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Abstract – In rubber friction studies it is often observed that the kinetic friction coefficient
depends on the nominal contact pressure. This is usually due to frictional heating, which softens
the rubber, increases the area of contact, and (in most cases) reduces the viscoelastic contribution
to the friction. In this paper we present experimental results showing that the rubber friction also
depends on the nominal contact pressure at such low sliding speed that frictional heating is neg-
ligible. This effect has important implications for rubber sliding dynamics, e.g., in the context of
the tire-road grip. We attribute this effect to the viscoelastic coupling between the macroasperity
contact regions, and present a simple earthquakelike model and numerical simulations supporting
this picture. The mechanism for the dependency of the friction coefficient on the load considered
is very general, and is relevant for non-rubber materials as well.

editor’s  choice Copyright c© EPLA, 2016

Introduction. – The Coulomb friction law states that
the friction force Ff = µFN is proportional to the nor-
mal force or load FN, and is found to hold remarkable
well in many practical applications [1,2]. For elastic solids
with nominally flat but randomly rough surfaces, con-
tact mechanics theories and numerical simulations show
that the contact area A is proportional to the nominal
contact pressure p0 = FN/A0, where A0 is the nomi-
nal contact area [3–10]. If it is assumed that a charac-
teristic frictional shear stress τf acts in the area of real
contact, then the friction coefficient µ = τfA/(p0A0) will
be independent of the pressure p0, i.e., independent of the
normal load FN = p0A0. There are many reason why the
Coulomb friction law may fail, and in this letter we discuss
a fundamental and very general mechanism, which is also
very important for rubber friction, e.g., for the friction
between tires and road surfaces.

In the following we consider surfaces which are nom-
inally flat but exhibit roughness at length scales much
shorter than the linear size L of the surface. Such sur-
faces have surface roughness power spectra with a roll-off
region for small wave numbers [11]. When such surfaces
are observed at low magnification one observes only the
most long wavelength part of the surface roughness, and

(a)www.multiscaleconsulting.com

the contact appears to consist of randomly distributed
macroasperity contact regions [4]. When a macroasperity
contact region is observed at higher magnification, shorter
wavelength roughness is observed and the macroasperity
contact region breaks up into smaller microasperity con-
tact regions.

Contact mechanics studies show that with increasing
pressure p0, existing contact areas grow and new contact
areas form in such a way that the (normalized) interfacial
stress distribution, and also the size distribution of con-
tact spots, are independent of the squeezing pressure [3–6].
When this is the case the macroscopic friction force will
be proportional to the normal force even when the friction
force acting on the asperity contact regions at the smallest
length scale depends non-linearly on the asperity contact
area, as often found to be the case in nanoscale sliding
friction experiments [12,13]. In this case the only thing
which could influence the sliding friction is the concen-
tration (a real density) of macroasperity contact regions,
which increases proportional to p0. In ref. [14] it was sug-
gested that the lateral coupling between the macroasperity
contact regions may result in a dependency of the friction
coefficient on the load.

In this letter we present a very simple model for the
elastic (or viscoelastic) coupling between the macroasper-
ity contact regions, and we show that the lateral coupling
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Fig. 1: (Color online) Simple friction tester (schematic) used
for obtaining the friction coefficient µ = M ′/M as a function
of the sliding speed. The sliding distance is measured using a
distance sensor and the sliding velocity v obtained by dividing
the sliding distance with the sliding time. This set-up can only
measure the friction coefficient on the branch of the µ(v)-curve
where the friction coefficient increases with increasing sliding
speed v.

between the contact regions influences the stick-slip dy-
namics of the contact regions. This results in a dependency
of the friction coefficient on the load, similarly to what we
have observed in rubber friction experiments [14,15].

Experimental. – At low sliding speeds, when the fric-
tional heating is negligible, many experiments show that
the rubber friction coefficient on rough surfaces is approx-
imately independent of the normal load which we too ob-
serve in most cases. However, we have found that close
to the first maximum (as a function of increasing sliding
speed v) of the µ(v) friction curve (the first maximum is
due to the adhesive interaction between the rubber and the
road surface in the area of real contact [15,16]), the fric-
tion coefficient decreases slightly with increasing nominal
contact pressure. The friction coefficient at this maximum
is very important for tire dynamics —it acts as an effective
static friction coefficient (the slip velocities before the first
maximum of µ(v) are very small, and can be neglected in
most tire applications [17,18]).

