as

R− = 6m l

∫ +∞

−∞

dv η(z, v) v2 [P(v, Tlub) − P(v, Tsub)] ,

(15)
where η(z, v) is the ‘substrate’ damping defined by (1) and
(2) and determined by the ‘substrate washboard frequency’
ωwash = 2πvlx/as, and the factor of 6 = 2 × 3 in front of
this expression is due to two substrates and three degrees
of freedom x , y and z. As the rate R− is proportional to
the difference 1T = Tlub − Tsub, an increase in the lubricant
temperature has to be proportional to R+.

The pumped energy R+ emerges due to the ‘shaking’
of the lubricant during sliding. This rate can be estimated
with the help of linear response theory [18, 19] similar to the
approach used in [20]. Let the lubricant be perturbed by an
oscillating force of an amplitude f0 and a frequency ω0. When
one lubricant layer slides over another with a relative velocity
v0, it is disturbed with a ‘lubricant washboard frequency’
ω0 = 2πv0/r , where r is the average interatomic distance in
the lubricant. Then, the rate R+ can be found as

R+ =
πs f 2

0

4m l

∫ +∞

−∞

dv ρlub(2πv/r) [P(v − v0, Tlub)

−P(v, Tlub)] , (16)

where ρlub(ω) is the (local) density of phonon states in the
lubricant normalized as

∫
∞

0 dω ρlub(ω) = 1.
The value v0 in (16) is directly proportional to the driving

velocity vtop, although it has to be defined in different ways
for different types of sliding. In the limit vtop → 0, (16)
gives R+ ∝ v2

0 , which leads to the correct low-velocity relation
1T ∝ v2

top. At higher velocities, the value of R+ depends on
the lubricant phonon spectrum.

The lubricant phonon spectrum is determined by its
structure. However, due to the two-dimensionality of the
lubricant film, a low-frequency dependence of the density
of phonon states must be linear, ρlub(ω) ∝ ω at ω → 0
(contrary to the law ρlub(ω) ∝ ω2 for three-dimensional (3D)
systems [19]). As a simple example, let us consider the 2D
square lattice with the lattice constant r . It is characterized by
the phonon spectrum

ω2(k) = ω2
l

[
sin2(rkx/2) + sin2(rky/2)

]
, (17)

where k = (kx , ky) is the 2D wavevector and ωl is determined
by the interatomic interaction, ω2

l = 4gll/m l for the square
lattice, where gll = d2Vll(r)/dr2 is the elastic constant of
the lubricant. The spectrum (17) is linear at low frequency,

ω(k) ≈ 12ωlrk at k → 0. The maximum (Debye) lubricant
frequency is equal to ωmax = ωl

√
2. The local density of

phonon states for the 2D spectrum (17) can be found
analytically [19]:

ρlub(ω) =
4|ω|

π2ω2
l

K

 |ω|

√
2ω2

l − ω2

ω2
l

 , (18)

where K(x) is the complete elliptic integral of the first kind.
The density (18) is linear at low frequency, ρlub(ω) ≈ 2ω/πω2

l
at ω → 0, and has a logarithmic singularity in the middle of
the phonon zone at ω = ωl, where ρlub(ω) ≈ ln(ωl/ω − ωl|).

In the case of a liquid lubricant, one may use a ‘gas
spectrum’

ρlub(ω) =
2|ω|

πω2
l

exp
(

−
ω2

πω2
l

)
, (19)

and the rate R+ can be found analytically.
We emphasize that all the expressions presented above

are valid for the smooth sliding regime only, i.e. for the driving
velocities vtop >vc ∼ 0.1. In the stick–slip regime, the system
dynamics is governed by the static friction force fs. The same
comment is true for creep motion at low driving at Tsub >0,
when the motion is thermally activated and is governed by a
factor exp(−a′ fs/kBTsub), where a′ is some length parameter
of the order of the lattice constant.

In what follows, we apply the described
phenomenological approach to the Nl = 5 hard-lubricant
system to explain the simulation data of section 2.

3.4. The perfect sliding

More simple is the case when the lubricant remains in the
solid state during sliding and its structure does not change
with time. For the perfect sliding, we take vlx = vtop/2, s =

2 and N ′
at = Nat so that G = 2Nat/Nsub = 1.212. From the

simulation data presented in figure 5, we extracted other
parameters: ztop, 0 ≈ 23.95, βz ≈ 3.6, zl0 ≈ 5.21, βzl ≈ 0.3 and
zs ≈ 2.12. The phenomenological dependences obtained with
these parameters and with the value f0 = 0.2 for the only
fitting parameter are presented in figure 12. One can see a
rather good qualitative and even quantitative agreement with
the simulation data of figure 5 (at high driving velocities,
vtop >1, the friction force observed in the simulations is higher
than that of the phenomenological approach, because the latter
ignores all resonances inside the lubricant). Note that if we
ignore all temperature dependences, we obtain in the Tsub = 0
case the ‘universal’ dependence introduced in [5].