We have studied rubber friction for tread rubber com-
pounds sliding against concrete and asphalt road surfaces.
The measurements were performed using the Leonardo da
Vinci set-up shown in fig. 1. The slider consists of two
rubber blocks glued to a wood plate (with a rubber block
thickness ∼ 0.5 cm typically larger than the diameter of
the macroasperity contact regions). This simple friction
tester can be used for obtaining the friction coefficient
µ = M ′/M as a function of the sliding speed. The sliding
distance is measured using a distance sensor, and the slid-
ing velocity obtained by dividing the sliding distance with
the sliding time. This set-up can only measure the steady-
state friction coefficient on the branch of the µ(v)-curve
where the friction coefficient increases with increasing slid-
ing speed v. Thus, if v = vmax denote the velocity where
the µ(v)-curve has its first maximum, then in figs. 2 and 3
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Fig. 2: (Color online) The measured friction coefficient as a
function of the sliding speed for a rubber compound on an as-
phalt road surface. The background temperature is T0 = 20 ◦C,
and the nominal contact pressure is indicated in the figure.
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Fig. 3: (Color online) The measured friction coefficient as a
function of the sliding speed for a rubber compound on a con-
crete road surface. The background temperature is T0 = 11 ◦C,
and the nominal contact pressure is indicated in the figure.

below, the highest velocity data points correspond to the
sliding speed v = vmax.

Figure 2 shows the measured friction coefficient as a
function of the sliding speed for a rubber tread compound
on an asphalt road surface. The results are for the back-
ground temperature T0 = 20 ◦C, and for several values of
the nominal contact pressure indicated in the figure. Note
that the maximum of the friction coefficient decreases with
increasing nominal contact pressure. At the same time
the friction coefficient for lower velocities is the same in
all cases within the accuracy of the measurements.

Figure 3 shows the measured friction coefficient as a
function of the sliding speed for a rubber tread compound
on a concrete road surface. The results are for the back-
ground temperature T0 = 11 ◦C, and for several nominal
contact pressure. Note again that the maximum of the
friction coefficient decreases with increasing nominal con-
tact pressure.

Figures 2 and 3 show that there is a big spread in
the measured friction data. We believe this is due to the
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influence of surface contamination on the adhesive contri-
bution to the friction. This is particularly true close to
the maximum in µ(v) where the measured data depends
on how clean the surface is., e.g., how long the surface
has been in the normal atmosphere after the surface was
cleaned in soap-water. We note that the adhesive contri-
bution to µ(v) most likely involves the (temporary) bind-
ing of rubber molecules to the substrate which is sensitive
to even sub-monolayer surface contamination. However,
we have studied many more systems than shown in the
present paper, and as the nominal contact pressure in-
creases we always observed a systematic reduction in the
friction coefficient close to the maximum of µ(v), while
there is no systematic pressure dependence of the friction
coefficient well away from the maximum.

Qualitative discussion. – A tentative explanation for
the observations above is as follows [14]. For velocities
v ≪ vmax the rubber in (almost) all macroasperity con-
tact regions slip relative to the substrate with the same
velocity v as the upper surface of the rubber block. In
that case the elastic (or rather viscoelastic) coupling be-
tween the rubber macroasperity contact regions is not
changing in time, and it is basically irrelevant for the fric-
tion. Now, for velocities v > vmax the rubber friction
decreases with increasing sliding speed. In the present
case where the driving force is constant, this results in an
unstable branch of the µ(v)-curve, where the rubber block
accelerates.

If instead the upper surface of the block would be rigidly
driven with a constant velocity v > vmax, the bottom sur-
face of the block would perform stick-slip motion. But
with the same argument one expects the rubber in the
macroasperity contact regions to perform stick-slip mo-
tion for v > vmax. However, due to the stochastic fluctu-
ations in the nature of the macroasperity contact regions
(e.g., due to local fluctuations in the roughness or surface
contamination) one expects not a sharp onset velocity for
stick-slip motion at the macroasperity level, but a distri-
bution of onset velocities. Thus we expect that close to
the friction maximum, but for v < vmax, some contact
regions will perform stick-slip motion. In this case the
motion of a macroasperity contact region depends on the
motion of the other macroasperity contact regions. Thus,
we expect some correlation in the local stick-slip events
when the velocity is close to the point where the friction
coefficient is maximal. For example, if the rubber in a
macroasperity contact region slips into a state where the
shear force acting on it vanishes, the tangential force lost
in this contact region will distribute itself on the other rub-
ber macroasperity contact regions, where the shear stress
now may increase to the point of resulting in local slip,
and so on. Clearly, this lateral coupling, and the way the
stress redistributes itself in response to a local slip at a
macroasperity contact region, will depend on the average
separation between the macroasperity contact regions, and
hence on the concentration of the macroasperity contact

Fig. 4: (Color online) The model. The upper layer (UL) is
split in rigid blocks of size a × a × NLa connected by springs
of the elastic constant KL. The interface layer (IL) is split
in rigid blocks of size a × a × a connected by springs of the
elastic constant K. The UL and IL are coupled by springs of
the elastic constant KT. The IL is connected with the rigid
bottom block (substrate) by frictional contacts (see eq. (1)).
The UL is driven with the velocity v through springs of the
elastic constant Kd.

regions, which increases with increasing nominal contact
pressure.

We now present a simple analytical model to study in
greater detail the mechanism discussed above, and we will
show that the lateral coupling between the macroasper-
ity contact regions gives rise to a friction coefficient µ(v)
which depends on the load or normal force for v close
to vmax.

Theory modeling. – We now discuss why the friction
coefficient in figs. 2 and 3 depends on the nominal contact
pressure for sliding speeds close to v = vmax, where the
friction coefficient has a local maximum. We assume that
the contact area is proportional to the nominal contact
pressure p0, and that with increasing pressure p0, existing
contact areas grow and new contact areas form in such a
way that the (normalized) interfacial stress distribution,
and also the size distribution of contact spots are inde-
pendent of the squeezing pressure. (Strictly speaking, this
assumption only holds for an infinite system, but should
be approximately true also in most practical applications.)
In this case the only thing which could influence the sliding
friction is the concentration (a real density) of macroasper-
ity contact regions which increases proportional to p0.

Unfortunately, an exact consideration of the elastic
coupling between the macroasperity contact regions is
possible only within a three-dimensional model, which
require very large computational time for system sizes
of interest. In this first study we therefore instead use
a simple one-dimensional two-chain model of the slider
(see fig. 4), which should be enough to demonstrate if
the lateral coupling between the macroasperity contact
regions can generate a load dependency of the friction
coefficient.

56002-p3
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Our model is similar to the Burridge and Knopoff
spring-block model [19] used to study some aspects of
earthquake dynamics and boundary lubrication [20]. In
this model the top block (the slider) is coupled with the
bottom block (substrate), assumed to be rigid and fixed,
by a set of frictional contacts. In refs. [21,22] this model
was extended in order to incorporate elasticity of the slider
in an approximate way.

The model is shown schematically in fig. 4. The bot-
tom chain consists of rigid a3-cubes coupled by springs
K = Ea, where E is the slider Young modulus, and also
coupled by frictional contacts with the base; it describes
the macroasperity contact regions, here referred to as the
“interface” layer (IL).

The other part of the slider is modeled as a chain of
parallelepipeds of height NLa coupled by springs KL =
NLEa; we call it the upper layer (UL). The UL and IL are
coupled by the set of N transverse springs KT = Ga/NL,
where G = E/[2(1 + ν)] is the shear modulus and ν is
the slider Poisson ratio. The UL plays the role of a reser-
voir, where the elastic energy is stored and partially re-
leased during sliding. Finally, we attach springs Kd to
the top boundary of UL and drive the spring ends with
a velocity v. Along the chains we use periodic boundary
conditions.

The model parameters for the rubber slider are the
following. The IL consists of N = 301 or 1001 blocks
(a3-cubes), each of linear size a = 0.1 mm and mass m =
ρa3 = 10−9 kg, where ρ = 103 kg/m3 is the rubber mass
density. The rubber has a Young modulus E = 10 MPa
and a Poisson ratio ν = 0.5, so that the springs between
the cubes has an elastic constant K = 103 N/m.

The UL consists of parallelepipeds of height NL = 5
(so that their masses are NLm). The UL is moved through
springs of the elastic constant Kd = K/[2(1+ν)] attached
to its top and driven with a velocity v. Between the
nearest-neighboring blocks i and j we added the viscous
damping force fij = −mη(vi − vj) with the damping co-
efficient η = 0.3ω0, where ω0 = (K/m)1/2 = 106 s−1 is the
characteristic frequency of the slider, so that the system
dynamics is underdamped.