3.5. The solid lubricant with the ‘amorphous’ structure

In the case of ‘amorphous’ lubricant, we found in the
simulations that N ′

l ≈ Nl + 1 so that N ′
at = Nat Nl/N ′

l or αN =

5/6 ≈ 0.833 (simulation suggests that the value αN ≈ 0.81;
note that this parameter depends on a particular metastable
configuration). From the simulation data of figure 2, we
extracted other parameters: ztop, 0 ≈ 26.78, βz ≈ 2.33, zl0 ≈

5.22, βzl ≈ 0.333 and zs ≈ 2.112. The phenomenological
dependences obtained with these parameters for the case of

9
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Figure 12. Phenomenological dependences for the perfect sliding
of the Nl = 5 solid lubricant for f0 = 0.2. (a) Dependence of the
kinetic friction force on the sliding velocity at Tsub = 0.1 (open
diamonds) and Tsub = 0.4 (red solid circles). The symbols
correspond to simulation data of figure 5. (b) Dependence of the
kinetic friction on the substrate temperature for three values of the
sliding velocity, vtop = 0.1, 0.3 and 1.
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Figure 13. Phenomenological dependences of the kinetic friction
force on the sliding velocity at Tsub = 0 (blue curve and open
diamonds, the symbols correspond to simulation data of figure 2)
and Tsub = 0.3 (red curve and solid circles) for the ‘amorphous’
lubricant.

symmetric sliding (s = 2) are presented in figure 13 (also
we took into account a small heating of the mobile substrate
layers with the help of a dependence Tsub 1 ≈ 0.0017v2

top).
Note, however, that we had to take different values for the
fitting parameter f0; namely, we used f0 = 1.4 for the Tsub = 0
case, but f0 = 1.8 for Tsub = 0.3.

According to the T = 0 simulation, the sliding becomes
asymmetric (s = 1) at low driving velocities vtop < 0.3.
This is reasonable, because the system configuration is not
symmetric now, so that the sliding may take place at one

of the lubricant/substrate interfaces only. In this case, we
put vlx = vtop. Unfortunately, we were unable to obtain good
quantitative agreement with simulation data with the help
of the procedure described above, although we obtained the
correct order of magnitude of the friction force. Instead,
good agreement was achieved with the help of an artificial
dependence Tlub ≈ 2 v3

top, as shown in figure 13 by the black
curve.

One may think that the ‘amorphous’ lubricant may lead
to a smaller friction than the crystalline one, because the
geometrical factor is smaller in the former case. However, we
have to take into account the following factors: (i) in the case
of the ‘amorphous’ lubricant, the load is distributed over fewer
atoms, N ′

at. Therefore, the value of zl is smaller and the factor
η1 is larger than those for the crystalline lubricant. (ii) The
truly incommensurability of the lubricant/substrate interface
is destroyed in the ‘amorphous’ case. Both the factors (i) and
(ii) increase the sliding-induced heating of the lubricant and
therefore the friction. (iii) When the sliding is asymmetric at
low driving, there is only one sliding interface. Therefore,
the value of vlx is two times larger in this case. As the
rate of energy transfer from a moving lubricant atom into
the substrate, which is determined by the coefficient η(z, v),
strongly increases with the relative velocity according to (2),
this leads to higher friction as well.

Note that in the case when the lubricant is solid (either
crystalline or ‘amorphous’), the kinetic friction increases with
temperature and/or velocity in the smooth sliding regime.
However, for the creep motion, the dependence is opposite,
i.e. the sliding velocity increases with temperature at a
constant driving force, because creep is a thermally activated
process.

3.6. The LS regime

Finally, let us consider the liquid lubricant case. When
the confined film is molten, its thickness changes with the
temperature and driving velocity. In this case, the geometrical
factor G, which is proportional to N ′

at determined by (11),
will strongly decrease with temperature, and this effect may
compensate or even overcome the increase of kinetic friction
owing to the factor F .