The slider is coupled with the substrate by Nc = θN
frictional contacts with a random spatial distribution. As
discussed above, for a contact of rough surfaces the dimen-
sionless parameter θ is directly proportional to the load.
The force acting on the i’th IL’s block, to which the con-
tact is attached, depends on the block velocity vi as [15]

f(vi, v
∗

i ) = εf0 exp(−cξi)sign(vi) + mηcvi, (1a)

ξi = [log10 (|vi|/v∗

i )]
2
, (1b)

where f0 = a2τf, τf = 6.5 × 106 Pa and c = 0.1, and
the parameters v∗

i are randomly distributed around the
value v0 = 1 mm/s [15] (in detail, the values log10 v∗

i

are uniformly distributed within the interval [log10 v0 −
δ, log10 v0 + δ] with δ = 0.5). The function f(v, v0),

Fig. 5: (Color online) The function f(v, v0), eq. (1), for dif-
ferent values of the damping coefficient ηc = 0 (dotted line),
ηc = ω0 (solid black line), ηc = 0.3ω0 (blue line) and ηc = 0.1ω0

(red line). The dashed curve shows the force 〈f(v, vi)〉 =
N−1

c

∑
Nc

i=1 f(v, vi) averaged over all contacts for N = 1001 and
θ = 1.

eq. (1), is shown in fig. 5 for different values of the con-
tact’s damping ηc.

The “scaling” parameter ε in eq. (1) was introduced be-
cause of the following technical problem [23]. The charac-
teristic time scale of the slider is τ0 = 2π/ω0 ≈ 6.3×10−6 s,
while the characteristic time scale of the frictional contacts
is τc = v0m/f0 ∼ 10−12 s which is more than six orders of
magnitude smaller. Using the value ε = 10−2 in eq. (1),
we were able to simulate the system within a reasonable
computer time (of course, we checked that changing of ε
does not modify our results, at least qualitatively).

During the simulation we saved the total driving force
fd(t) = N−1

∑N
i=1 Kd[vdt − Xi(t)], where Xi(t) is the

coordinate of the i-th UL’s block, and then calculated
the parameter µ∗ = 〈fd(t)〉/(εf0θ) for the steady slid-
ing. Since θ is proportional to the normal load, µ∗ is
directly proportional to the friction coefficient. The re-
sults are presented in fig. 6. For a lower driving velocity
vd2 = 3 × 10−4 m/s the friction is almost independent of
load, while for vd1 = v0 = 10−3 m/s the friction may de-
crease by more than 20% when the load grows, in good
agreement with the experiment.

Analyzing the simulation results in more detail, we
found the following explanation of this effect. Let v be
the velocity of the drive. A single (isolated) contact i
moves with a constant velocity v if v < v∗

i , and hence it
experiences the constant friction force f(v, v∗

i ). However,
if v > v∗

i for the given contact, its motion becomes un-
stable, and the contact undergoes stick-slip motion. In
the latter case, the contact accelerates during slip, and
the force drops, so the averaged force from this contact
is lower than f(v, v∗

i ); the larger the effect is, the smaller
the damping parameter ηc is. For a set of non-interacting
contacts, the driving force in the steady state is approx-
imately equal to the sum of the forces from all contacts,
and thus slightly smaller than 〈f(v, v∗

i )〉 because some
contacts with v∗

i < v undergo stick-slip. This situation

56002-p4
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Fig. 6: (Color online) Dependence µ∗ vs. θ for three values
of the contact damping ηc = ω0 (blue circles), ηc = 0.3ω0 (red
diamonds) and ηc = 0.1ω0 (black squares), and for two values
of the driving velocity vd1 = v0 = 10−3 m/s (solid symbols)
and vd2 = 0.3v0 = 3×10−4 m/s (open symbols; the dashed hor-
izontal line shows f(vd2, v0)/(εf0θ)). Stars are for N = 1001.

corresponds to the θ → 0 limit (low load), when the con-
tacts are far away from each other. However, at large
θ (load) some contacts occur close to one another, and
if one of them undergoes stick-slip, it will stimulate the
neighboring contacts to stick-slip as well —the number of
stick-slip contacts increases with θ, and the total friction
force decreases.

The stick-slip of the macroasperity contact regions
should manifest itself in the power spectrum of the block
velocity, and in the acoustic power spectrum, so studying
these quantities should be one way to test the hypothesis
presented above.

Summary and conclusion. – In this paper we pre-
sented experimental results showing that the rubber fric-
tion coefficient µ(v), in a narrow velocity region around
the velocity where µ(v) is maximal, depends on the nom-
inal contact pressure p0, even when the sliding speed is so
low that frictional heating is unimportant. We attribute
this effect to the (viscoelastic) coupling between the
macroasperity contact regions. We have presented a sim-
ple model which shows that the lateral coupling between
the macroasperity contact regions can enhance the stick-
slip of the contact regions. Since the average distance be-
tween two nearby macroasperity contact region decreases
when the load increases, the lateral coupling increases, and
the friction coefficient decreases, as the load increases.

The mechanism for the dependency of the friction coef-
ficient on the load considered in this paper is very general,
and is also relevant for non-rubber materials. We plan to
perform studies on more realistic 3D systems to test if the
predictions presented in this paper holds also in a more
accurate treatment of the problem.
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