It is easy to extract from simulations the parameters
βz ≈ 36.4, ztop, 0 ≈ 17 (see figure 11) and zs ≈ 2.09; that gives
β ′

N ≈ 2.84. To find N ′
at, we calculated the distribution of

atomic concentration around the first lubricant layer P1(z)
(see figure 10) and then integrated it, N ′

at = C
∫

dz P1(z).
The result of this analysis is shown in figure 14. One can
see that the dependence N ′

at(Tlub) can be fitted with a good
accuracy by the dependence (11) with Tmelt = 0.44, βN = β ′

N
and αN = 0.65.

Next, we have to know the position zl of the first lubricant
layer with respect to the substrate, because it determines the
exponential factor η1 in (1). We calculated it with the help
of (13); this leads to the dependence (12) with zl0 = 5.41 and
βzl ≈ 0.313 as demonstrated in figure 15.

Then, we have to know the average velocity vlx of the
first lubricant layer with respect to the substrate. Using the
distribution of x-velocities across the lubricant obtained in
simulation (figure 6), we schematized it as shown in figure 16.
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Figure 14. Dependence of N ′

at on the lubricant temperature
extracted from simulation data for the LS regime. The curve shows
the dependence (11) with Tmelt = 0.44, βN = 2.84 and αN = 0.65.
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Figure 16. Schematic presentation of the distribution of the
x-velocity of lubricant atoms across the lubricant.

The dependence vx (z) is linear within the lubricant, but
undergoes jumps at the substrate/lubricant interfaces. Using
this picture, we assume that vlx can be described by the
expression

vlx = αvtop(zl − zs)/d̃, (20)
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Figure 17. Dependence of the parameter α in (20) on the lubricant
temperature. The line corresponds to the linear fit
α = 2.53 − 0.71Tlub.

which includes a phenomenological parameter, α. The values
of α extracted from the simulation data are presented in
figure 17. A linear fit of these data gives the dependence
α = 2.53 − 0.71Tlub.

Finally, the increase in lubricant temperature due to
sliding was calculated by the method described in section 3.3
with the only fitting parameter f0; this gives the value
f0 ≈ 4.6 if we use the ‘gas’ spectrum of the lubricant
film, (19) (also we took into account a small increase in
temperature of the surface (mobile) layer of the substrate with
the help of (14) with the fitting parameters ν ≈ 1, κ ≈ 0.1
and βv ≈ 0.026). Combining all things together, we obtained
the phenomenological dependences presented in figure 18.
As seen, the phenomenological approach leads to a rather
good qualitative and even quantitative description of the
dependences observed in simulation. Note that now the kinetic
friction decreases when the substrate temperature grows,
contrary to the behaviour observed for the solid lubricant.

4. Discussion and conclusion

The simulation results of section 2.2 may be summarized as
follows. When the interaction within the lubricant is stronger
than the lubricant–substrate interaction, then the film remains
in the solid state at smooth sliding or during slips for stick–slip
motion, provided the substrate temperature is not too large.
The melting temperature of the confined film is so high that it
cannot be reached only because of heating of the lubricant due
to sliding. The sliding always occurs at the lubricant/substrate
interfaces, where the bonds are weaker.

In the case when the lubricant is crystalline without
defects and is in contact with the atomically smooth flat
substrate surfaces, both static and kinetic friction forces
are very small. This is just the ideal case of negligible
friction predicted for the contact of two incommensurate
solid surfaces. The static force fs depends linearly on the
load according to Amonton’s law fs = fs0 + αs fload, but the
proportionality coefficient is extremely small, αs ∼ 10−3 or
even smaller [3]. Moreover, fs does not change with the
time of stationary contact. Due to so small values of fs, the
transition from stick–slip to smooth sliding also occurs at a
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Figure 18. Dependence of the kinetic friction force on the driving
velocity at a fixed substrate temperature (a) and on the substrate
temperature at a fixed driving velocity (b) for the LS regime.
Symbols correspond to simulation data, while solid curves describe
the phenomenological dependences.

rather low velocity, vc ∼ 0.03. The kinetic friction force in
the perfect-sliding regime is very small too, fk ∼ 10−4–10−3

(so that µk ≡ fk/ fload ∼ 10−3–10−2), but it strongly increases
with the sliding velocity.

When the lubricant is annealed and then freezed in
a metastable (‘amorphous’) state, the friction depends on
the particular metastable configuration. The static friction
force takes values of order fs < 0.1 and follows Amonton’s
law with αs ∼ 0.3. The transition from stick–slip to smooth
sliding takes place at vc ∼ 0.1–0.5 (this value depends on the
particular configuration that the film had in the stick state).
During the slip, the kinetic friction force also depends on the
‘starting’ configuration, and may change during sliding due
to reordering within the film. At low velocities, the sliding
is asymmetric, the lubricant sticks to either the bottom or
the top substrate. The kinetic friction force increases with
the driving velocity as fk ≈ Bvtop (B ≈ 0.015 for the flat
geometry, and B ≈ 0.025 for the curved one). At the onset
of slip, the lubricant temperature increases and may exceed
the melting temperature. In this case, the film is ordered and
may even take the ideal crystalline configuration, so that the
perfect-sliding mechanism will operate further.

If the lubricant is in the molten state, the kinetic friction
force takes intermediate values and depends on the driving
velocity as fk ≈ 0.017vtop.

In all cases, the friction depends on the substrate
temperature. If one starts from the perfect-sliding state, then
the velocity decreases when T grows (for the constant-force
algorithm) until the film melts. The same is true for the
case of ‘amorphous’ lubricant, although the mobility in this
case is much lower. After the melting, the mobility grows
with temperature, although it remains lower than the T = 0
perfect-sliding value. Thus, for the solid state of the lubricant,
the friction increases with the substrate temperature, while
for the liquid lubricant, the dependence is opposite: the
friction decreases when T grows. Note, however, that such
a behaviour corresponds to the smooth sliding regime. For the
creep motion, which corresponds to the thermally activated
process, the friction should decrease when temperature grows.

Note also that in all cases the friction increases with
the driving velocity. Such a dependence is in agreement
with general physical reasons, because, otherwise, the steady
motion will be unstable.

The simulation results can be satisfactorily explained
with the help of the phenomenological theory presented in
section 3. Almost all phenomenological parameters that we
extracted from simulation data may in principle be calculated
from first principles or estimated at least, except the two fitting
parameters f0 and α. The first parameter, the coefficient f0

in (16), describes the amplitude of the oscillating (‘shaking’)
force responsible for the sliding-induced heating of the
lubricant. Note that for the solid state of the lubricant film, the
value of the fitting parameter f0 correlates with the value of
the static friction fs: the smallest value ( f0 = 0.2) was found
for the perfect sliding regime, whereas much larger values
( f0 = 1.4–1.8), for the ‘amorphous’ lubricant structure. The
largest value ( f0 = 4.6) was obtained for the liquid lubricant.
We could suggest that the value of f0 is proportional to
‘defectivity’ of the lubricant film structure, although we have
no clear understanding of this problem, and it requires further
investigation.

Secondly, the friction force in the LS regime strongly
depends on the velocity of the first lubricant layer relatively
to the substrate. According to (20), vlx is determined by
the parameter α, i.e. by the gradient of x-velocity at the
substrate/lubricant interface. This question is closely related
to the ‘slip’ or ‘no-slip’ behaviour of a liquid flow near a solid
surface. The latter is characterized by the so-called slip length,
defined as

Ls ≡ vlx

/
dvx

dz

∣∣∣∣
z=zl

=

vlx

(
d̃ − 2zl

)
(
vtop − 2vl

)
or

Ls = α
(zl − zs)

(
d̃ − 2zl

)
[
d̃ − 2α (zl − zs)

] .

In turn, the slip length is determined by the liquid–surface
interaction, i.e. either the surfaces are wetting or non-wetting
by the lubricant [21] (the latter situation corresponds to
the hard-lubricant system studied in this work). Recently,
the problem of slip length was studied with the help of
the variable-density Frenkel–Kontorova model [22]. It was
predicted that the slip length at low driving is proportional
to the square root of the elastic constant of the liquid, or
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α ∝ V 1/2
ll in our model, which is in qualitative agreement with

the simulation results [3].
Although the phenomenological theory presented above

still uses some parameters, it allows us to explain the
simulation results. In particular, it naturally explains the
increase of kinetic friction with the driving velocity. Then,
it explains the temperature dependence of the friction,
which emerges due to the interplay of two factors, F and
Gη1, in (7): the first factor increases with temperature,
whereas the geometrical one, Gη1, decreases with T . Thus,
the phenomenological theory allows us to predict, at least
qualitatively, the behaviour of other tribological systems in a
general framework.

Finally, note that the steady-state regimes considered in
the present work correspond to relatively high velocities, v >

0.03 in our dimensionless units, or v >10 m s−1. At lower
velocities the microscopic motion always corresponds to
stick–slip in the case of planar geometry of the interface [20],
although it may look like ‘smooth’ on a macroscopic scale.
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